Addressing Complexity in the Pandemic Context: How Systems Thinking Can Facilitate Understanding of Design Aspects for Preventive Technologies
Abstract
:1. Introduction
2. Research Approach
3. Literature Review
3.1. COVID-19 as a Wicked Problem
3.2. Technologies for COVID-19 Prevention
3.3. Systems Thinking for COVID-19 Prevention
3.4. DSPR Model and Complex Adaptive Systems
4. Applying CAS and the DSRP Model
4.1. The System and Its Parts
4.2. Distinctions
4.2.1. The Pathogen
4.2.2. Human Hosts
4.2.3. Technologies
4.3. Relations
4.4. Perspectives
5. Discussion
Implications
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frutos, R.; Gavotte, L.; Serra-Cobo, J.; Chen, T.; Devaux, C. COVID-19 and emerging infectious diseases: The society is still unprepared for the next pandemic. Environ. Res. 2021, 202, 111676. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.A.; Garcia, L.; Kee, F.; Bradley, D.T. Systems-Oriented Modelling Methods in Preventing and Controlling Emerging Infectious Diseases in the Context of Healthcare Policy: A Scoping Review. Systems 2022, 10, 182. [Google Scholar] [CrossRef]
- Guo, Y.-R.; Cao, Q.-D.; Hong, Z.-S.; Tan, Y.-Y.; Chen, S.-D.; Jin, H.-J.; Tan, K.-S.; Wang, D.-Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil. Med. Res. 2020, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Frutos, R.; Roig, M.L.; Serra-Cobo, J.; Devaux, C.A. COVID-19: The Conjunction of Events Leading to the Coronavirus Pandemic and Lessons to Learn for Future Threats. Front. Med. 2020, 7, 223. [Google Scholar] [CrossRef]
- Nguyen, K.V. Containing the spread of COVID-19 virus facing to its high mutation rate: Approach to intervention using a nonspecific way of blocking its entry into the cells. Nucleosides Nucleotides Nucleic Acids 2022, 41, 778–814. [Google Scholar] [CrossRef] [PubMed]
- Bedford, J.; Enria, D.; Giesecke, J.; Heymann, D.L.; Ihekweazu, C.; Kobinger, G.; Lane, H.C.; Memish, Z.; Oh, M.-d.; Sall, A.A.; et al. COVID-19: Towards controlling of a pandemic. Lancet 2020, 395, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Doung-Ngern, P.; Suphanchaimat, R.; Panjangampatthana, A.; Janekrongtham, C.; Ruampoom, D.; Daochaeng, N.; Eungkanit, N.; Pisitpayat, N.; Srisong, N.; Yasopa, O. Case-control study of use of personal protective measures and risk for SARS-CoV 2 infection, Thailand. Emerg. Infect. Dis. 2020, 26, 2607. [Google Scholar] [CrossRef]
- Gasteiger, N.; Dowding, D.; Ali, S.M.; Scott, A.J.S.; Wilson, P.; van der Veer, S.N. Sticky apps, not sticky hands: A systematic review and content synthesis of hand hygiene mobile apps. J. Am. Med. Inform. Assoc. 2021, 28, 2027–2038. [Google Scholar] [CrossRef]
- Haug, N.; Geyrhofer, L.; Londei, A.; Dervic, E.; Desvars-Larrive, A.; Loreto, V.; Pinior, B.; Thurner, S.; Klimek, P. Ranking the effectiveness of worldwide COVID-19 government interventions. Nat. Hum. Behav. 2020, 4, 1303–1312. [Google Scholar] [CrossRef]
- Gasser, U.; Ienca, M.; Scheibner, J.; Sleigh, J.; Vayena, E. Digital tools against COVID-19: Taxonomy, ethical challenges, and navigation aid. Lancet Digit. Health 2020, 2, e425–e434. [Google Scholar] [CrossRef]
- MacInnis, D.J. A Framework for Conceptual Contributions in Marketing. J. Mark. 2011, 75, 136–154. [Google Scholar] [CrossRef] [Green Version]
