Effect of UV Light and Sodium Hypochlorite on Formation and Destruction of Pseudomonas fluorescens Biofilm In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Mature Biofilm Formation
2.3. Pre-Treatments of Planktonic Bacteria with UV Light and Sodium Hypochlorite
2.4. Mature Biofilm Treatments with UV Light and Sodium Hypochlorite
2.5. Scanning Electron Microscopy (SEM)
2.6. Statistical Analyses
3. Results
3.1. The Effect of UV Light and Sodium Hypochlorite on Biofilm Formation
3.2. The Effect of UV Light and Sodium Hypochlorite on Mature Biofilm Destruction
3.3. The Effect of UV Light and Hyperchlorination on Mature Biofilm Destruction
3.4. Scanning Electron Microscopy (SEM) Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Falkinham, J.O., III. Common Features of Opportunistic Premise Plumbing Pathogens. Int. J. Environ. Res. Public Health 2015, 12, 4533–4545. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.R.; Pryor, M.; Fields, B.; Lucas, C.; Phelan, M.; Besser, R.E. Introduction of Monochloramine into a Municipal Water System: Impact on Colonization of Buildings by Legionella spp. Appl. Environ. Microbiol. 2006, 72, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Hayward, C.; Ross, K.E.; Brown, M.H.; Bentham, R.; Whiley, H. The Presence of Opportunistic Premise Plumbing Pathogens in Residential Buildings: A Literature Review. Water 2022, 14, 1129. [Google Scholar] [CrossRef]
- Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci. Total Environ. 2012, 426, 366–374. [Google Scholar] [CrossRef]
- CDC. Implications of Waterborne Disease Estimates. Available online: https://www.cdc.gov/healthywater/surveillance/burden/implications.html (accessed on 10 August 2022).
- Collier, S.A.; Deng, L.; Adam, E.A.; Benedict, K.M.; Beshearse, E.M.; Blackstock, A.J.; Bruce, B.B.; Derado, G.; Edens, C.; Fullerton, K.E.; et al. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg. Infect. Dis. 2021, 27, 140–149. [Google Scholar] [CrossRef]
- Soto-Giron, M.J.; Rodriguez-R, L.M.; Luo, C.; Elk, M.; Ryu, H.; Hoelle, J.; Santo Domingo, J.W.; Konstantinidis, K.T. Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections. Appl. Environ. Microbiol. 2016, 82, 2872–2883. [Google Scholar] [CrossRef]
- Scales, B.S.; Dickson, R.P.; LiPuma, J.J.; Huffnagle, G.B. Microbiology, Genomics, and Clinical Significance of the Pseudomonas fluorescens Species Complex, an Unappreciated Colonizer of Humans. Clin. Microbiol. Rev. 2014, 27, 927–948. [Google Scholar] [CrossRef]
- Wong, V.; Levi, K.; Baddal, B.; Turton, J.; Boswell, T.C. Spread of Pseudomonas fluorescens Due to Contaminated Drinking Water in a Bone Marrow Transplant Unit: Table 1. J. Clin. Microbiol. 2011, 49, 2093–2096. [Google Scholar] [CrossRef]
- Sun, Y.-Y.; Chi, H.; Sun, L. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity. Front. Microbiol. 2016, 7, 1320. [Google Scholar] [CrossRef]
- Gershman, M.D.; Kennedy, D.J.; Noble-Wang, J.; Kim, C.; Gullion, J.; Kacica, M.; Jensen, B.; Pascoe, N.; Saiman, L.; McHale, J.; et al. Multistate Outbreak of Pseudomonas fluorescens Bloodstream Infection after Exposure to Contaminated Heparinized Saline Flush Prepared by a Compounding Pharmacy. Clin. Infect. Dis. 2008, 47, 1372–1379. [Google Scholar] [CrossRef] [Green Version]
- Anaissie, E.J.; Penzak, S.R.; Dignani, M.C. The hospital water supply as a source of nosocomial infections: A plea for action. Arch. Intern. Med. 2002, 162, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, F.H.; Kerr, K.G. Bottled water as a source of multi-resistant Stenotrophomonas and Pseudomonas species for neutropenic patients. Eur. J. Cancer Care 1998, 7, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Juyal, A.; Otten, W.; Baveye, P.C.; Eickhorst, T. Influence of soil structure on the spread of Pseudomonas fluorescens in soil at microscale. Eur. J. Soil Sci. 2021, 72, 141–153. [Google Scholar] [CrossRef]
