Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of DES ChCl:UA-TA
2.3. Pretreatment of TS with Dilute NaOH and ChCl: UA-TA
2.4. Enzymatic Hydrolysis of TS
2.5. Analytical Methods
3. Results and Discussion
3.1. Optimization of NaOH–ChCl:UA-TA Pretreatment
3.2. Comparison of Different Pretreatments on the Enzymatic Saccharification of TS
3.3. Reuse of Pretreatment Medium NaOH–ChCl:UA-TA
3.4. Enzymatic Hydrolysis of DNC-TS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LCB | Lignocellulosic biomass |
TS | Tomato stalk |
DES | deep eutectic solvent |
ChCl | Choline chloride |
UA | urea |
TA | thiourea |
DI water | deionized water |
References
- Gu, T.; Wang, B.; Zhang, Z.; Wang, Z.; Chong, G.; Ma, C.; Tang, Y.-J.; He, Y. Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media. Process Biochem. 2019, 80, 112–118. [Google Scholar] [CrossRef]
- Wu, J.-W.; Dong, L.-L.; Liu, B.-F.; Xing, D.-F.; Zhou, C.-S.; Wang, Q.; Wu, X.-K.; Feng, L.-P.; Cao, G.-L. A novel integrated process to convert cellulose and hemicellulose in rice straw to biobutanol. Environ. Res. 2020, 186, 109580. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Shukla, A.; Tiwari, S.; Srivastava, M. A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential. Renew. Sustain. Energ. Rev. 2014, 32, 713–728. [Google Scholar] [CrossRef]
- Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y.Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Raud, M.; Kikas, T.; Sippula, O.; Shurpali, N.J. Potentials and challenges in lignocellulosic biofuel production technology. Renew. Sustain. Energ. Rev. 2019, 111, 44–56. [Google Scholar] [CrossRef]
- Pandiyan, K.; Tiwari, R.; Rana, S.; Arora, A.; Singh, S.; Saxena, A.-K.; Nain, L. Comparative efficiency of different pretreatment methods on enzymatic digestibility of Parthenium sp. World J. Microbiol. Biotechnol. 2014, 30, 55–64. [Google Scholar] [CrossRef]
- He, Y.-C.; Liu, F.; Di, J.-H.; Ding, Y.; Zhu, Z.-Z.; Wu, Y.-Q.; Chen, L.; Wang, C.; Xue, Y.-F.; Chong, G.-G. Effective enzymatic saccharification of dilute NaOH extraction of chestnut shell pretreated by acidified aqueous ethylene glycol media. Ind. Crop. Prod. 2016, 81, 129–138. [Google Scholar] [CrossRef]
- Modenbach, A.-A.; Nokes, S.-E. Enzymatic hydrolysis of biomass at high-solids loading—A review. Biomass. Bioeng. 2013, 56, 526–544. [Google Scholar] [CrossRef]
- Yu, Y.-Y.; Cheng, W.-K.; Li, Y.-L.; Wang, T.; Xia, Q.-Q.; Liu, Y.-Z.; Yu, H.-P. Tailored one-pot lignocellulose fractionation to maximize biorefinery toward versatile xylochemicals and nanomaterials. Green. Chem. 2022, 24, 3257. [Google Scholar] [CrossRef]
- Katakojwala, R.; Mohan, S.-V. Multi-product biorefinery with sugarcane bagasse: Process development for nanocellulose, lignin and biohydrogen production and lifecycle analysis. Chem. Eng. J. 2022, 446, 137233. [Google Scholar] [CrossRef]
- Haykir, N.-I.; Bakir, U. Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Ind. Crop. Prod. 2013, 51, 408–414. [Google Scholar] [CrossRef]
- Pińkowska, H.; Wolak, P.; Złocińska, A. Hydrothermal decomposition of xylan as a model substance for plant biomass waste–Hydrothermolysis in subcritical water. Biomass Bioenerg. 2011, 35, 3502–3912. [Google Scholar] [CrossRef]
- Strassberger, Z.; Prinsen, P.; Klis, F.; Es, D.; Tanase, S.; Rothenberg, G. Lignin solubilisation and gentle fractionation in liquid ammonia. Green Chem. 2015, 17, 325–334. [Google Scholar] [CrossRef]
- Kim, S.-B.; Lee, S.-J.; Lee, J.-H.; Jung, Y.-R.; Thapa, L.-P.; Kim, J.-S.; Um, Y.; Park, C.; Kim, S.-W. Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia. Biotechnol. Biofuels 2013, 6, 109. [Google Scholar] [CrossRef]