- Jaakkola, E. Designing conceptual articles: Four approaches. AMS Rev. 2020, 10, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Rocco, T.S.; Plakhotnik, M.S.; Silberman, D. Differentiating Between Conceptual and Theory Articles: Focus, Goals, and Approaches. Hum. Resour. Dev. Rev. 2022, 21, 113–140. [Google Scholar] [CrossRef]
- Vargo, S.L.; Koskela-Huotari, K. Advancing conceptual-only articles in marketing. AMS Rev. 2020, 10, 1–5. [Google Scholar] [CrossRef]
- Cabrera, D.; Colosi, L.; Lobdell, C. Systems thinking. Eval. Program Plan. 2008, 31, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, D.; Cabrera, L. Complexity and Systems Thinking Models in Education: Applications for Leaders. Learn. Des. Technol. Int. Compend. Theory Res. Pract. Policy 2019, 1–29. [Google Scholar] [CrossRef]
- Cabrera, D.; Colosi, L. Distinctions, systems, relationships, and perspectives (DSRP): A theory of thinking and of things. Eval. Program Plan. 2008, 31, 311–317. [Google Scholar] [CrossRef]
- Cabrera, D.; Cabrera, L.; Cabrera, E. Perspectives Organize Information in Mind and Nature: Empirical Findings of Point-View Perspective (P) in Cognitive and Material Complexity. Systems 2022, 10, 52. [Google Scholar] [CrossRef]
- Auld, G.; Bernstein, S.; Cashore, B.; Levin, K. Managing pandemics as super wicked problems: Lessons from, and for, COVID-19 and the climate crisis. Policy Sci. 2021, 54, 707–728. [Google Scholar] [CrossRef]
- Schiefloe, P.M. The Corona crisis: A wicked problem. Scand. J. Public Health 2021, 49, 5–8. [Google Scholar] [CrossRef]
- Rittel, H.W.J.; Webber, M.M. Dilemmas in a general theory of planning. Policy Sci. 1973, 4, 155–169. [Google Scholar] [CrossRef]
- Levin, K.; Cashore, B.; Bernstein, S.; Auld, G. Overcoming the tragedy of super wicked problems: Constraining our future selves to ameliorate global climate change. Policy Sci. 2012, 45, 123–152. [Google Scholar] [CrossRef]
- He, W.; Zhang, Z.J.; Li, W. Information technology solutions, challenges, and suggestions for tackling the COVID-19 pandemic. Int. J. Inf. Manag. 2021, 57, 102287. [Google Scholar] [CrossRef] [PubMed]
- Marabelli, M.; Vaast, E.; Li, J.L. Preventing the digital scars of COVID-19. Eur. J. Inf. Syst. 2021, 30, 176–192. [Google Scholar] [CrossRef]
- Budd, J.; Miller, B.S.; Manning, E.M.; Lampos, V.; Zhuang, M.; Edelstein, M.; Rees, G.; Emery, V.C.; Stevens, M.M.; Keegan, N.; et al. Digital technologies in the public-health response to COVID-19. Nat. Med. 2020, 26, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Vogt, F.; Haire, B.; Selvey, L.; Katelaris, A.L.; Kaldor, J. Effectiveness evaluation of digital contact tracing for COVID-19 in New South Wales, Australia. Lancet Public Health 2022, 7, e250–e258. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, H.; Lee, Y.-M.; Ho, E.C.; Ang, H.; Chow, A. Performance of Digital Contact Tracing Tools for COVID-19 Response in Singapore: Cross-Sectional Study. JMIR mHealth uHealth 2020, 8, e23148. [Google Scholar] [CrossRef]
- Zimmermann, B.M.; Fiske, A.; Prainsack, B.; Hangel, N.; McLennan, S.; Buyx, A. Early Perceptions of COVID-19 Contact Tracing Apps in German-Speaking Countries: Comparative Mixed Methods Study. J. Med. Internet Res. 2021, 23, e25525. [Google Scholar] [CrossRef]
- Daszak, P.; Olival, K.J.; Li, H. A strategy to prevent future epidemics similar to the 2019-nCoV outbreak. Biosaf. Health 2020, 2, 6–8. [Google Scholar] [CrossRef]