- Benito, N.; Mirelis, B.; Luz Gálvez, M.; Vila, M.; López-Contreras, J.; Cotura, A.; Pomar, V.; March, F.; Navarro, F.; Coll, P.; et al. Outbreak of Pseudomonas fluorescens bloodstream infection in a coronary care unit. J. Hosp. Infect. 2012, 82, 286–289. [Google Scholar] [CrossRef]
- Daneshvar, A.H.E.; Truelstrup, H.L. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling 2013, 29, 1253–1268. [Google Scholar] [CrossRef]
- Feazel, L.M.; Baumgartner, L.K.; Peterson, K.L.; Frank, D.N.; Harris, J.K.; Pace, N.R. Opportunistic pathogens enriched in showerhead biofilms. Proc. Natl. Acad. Sci. USA 2009, 106, 16393–16399. [Google Scholar] [CrossRef]
- Masak, J.; Cejkova, A.; Schreiberova, O.; Rezanka, T. Pseudomonas biofilms: Possibilities of their control. FEMS Microbiol. 2014, 89, 1–14. [Google Scholar] [CrossRef]
- Hinsa, S.M.; O’Toole, G.A. Biofilm formation by Pseudomonas fluorescens WCS365: A role for LapD. Microbiology 2006, 152, 1375–1383. [Google Scholar] [CrossRef]
- Puga, C.H.; Dahdouh, E.; Sanjose, C.; Orgaz, B. Listeria monocytogenes Colonizes Pseudomonas fluorescens Biofilms and Induces Matrix Over-Production. Front. Microbiol. 2018, 9, 1706. [Google Scholar] [CrossRef]
- Wang, H.; Cai, L.; Li, Y.; Xu, X.; Zhou, G. Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 2018, 91, 397–403. [Google Scholar] [CrossRef]
- Rossi, C.; Serio, A.; Chaves-López, C.; Anniballi, F.; Auricchio, B.; Goffredo, E.; Cenci-Goga, B.T.; Lista, F.; Fillo, S.; Paparella, A. Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 2018, 86, 241–248. [Google Scholar] [CrossRef]
- Bertelli, C.; Courtois, S.; Rosikiewicz, M.; Piriou, P.; Aeby, S.; Robert, S.; Loret, J.-F.; Greub, G. Reduced Chlorine in Drinking Water Distribution Systems Impacts Bacterial Biodiversity in Biofilms. Front. Microbiol. 2018, 9, 2520. [Google Scholar] [CrossRef] [PubMed]
- Rice, S.A.; Van Den Akker, B.; Pomati, F.; Roser, D. A risk assessment of Pseudomonas aeruginosa in swimming pools: A review. J. Water Health 2012, 10, 181–196. [Google Scholar] [CrossRef]
- Fish, K.E.; Reeves-McLaren, N.; Husband, S.; Boxall, J. Uncharted waters: The unintended impacts of residual chlorine on water quality and biofilms. NPJ Biofilms Microbiomes 2022, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Ha, K.-T.; Zoh, K.-D. Characteristics of trihalomethane (THM) production and associated health risk assessment in swimming pool waters treated with different disinfection methods. Sci. Total Environ. 2009, 407, 1990–1997. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.M.; Font-Ribera, L. Health impact of disinfection by-products in swimming pools. Annali dell’Istituto superiore di sanita 2012, 48, 387–396. [Google Scholar] [CrossRef] [PubMed]
- van Veldhoven, K.; Keski-Rahkonen, P.; Barupal, D.K.; Villanueva, C.M.; Font-Ribera, L.; Scalbert, A.; Bodinier, B.; Grimalt, J.O.; Zwiener, C.; Vlaanderen, J.; et al. Effects of exposure to water disinfection by-products in a swimming pool: A metabolome-wide association study. Environ. Int. 2018, 111, 60–70. [Google Scholar] [CrossRef]
- Haibo, W.; Chun, H.; Suona, Z.; Liu, L.; Xueci, X. Effects of O3/Cl2 disinfection on corrosion and opportunistic pathogens growth in drinking water distribution systems. J. Environ. Sci. 2018, 73, 38–46. [Google Scholar]
- Hongna, L.; Xiuping, Z.; Jinren, N. Comparison of electrochemical method with ozonation, chlorination and monochloramination in drinking water disinfection. Electrochim. Acta 2011, 27, 9789–9796. [Google Scholar]
- Karimi, B. Formation of disinfection by-products in the swimming pool water treated with different disinfection types. Desalination Water Treat. 2020, 175, 174–181. [Google Scholar] [CrossRef]
- Beyer, A.; Worner, H.; van Lierop, R. The Use of UV for Destruction of Combined Chlorine; Version 1.0; Wallace & Tiernan: Tonbridge, UK, 2004; Available online: https://www.pwtag.org.uk/reference/ (accessed on 15 August 2022).