- Jiang, C.-X.; He, Y.-C.; Chong, G.-G.; Di, J.-H.; Tang, Y.-J.; Ma, C.-L. Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. J. Biotechnol. 2017, 259, 73–82. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Su, J.; Lin, Y.; Huang, Z.; Lu, Y.; Sun, G.; Yang, M.; Huang, A.; Hu, H.; et al. A green and efficient technology for the degradation of cellulosic materials: Structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. Bioresour. Technol. 2015, 177, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Barmana, D.-N.; Haquea, M.-A.; Kang, T.-H.; Kim, G.-H.; Kim, T.-Y.; Kim, M.-K.; Yun, H.-D. Effect of mild alkali pretreatment on structural changes of reed (Phragmites communis Trinius) straw. Environ. Technol. 2014, 35, 232–241. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, T.; Liu, J.; Gao, H.; Bian, H.; Wang, R.; Huang, C.; Sha, J.; Dai, H. Recyclable deep eutectic solvent coupling sodium hydroxide post-treatment for boosting woody/herbaceous biomass conversion at mild condition. Bioresour. Technol. 2021, 320, 124327. [Google Scholar] [CrossRef]
- Zhou, J.-P.; Zhang, L.-N.; Cai, J. Behavior of cellulose in NaOH/urea aqueous solution characterized by light scattering and viscometry. J. Polym. Sci. Pol. Phys. 2004, 42, 347–353. [Google Scholar] [CrossRef]
- Jin, H.-J.; Zha, C.-X.; Gu, L.-X. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd. Res. 2007, 342, 851–858. [Google Scholar] [CrossRef]
- Dong, L.-L.; Cao, G.-L.; Wu, J.-W.; Liu, B.-F.; Xing, D.-F.; Zhao, L.; Zhou, C.-S.; Feng, L.-P.; Ren, N.-Q. High-solid pretreatment of rice straw at cold temperature using NaOH/Urea for enhanced enzymatic conversion and hydrogen production. Bioresour. Technol. 2019, 287, 121399. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-N.; Ruan, D.; Gao, J. Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J. Polym. Sci. Pol. Phys. 2002, 40, 1521–1529. [Google Scholar] [CrossRef]
- Mohsenzadeh, A.; Jeihanipour, A.; Karimia, K.; Taherzadeh, M.-J. Alkali pretreatment of softwood spruce and hardwood birch by NaOH/thiourea, NaOH/urea, NaOH/urea/thiourea, and NaOH/PEG to improve ethanol and biogas production. J. Chem Technol. Biotechnol. 2012, 87, 1209–1214. [Google Scholar] [CrossRef]
- Liang, X.-Q.; Zhu, Y.; Qi, B.-K.; Li, S.-Q.; Luo, J.-Q.; Wan, Y.-H. Structure-property-performance relationships of lactic acid-based deep eutectic solvents with different hydrogen bond acceptors for corn stover pretreatment. Bioresour. Technol. 2021, 336, 125312. [Google Scholar] [CrossRef]
- Pan, L.; Li, Q.; Tao, Y.; Ma, C.; Chai, H.; Ai, Y.; He, Y.-C. An efficient chemoenzymatic strategy for valorisation of corncob to furfuryl alcohol in CA:Betaine-water. Ind. Crop Prod. 2022, 186, 115203. [Google Scholar] [CrossRef]
- Ling, R.-X.; Wu, W.-J.; Yuan, Y.-F.; Wei, W.-Q.; Jin, Y.-C. Investigation of choline chloride-formic acid pretreatment and Tween 80 to enhance sugarcane bagasse enzymatic hydrolysis. Bioresour. Technol. 2021, 326, 124748. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Li, J.; Zhu, P.; Liang, B. Exploring dynamics and associations of dominant lignocellulose degraders in tomato stalk composting. J. Environ. Manage. 2021, 294, 113162. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Structural Carbohydrates and Lignin in Biomass; Report No. TP-510-42618; National Renweable Energy Laboratory: Golden, CO, USA, 2011. [Google Scholar]
- He, Y.-C.; Liu, F.; Gong, L.; Zhu, Z.-Z.; Ding, Y.; Wang, C.; Xue, Y.-F.; Rui, H.; Tao, Z.-C.; Zhang, D.-P.; et al. Significantly improving enzymatic saccharification of high crystallinity index’s corn stover by combining ionic liquid [Bmim]Cl-HCl-water media with dilute NaOH pretreatment. Bioresour. Technol. 2015, 189, 421–425. [Google Scholar] [CrossRef]