- Rowe, F. Contact tracing apps and values dilemmas: A privacy paradox in a neo-liberal world. Int. J. Inf. Manag. 2020, 55, 102178. [Google Scholar] [CrossRef]
- Rowe, F.; Ngwenyama, O.; Richet, J.-L. Contact-tracing apps and alienation in the age of COVID-19. Eur. J. Inf. Syst. 2020, 29, 545–562. [Google Scholar] [CrossRef]
- Criddle, I.; Hardy, A.; Smith, G.; Ranck, T.; Mondal, M.; Page, X. Designing to Fight Pandemics: A Review of Literature and Identifying Design Patterns for COVID-19 Tracing Apps. In International Conference on Human-Computer Interaction; Springer: Cham, Switzerland, 2022; pp. 36–49. [Google Scholar] [CrossRef]
- Jacob, S.; Lawarée, J. The adoption of contact tracing applications of COVID-19 by European governments. Policy Des. Pract. 2021, 4, 44–58. [Google Scholar] [CrossRef]
- Jones, K.; Thompson, R. To Use or Not to Use a COVID-19 Contact Tracing App: Mixed Methods Survey in Wales. JMIR mHealth uHealth 2021, 9, e29181. [Google Scholar] [CrossRef]
- Ahmed, N.; Michelin, R.A.; Xue, W.; Ruj, S.; Malaney, R.; Kanhere, S.S.; Seneviratne, A.; Hu, W.; Janicke, H.; Jha, S.K. A Survey of COVID-19 Contact Tracing Apps. IEEE Access 2020, 8, 134577–134601. [Google Scholar] [CrossRef]
- Morley, J.; Cowls, J.; Taddeo, M.; Floridi, L. Ethical guidelines for COVID-19 tracing apps. Nature 2020, 582, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Sharon, T. Blind-sided by privacy? Digital contact tracing, the Apple/Google API and big tech’s newfound role as global health policy makers. Ethics Inf. Technol. 2021, 23, 45–57. [Google Scholar] [CrossRef]
- Grekousis, G.; Liu, Y. Digital contact tracing, community uptake, and proximity awareness technology to fight COVID-19: A systematic review. Sustain. Cities Soc. 2021, 71, 102995. [Google Scholar] [CrossRef]
- Braithwaite, I.; Callender, T.; Bullock, M.; Aldridge, R.W. Automated and partly automated contact tracing: A systematic review to inform the control of COVID-19. Lancet Digit. Health 2020, 2, e607–e621. [Google Scholar] [CrossRef]
- Zetterholm, M.V.; Lin, Y.; Jokela, P. Digital Contact Tracing Applications during COVID-19: A Scoping Review about Public Acceptance. Informatics 2021, 8, 48. [Google Scholar] [CrossRef]
- Zetterholm, M.; Elm, P.; Salavati, S. Designing for Pandemics: A Design Concept based on Technology Mediated Nudging for Health Behavior Change. In Proceedings of the 54th Hawaii International Conference on System Sciences, Hawaii, HI, USA, 4–8 January 2021; pp. 3474–3483. [Google Scholar]
- Chung, A.; Lessard, L.; Andreev, P.; O’Reilly, P. Designing Information Systems to Break Habits and Promote Preventive Behaviours During Large-Scale Disease Outbreaks. In Proceedings of the Hawaii International Conference on System Sciences 2021, Honolulu, HI, USA, 4–9 January 2021. [Google Scholar] [CrossRef]
- Ho, S.M.; Seraj, S.; Yee, K.; Liu, X.; Erlebacher, G. A context-aware social distancing nudge for public health in response to COVID-19 pandemic. In Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling & Prediction and Behavior Representation in Modeling and Simulation, Washington, DC, USA, 19–22 October 2020; Available online: http://sbp-brims.org/2020/proceedings/papers/covid/SBP-BRiMS_2020_paper_81.pdf (accessed on 28 August 2021).