- Cassan, D.; Mercier, B.; Castex, F.; Rambaud, A. Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool. Chemosphere 2006, 62, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Ivanković, T.; Goić-Barišić, I.; Hrenović, J. Reduced susceptibility to disinfectants of Acinetobacter baumannii biofilms on glass and ceramic. Arch. Ind. Hyg. Toxicol. 2017, 68, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyraki, A.; Markvart, M.; Stavnsbjerg, C.; Kragh, K.N.; Ou, Y.; Bjørndal, L.; Bjarnsholt, T.; Petersen, P.M. UV light assisted antibiotics for eradication of in vitro biofilms. Sci. Rep. 2018, 8, 16360. [Google Scholar] [CrossRef] [PubMed]
- Steed, K.A.; Falkinham, J.O., 3rd. Effect of Growth in Biofilms on Chlorine Susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl. Environ. Microbiol. 2006, 72, 4007–4011. [Google Scholar] [CrossRef]
- Davies, D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003, 2, 114–122. [Google Scholar] [CrossRef]
- Varna, K.; Jones, M. The Effects of Ultraviolet Light on Escherichia coli. J. Emerg. Investigat. 2015, 102, 23–28. [Google Scholar]
- Pullerits, K.; Ahlinder, J.; Holmer, L.; Salomonsson, E.; Öhrman, C.; Jacobsson, K.; Dryselius, R.; Forsman, M.; Paul, C.J.; Rådström, P. Impact of UV irradiation at full scale on bacterial communities in drinking water. NPJ Clean Water 2020, 3, 11. [Google Scholar] [CrossRef]
- Ben Said, M.; Masahiro, O.; Hassen, A. Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qβ phage. Ann. Microbiol. 2010, 60, 121–127. [Google Scholar] [CrossRef]
- Guo, L.; Ye, C.; Cui, L.; Wan, K.; Chen, S.; Zhang, S.; Yu, X. Population and single cell metabolic activity of UV-induced VBNC bacteria determined by CTC-FCM and D2O-labeled Raman spectroscopy. Environ. Int. 2019, 130, 104883. [Google Scholar] [CrossRef]
- Guo, M.; Huang, J.; Hu, H.; Liu, W.; Yang, J. UV inactivation and characteristics after photoreactivation of Escherichia coli with plasmid: Health safety concern about UV disinfection. Water Res. 2012, 46, 4031–4036. [Google Scholar] [CrossRef]
- Hijnen, W.A.M.; Beerendonk, E.F.; Medema, G.J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Res. 2006, 40, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Lakretz, A.; Ron, E.Z.; Mamane, H. Biofouling control in water by various UVC wavelengths and doses. Biofouling 2010, 26, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.I.; Gómez-López, V.M.; Hung, Y.-C.; Allende, A. Potential of Electrolyzed Water as an Alternative Disinfectant Agent in the Fresh-Cut Industry. Food Bioprocess Technol. 2015, 8, 1336–1348. [Google Scholar] [CrossRef]
- Virto, R.; Manas, P.; Alvarez, I.; Condon, S.; Raso, J. Membrane Damage and Microbial Inactivation by Chlorine in the Absence and Presence of a Chlorine-Demanding Substrate. Appl. Environ. Microbiol. 2005, 71, 5022–5028. [Google Scholar] [CrossRef]
- Shrivastava, R.; Upreti, R.K.; Jain, S.R.; Prasad, K.N.; Seth, P.K.; Chaturvedi, U.C. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 2004, 58, 277–283. [Google Scholar] [CrossRef]