- He, Y.-C.; Ding, Y.; Xue, Y.-F.; Yang, B.; Liu, F.; Wang, C.; Zhu, Z.-Z.; Qing, Q.; Wu, H.; Zhu, C.; et al. Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction. Bioresour. Technol. 2015, 193, 324–330. [Google Scholar] [CrossRef]
- Chong, G.-G.; He, Y.-C.; Liu, Q.-X.; Kou, X.-Q.; Huang, X.-J.; Di, J.-H.; Ma, C.-L. Effective enzymatic in situ saccharification of bamboo shoot shell pretreated by dilute alkalic salts sodium hypochlorite/sodium sulfide pretreatment under the autoclave system. Bioresour. Technol. 2017, 241, 726–734. [Google Scholar] [CrossRef]
- Wu, M.-J.; Gong, L.; Ma, C.-L.; He, Y.-C. Enhanced enzymatic saccharification of sorghum straw by effective delignification via combined pretreatment with alkali extraction and deep eutectic solvent soaking. Bioresour. Technol. 2021, 340, 125695. [Google Scholar] [CrossRef] [PubMed]
- Chong, G.-G.; He, Y.-C.; Liu, Q.-X.; Kou, X.-Q.; Qing, Q. Sequential aqueous ammonia extraction and LiCl/N,N-dimethyl formamide pretreatment for enhancing enzymatic saccharification of winter bamboo shoot shell. Appl. Biochem. Biotechnol. 2017, 182, 1341–1357. [Google Scholar] [CrossRef]
- Dai, Y.; Si, M.; Chen, Y.; Zhang, N.; Zhou, M.; Liao, Q.; Shi, D.; Liu, Y. Combination of biological pretreatment with NaOH/Urea pretreatment at cold temperature to enhance enzymatic hydrolysis of rice straw. Bioresour. Technol. 2015, 198, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Shahabazuddin, M.; Chandra, T.-S.; Meena, S.; Sukumaran, R.-K.; Shetty, N.-P.; Mudliar, S.-N. Thermal assisted alkaline pretreatment of rice husk for enhanced biomass deconstruction and enzymatic saccharification: Physico-chemical and structural characterization. Bioresour. Technol. 2018, 263, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, J.-M.; Seo, J.-W.; Kim, C.-H. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresour. Technol. 2012, 109, 229–233. [Google Scholar] [CrossRef]
- Shao, L.-Y.; Chen, H.; Li, Y.-L.; Li, J.-N.; Chen, G.; Wang, G. Pretreatment of corn stover via sodium hydroxide-urea solutions to improve the glucose yield. Bioresour. Technol. 2020, 307, 123191. [Google Scholar] [CrossRef]
- Xu, G.-C.; Ding, J.-C.; Han, R.-Z.; Dong, J.-J.; Ni, Y. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 2015, 203, 364–369. [Google Scholar] [CrossRef]
- Lin, W.; Xing, S.; Jin, Y.; Lu, X.; Huang, C.; Yong, Q. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. Bioresour. Technol. 2020, 306, 123163. [Google Scholar] [CrossRef]
- Wang, W.-C.; Zhang, P.; Zhang, S.; Li, F.-X.; Yu, J.-Y.; Lin, J.-Y. Structure and properties of novel regenerated cellulose fibers prepared in NaOH complex solution. Carbohyd. Polym. 2013, 98, 1031–1038. [Google Scholar] [CrossRef]
- Chong, G.-G.; Huang, X.-J.; Di, J.-H.; Xu, D.-Z.; He, Y.-C.; Pei, Y.-N.; Tang, Y.-J.; Ma, C.-L. Biodegradation of alkali lignin by a newly isolated Rhodococcus pyridinivorans CCZU-B16. Bioproc Biosyst Eng. 2018, 41, 501–510. [Google Scholar] [CrossRef]
- He, Y.-C.; Liu, F.; Gong, L.; Lu, T.; Ding, Y.; Zhang, D.-P.; Qing, Q.; Zhang, Y. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture. Appl. Biochem. Biotechnol. 2015, 175, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Zhang, Q.; Liu, Z.-Y.; Li, F.-L.; Lu, M.; Fang, X.-C. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products. Appl. Microbiol. Biotechnol. 2020, 104, 455–473. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Zha, J.; Pan, L.; Ma, C.; He, Y.-C. Highly efficient conversion of sunflower stalk-hydrolysate to furfural by sunflower stalk residue-derived carbonaceous solid acid in deep eutectic solvent/organic solvent system. Bioresour. Technol. 2021, 351, 126945. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Lee, H.W.; Lee, S.M.; Jae, J.; Park, Y.-K. Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresour. Technol. 2019, 279, 373–384. [Google Scholar] [CrossRef]