- Bradley, D.T.; Mansouri, M.A.; Kee, F.; Garcia, L.M.T. A systems approach to preventing and responding to COVID-19. Eclinicalmedicine 2020, 21, 100325. [Google Scholar] [CrossRef] [Green Version]
- Sahin, O.; Salim, H.; Suprun, E.; Richards, R.; MacAskill, S.; Heilgeist, S.; Rutherford, S.; Stewart, R.A.; Beal, C.D. Developing a Preliminary Causal Loop Diagram for Understanding the Wicked Complexity of the COVID-19 Pandemic. Systems 2020, 8, 20. [Google Scholar] [CrossRef]
- Amissah, M.; Gannon, T.; Monat, J. What is Systems Thinking? Expert Perspectives from the WPI Systems Thinking Colloquium of 2 October 2019. Systems 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Fenton, N.; McLachlan, S.; Lucas, P.; Dube, K.; Hitman, G.; Kyrimi, L.; Neil, M. The thorny problems of Covid-19 Contact Tracing Apps: The need for a holistic approach. J. Behav. Econ. Policy 2020, 4, 57–61. [Google Scholar]
- Simon, H.A. The Science of Design: Creating the Artificial. Des. Issues 1988, 4, 67–68. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, D.; Cabrera, L.; Powers, E.; Solin, J.; Kushner, J. Applying systems thinking models of organizational design and change in community operational research. Eur. J. Oper. Res. 2018, 268, 932–945. [Google Scholar] [CrossRef]
- Paina, L.; Peters, D.H. Understanding pathways for scaling up health services through the lens of complex adaptive systems. Health Policy Plan. 2012, 27, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Waddock, S.; Meszoely, G.M.; Waddell, S.; Dentoni, D. The complexity of wicked problems in large scale change. J. Organ. Chang. Manag. 2015, 28, 993–1012. [Google Scholar] [CrossRef]
- Lunn, P.; Belton, C.A.; Lavin, C.; McGowan, F.P.; Timmons, S.; Robertson, D.A. Using Behavioral Science to help fight the Coronavirus. J. Behav. Public Adm. 2020, 3, 656. [Google Scholar] [CrossRef] [Green Version]
- West, R.; Michie, S.; Rubin, G.J.; Amlôt, R. Applying principles of behaviour change to reduce SARS-CoV-2 transmission. Nat. Hum. Behav. 2020, 4, 451–459. [Google Scholar] [CrossRef]
- Liu, X.; Dou, Z.; Wang, L.; Su, B.; Jin, T.; Guo, Y.; Wei, J.; Zhang, N. Close contact behavior-based COVID-19 transmission and interventions in a subway system. J. Hazard. Mater. 2022, 436, 129233. [Google Scholar] [CrossRef]
- Miao, D.; Zhang, N. Human Close Contact Behavior-Based Interventions for COVID-19 Transmission. Buildings 2022, 12, 365. [Google Scholar] [CrossRef]
- Chen, W.; Qian, H.; Zhang, N.; Liu, F.; Liu, L.; Li, Y. Extended short-range airborne transmission of respiratory infections. J. Hazard. Mater. 2022, 422, 126837. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fierro, M.L.; Ríos-Jasso, J.; Garza-Veloz, I.; Reyes-Veyna, L.; Cerda-Luna, R.M.; Duque-Jara, I.; Galvan-Jimenez, M.; Ramirez-Hernandez, L.A.; Morales-Esquivel, A.; Ortiz-Castro, Y. The role of close contacts of COVID-19 patients in the SARS-CoV-2 transmission: An emphasis on the percentage of nonevaluated positivity in Mexico. Am. J. Infect. Control 2021, 49, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.K.; Akl, E.A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H.J.; El-Harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet 2020, 395, 1973–1987. [Google Scholar] [CrossRef]
- Hernández-Orallo, E.; Calafate, C.T.; Cano, J.-C.; Manzoni, P. Evaluating the Effectiveness of COVID-19 Bluetooth-Based Smartphone Contact Tracing Applications. Appl. Sci. 2020, 10, 7113. [Google Scholar] [CrossRef]
- Alo, U.R.; Nkwo, F.O.; Nweke, H.F.; Achi, I.I.; Okemiri, H.A. Non-Pharmaceutical Interventions against COVID-19 Pandemic: Review of Contact Tracing and Social Distancing Technologies, Protocols, Apps, Security and Open Research Directions. Sensors 2021, 22, 280. [Google Scholar] [CrossRef]
- Nurgalieva, L.; Ryan, S.; Doherty, G. Attitudes towards COVID-19 contact tracing apps: A cross-national survey. IEEE Access 2021, 1. [Google Scholar] [CrossRef]
- Kindt, P.H.; Chakraborty, T.; Chakraborty, S. How reliable is smartphone-based electronic contact tracing for COVID-19? Commun. ACM 2021, 65, 56–67. [Google Scholar] [CrossRef]
- Ferretti, L.; Wymant, C.; Kendall, M.; Zhao, L.; Nurtay, A.; Abeler-Dörner, L.; Parker, M.; Bonsall, D.; Fraser, C. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020, 368, eabb6936. [Google Scholar] [CrossRef]