- Guo, M.-T.; Kong, C. Antibiotic resistant bacteria survived from UV disinfection: Safety concerns on genes dissemination. Chemosphere 2019, 224, 827–832. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Wang, Y.; Zeng, J.; Ye, C.; Li, X.; Guo, L.; Zhang, S.; Yu, X. Induction of Escherichia coli into a VBNC state through chlorination/chloramination and differences in characteristics of the bacterium between states. Water Res. 2018, 142, 279–288. [Google Scholar] [CrossRef]
- Wang, L.; Ye, C.; Guo, L.; Chen, C.; Kong, X.; Chen, Y.; Shu, L.; Wang, P.; Yu, X.; Fang, J. Assessment of the UV/Chlorine Process in the Disinfection of Pseudomonas aeruginosa: Efficiency and Mechanism. Environ. Sci. Technol. 2021, 55, 9221–9230. [Google Scholar] [CrossRef]
- Lopes, F.A.; Morin, P.; Oliveira, R.; Melo, L. Impact of biofilms in simulated drinking water and urban heat supply systems. Int. J. Environ. Eng. 2009, 1, 276–294. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Garvey, M.; Rabbitt, D.; Stocca, A.; Rowan, N. Pulsed ultraviolet light inactivation of Pseudomonas aeruginosa and Staphylococcus aureus biofilms. Water Environ. 2015, 29, 36–42. [Google Scholar] [CrossRef]
- Elasri, M.O.; Miller, R.V. Study of the Response of a Biofilm Bacterial Community to UV Radiation. Appl. Environ. Microbiol. 1999, 65, 2025–2031. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Roddick, F.A.; Fam, L. Biofouling of Water Treatment Membranes: A Review of Underlying Causes, Monitoring Techniques and Control Measures. Membranes 2012, 2, 804–840. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Zhao, C.; Zhang, D.; Mu, S.; Pan, X. Different Resistance to UV-B Radiation of Extracellular Polymeric Substances of Two Cyanobacteria from Contrasting Habitats. Front. Microbiol. 2016, 7, 1208. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, B.; Lu, Y.; Mei, Y.; Shen, L. Advances in application of ultraviolet irradiation for biofilm control in water and wastewater infrastructure. J. Hazard. Mater. 2022, 421, 126682. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Sadiq, F.A.; Wang, N.; Yang, Z.; He, G. Recent advances in understanding the control of disinfectant-resistant biofilms by hurdle technology in the food industry. Crit. Rev. Food Sci. Nutr. 2021, 61, 3876–3891. [Google Scholar] [CrossRef] [PubMed]
- Bak, J.; Ladefoged, S.D.; Tvede, M.; Begovic, T.; Gregersen, A. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes. Biofouling 2010, 26, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Lakretz, A.; Ron, E.Z.; Harif, T.; Mamane, H. Biofilm control in water by advanced oxidation process (AOP) pre-treatment: Effect of natural organic matter (NOM). Water Sci. Technol. 2011, 64, 1876–1884. [Google Scholar] [CrossRef]
- Lakretz, A.; Ron, E.Z.; Mamane, H. Biofilm control in water by a UV-based advanced oxidation process. Biofouling 2011, 27, 295–307. [Google Scholar] [CrossRef]
- Clayton, G.E.; Thorn, R.M.S.; Reynolds, D.M. The efficacy of chlorine-based disinfectants against planktonic and biofilm bacteria for decentralised point-of-use drinking water. NPJ Clean Water 2021, 4, 48. [Google Scholar] [CrossRef]