- Rezania, S.; Oryani, B.; Cho, J.; Talaiekhozani, A.; Sabbagh, F.; Hashemi, B.; Rupani, P.-F.; Mohammadi, A.-A. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy 2020, 199, 117457. [Google Scholar] [CrossRef]
- Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.-J. Pretreatment technologies for an efficient bioethanol production pro-cess based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef]
- Fan, B.; Zhang, L.; Tang, Z.; Chen, L.; He, Y. Enhanced saccharification of purple alfalfa via sequential pretreatment with acidified ethylene glycol and Urea/NaOH. Processes 2021, 10, 61. [Google Scholar] [CrossRef]
- Hanhikoski, S.; Warsta, E.; Varhimo, A.; Niemelä, K.; Vuorinen, T. Sodium sulphite pulping of Scots pine under neutral and mildly alkaline conditions (NS pulping). Holzforschung 2016, 70, 603–609. [Google Scholar] [CrossRef]
- Xu, G.-C.; Li, H.; Xing, W.-R.; Gong, L.; Dong, J.-J.; Ni, Y. Facilely reducing recalcitrance of lignocellulosic biomass by a newly developed ethylamine-based deep eutectic solvent for biobutanol fermentation. Biotechnol. Biofuels 2020, 13, 166. [Google Scholar] [CrossRef]
- Procentese, A.; Raganati, F.; Olivieri, G.; Russo, M.-E.; Rehmann, L.; Marzocchella, A. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production. Bioresour. Technol. 2017, 243, 464–473. [Google Scholar] [CrossRef]
- Li, W.-Q.; Amos, K.; Li, M.; Pu, Y.-Q.; Debolt, S.; Ragauskas, A.-J.; Shi, J. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks. Biotechnol. Biofuels 2018, 11, 304. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.-R.; Xu, G.-C.; Dong, J.-J.; Han, R.-Z.; Ni, Y. Novel dihydrogen-bonding deep eutectic solvents: Pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem. Eng. J. 2018, 333, 712–720. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, X.; Ali, M.; Abdeltawab, A.; Yakout, S.; Yu, G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour. Technol. 2018, 263, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Qing, Q.; Guo, Q.; Zhou, L.; He, Y.; Wang, L.; Zhang, Y. Enhancement of In Situ Enzymatic Saccharification of Corn Stover by a Stepwise Sodium Hydroxide and Organic Acid Pretreatment. Appl. Biochem. Biotechnol. 2017, 181, 350–364. [Google Scholar] [CrossRef]
DES; Pretreatment Conditions | Biomass | Delignification | Ref. |
---|---|---|---|
EaCl:LAC = 1:1; 150 °C, 30 min | Rice straw | 67.0% | [50] |
ChCl:Gly = 1:2; 150 °C, 16 h | Lettuce leaf | ~40% | [51] |
ChCl:LA = 1:2; 145 °C, 6 h | Peach endocarp | 70.2% | [52] |
ChCl:FA:AA = 1:1:1; 130 °C, 2 h | Rice straw | 43.6% | [53] |
ChCl:MEA = 1:6; 70 °C, 9 h | Wheat straw | 71.4% | [54] |
NaOH (0.75 wt%) 1 h, 121 °C; ChCl:LAC 140 °C, 40 min | Sorghum straw | 78.4% | [32] |
NaOH (7 wt%)–ChCl:UA-TA (8 wt%); 75 °C, 60 min | Tomato stalk | 82.1% | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, B.; Ni, J.; Li, Q.; He, Y.; Ma, C. Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes 2022, 10, 1905. https://doi.org/10.3390/pr10101905
Fan B, Ni J, Li Q, He Y, Ma C. Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes. 2022; 10(10):1905. https://doi.org/10.3390/pr10101905
Chicago/Turabian StyleFan, Bo, Jiacheng Ni, Qi Li, Yucai He, and Cuiluan Ma. 2022. "Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner" Processes 10, no. 10: 1905. https://doi.org/10.3390/pr10101905
APA StyleFan, B., Ni, J., Li, Q., He, Y., & Ma, C. (2022). Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes, 10(10), 1905. https://doi.org/10.3390/pr10101905