- De Fazio, R.; Giannoccaro, N.I.; Carrasco, M.; Velazquez, R.; Visconti, P. Wearable devices and IoT applications for symptom detection, infection tracking, and diffusion containment of the COVID-19 pandemic: A survey. Front. Inf. Technol. Electron. Eng. 2021, 22, 1413–1442. [Google Scholar] [CrossRef]
- Zetterholm, M.V.; Nilsson, L.; Jokela, P. Using a Proximity-Detection Technology to Nudge for Physical Distancing in a Swedish Workplace During the COVID-19 Pandemic: Retrospective Case Study. JMIR Form. Res. 2022, 6, e39570. [Google Scholar] [CrossRef]
- Eames, K.T.D. Contact tracing strategies in heterogeneous populations. Epidemiol. Infect. 2007, 135, 443–454. [Google Scholar] [CrossRef]
- Cabrera, D.; Cabrera, L. DSRP Theory: A Primer. Systems 2022, 10, 26. [Google Scholar] [CrossRef]
- Thomas, R.; Michaleff, Z.A.; Greenwood, H.; Abukmail, E.; Glasziou, P. Concerns and Misconceptions About the Australian Government’s COVIDSafe App: Cross-Sectional Survey Study. JMIR Public Health Surveill. 2020, 6, e23081. [Google Scholar] [CrossRef] [PubMed]
- Cabrera, D.; Cabrera, L.; Powers, E. A Unifying Theory of Systems Thinking with Psychosocial Applications. Syst. Res. Behav. Sci. 2015, 32, 534–545. [Google Scholar] [CrossRef]
- Troncoso, C.; Bogdanov, D.; Bugnion, E.; Chatel, S.; Cremers, C.; Gürses, S.; Hubaux, J.-P.; Jackson, D.; Larus, J.R.; Lueks, W.; et al. Deploying decentralized, privacy-preserving proximity tracing. Commun. ACM 2022, 65, 48–57. [Google Scholar] [CrossRef]
- Davis, E.L.; Lucas, T.C.D.; Borlase, A.; Pollington, T.M.; Abbott, S.; Ayabina, D.; Crellen, T.; Hellewell, J.; Pi, L.; Medley, G.F.; et al. Contact tracing is an imperfect tool for controlling COVID-19 transmission and relies on population adherence. Nat. Commun. 2021, 12, 5412. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Orallo, E.; Manzoni, P.; Calafate, C.T.; Cano, J.-C. Evaluating How Smartphone Contact Tracing Technology Can Reduce the Spread of Infectious Diseases: The Case of COVID-19. IEEE Access 2020, 8, 99083–99097. [Google Scholar] [CrossRef] [PubMed]
Pattern | Elements | Description |
---|---|---|
Distinction (D) | Identities (i) and others (o) | Definition of the boundary between identities that are included in the system and the other entities. |
System (S) | Parts (p) and whole (w) | Identification of separate parts and how the parts are lumped together into wholes. |
Relationship (R) | Action (a) and reaction (r) | The dynamics of a system that define how parts are related to other parts and to systems, and how an action of one part leads to a reaction of a related part. |
Perspective (P) | Points (r) and views (v) | Distinctions, as well as how we define systems and relationships, are made from different points so that they create different views. |
Pattern | Pandemic |
---|---|
System (S) | Complex adaptive system. Root causes: pathogen–human interaction, human–human interaction. Subsystems and key parts in analysis: societal level; social level; pathogen, human hosts, preventive technologies. |
Distinction (D) | Droplet spread of SARS-CoV-2 virus; infected and non-infected human hosts; contact tracing and nudging approaches. |
Relationship (R) | Relations: human–virus; human–human; human–technology. Action–reaction: Primary prevention by nudging; secondary prevention by contact tracing. |
Perspective (P) | Design perspective; awareness of different mental models; understanding the technologies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villius Zetterholm, M.; Jokela, P. Addressing Complexity in the Pandemic Context: How Systems Thinking Can Facilitate Understanding of Design Aspects for Preventive Technologies. Informatics 2023, 10, 7. https://doi.org/10.3390/informatics10010007
Villius Zetterholm M, Jokela P. Addressing Complexity in the Pandemic Context: How Systems Thinking Can Facilitate Understanding of Design Aspects for Preventive Technologies. Informatics. 2023; 10(1):7. https://doi.org/10.3390/informatics10010007
Chicago/Turabian StyleVillius Zetterholm, My, and Päivi Jokela. 2023. "Addressing Complexity in the Pandemic Context: How Systems Thinking Can Facilitate Understanding of Design Aspects for Preventive Technologies" Informatics 10, no. 1: 7. https://doi.org/10.3390/informatics10010007
APA StyleVillius Zetterholm, M., & Jokela, P. (2023). Addressing Complexity in the Pandemic Context: How Systems Thinking Can Facilitate Understanding of Design Aspects for Preventive Technologies. Informatics, 10(1), 7. https://doi.org/10.3390/informatics10010007