- De Beer, D.; Srinivasan, R.; Stewart, P.S. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 1994, 60, 4339–4344. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Rayner, J.; Roe, F.; Rees, W.M. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 2001, 91, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Bridier, A.; Briandet, R.; Thomas, V.; Dubois-Brissonnet, F. Resistance of bacterial biofilms to disinfectants: A review. Biofouling 2011, 27, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Rand, J.L.; Hofmann, R.; Alam, M.Z.B.; Chauret, C.; Cantwell, R.; Andrews, R.C.; Gagnon, G.A. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection. Water Res. 2007, 41, 1939–1948. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.M.; Payne, S.J.; Gagnon, G.A. Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms. Water Res. 2008, 42, 2083–2092. [Google Scholar] [CrossRef]
- Ekowati, Y.; Ferrero, G.; Farré, M.J.; Kennedy, M.D.; Buttiglieri, G. Application of UVOX Redox® for swimming pool water treatment: Microbial inactivation, disinfection byproduct formation and micropollutant removal. Chemosphere 2019, 220, 176–184. [Google Scholar] [CrossRef]
- Manasfi, T.; Temime-Roussel, B.; Coulomb, B.; Vassalo, L.; Boudenne, J.-L. Occurrence of brominated disinfection byproducts in the air and water of chlorinated seawater swimming pools. Int. J. Hyg. Environ. Health 2017, 220, 583–590. [Google Scholar] [CrossRef]
Destruction of Mature Biofilm | |||||
---|---|---|---|---|---|
UV 5″ | UV 20″ | Cl-H 1′ | UV 5″ + Cl-H 1′ | UV 20″ + Cl-H 1′ | |
Hyperchlorination of mature biofilm 1 min | 69.66% (±0.20) | 77.73% (±0.12) | 96.57% ab (±0.02) | 97.06% ab (±0.02) | 97.98% ab (±0.01) |
UV 5″ | UV 20″ | Cl-H 30′ | UV 5″ + Cl-H 30′ | UV 20″ + Cl-H 30′ | |
Hyperchlorination of mature biofilm 30 min | 66.67% (±0.20) | 75.74% a (±0.11) | =99.90% ab (±0.002) | 99.94% ab (±0.001) | 99.97% abc (±0.007) |
UV 5″ | UV 20″ | Cl-H 60′ | UV 5″ + Cl-H 60′ | UV 20″ + Cl-H 60′ | |
Hyperchlorination of mature biofilm 60 min | 69.66% (±0.10) | 76.96% (±0.12) | =99.96% ab (±0.02) | 99.97% ab (±0.09) | 99.99% ab (±0.01) |
UV 5″ | UV 20″ | Cl-H 120′ | UV 5″ + Cl-H 120′ | UV 20″ + Cl-H 120′ | |
Hyperchlorination of mature biofilm 120 min | 69.66% (±0.10) | 76.96% (±0.12) | =99.99% ab (±0.01) | 99.99% ab (±0.01) | 99.99% ab (±0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zekanović, M.S.; Begić, G.; Mežnarić, S.; Jelovica Badovinac, I.; Krištof, R.; Tomić Linšak, D.; Gobin, I. Effect of UV Light and Sodium Hypochlorite on Formation and Destruction of Pseudomonas fluorescens Biofilm In Vitro. Processes 2022, 10, 1901. https://doi.org/10.3390/pr10101901
Zekanović MS, Begić G, Mežnarić S, Jelovica Badovinac I, Krištof R, Tomić Linšak D, Gobin I. Effect of UV Light and Sodium Hypochlorite on Formation and Destruction of Pseudomonas fluorescens Biofilm In Vitro. Processes. 2022; 10(10):1901. https://doi.org/10.3390/pr10101901
Chicago/Turabian StyleZekanović, Melani Sigler, Gabrijela Begić, Silvestar Mežnarić, Ivana Jelovica Badovinac, Romana Krištof, Dijana Tomić Linšak, and Ivana Gobin. 2022. "Effect of UV Light and Sodium Hypochlorite on Formation and Destruction of Pseudomonas fluorescens Biofilm In Vitro" Processes 10, no. 10: 1901. https://doi.org/10.3390/pr10101901
APA StyleZekanović, M. S., Begić, G., Mežnarić, S., Jelovica Badovinac, I., Krištof, R., Tomić Linšak, D., & Gobin, I. (2022). Effect of UV Light and Sodium Hypochlorite on Formation and Destruction of Pseudomonas fluorescens Biofilm In Vitro. Processes, 10(10), 1901. https://doi.org/10.3390/pr10101901