A Quantum-Type Approach to Non-Life Insurance Risk Modelling
Abstract
:1. Introduction
2. Quantum Risk Models
3. Quantum Observables
3.1. Quantum Data
3.2. Adjusted Quantum Data
4. Quantum Likelihood
4.1. Maxwell-Boltzmann Statistics
4.2. Bose-Einstein Statistics
4.3. Adjusted Quantum Data
4.4. Likelihood Functions
5. Data Analysis
5.1. Estimation Procedure
- -
- Choose an initial estimate .
- -
- Classify and label the data with respect to by using the nearest neighbour algorithm. This leads to the classesand for the representation (5).
- -
- -
- -
- Loop it until small enough.
5.2. Numerical Illustrations
6. Quantum Reserve Process
6.1. Distribution of the Reserves
6.2. Finite-Time Ruin Probability
Author Contributions
Funding
Conflicts of Interest
References
- Asmussen, Søren, and Hansjörg Albrecher. 2010. Ruin Probabilities, 2nd ed. Singapore: World Scientific. [Google Scholar]
- Baaquie, Belal Ehsan. 2007. Quantum Finance: Path integrals and Hamiltonians for Options and Interest Rates. Cambridge: Cambridge University Press. [Google Scholar]
- Baaquie, Belal Ehsan. 2010. Interest Rates and Coupon Bonds in Quantum Finance. Cambridge: Cambridge University Press. [Google Scholar]
- Bishop, Christopher M. 2006. Pattern Recognition and Machine Learning. Berlin: Springer. [Google Scholar]
- Bouchaud, Jean-Philippe, and Marc Potters. 2003. Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, 2nd ed. Cambridge: Cambridge University Press. [Google Scholar]
- De Vylder, F. Etienne. 1999. Numerical finite-time ruin probabilities by the Picard-Lefèvre formula. Scandinavian Actuarial Journal 2: 97–105. [Google Scholar] [CrossRef]
- Dickson, David C. M. 2017. Insurance Risk and Ruin, 2nd ed. Cambridge: Cambridge University Press. [Google Scholar]
- Dirac, Paul Adrien Maurice. 1933. The Lagrangian in quantum mechanics. Physikalische Zeitschrift der Sowjetunion 3: 64–72. [Google Scholar]
- Dufresne, François, and Hans U. Gerber. 1989. Three methods to calculate the probability of ruin. Astin Bulletin 19: 71–90. [Google Scholar] [CrossRef]
- Feynman, Richard P. 1948. Space-time approach to non-relativistic quantum mechanics. Reviews of Modern Physics 20: 367–87. [Google Scholar] [CrossRef]
- Feynman, Richard P., and Albert R. Hibbs. 2010. Quantum Mechanics and Path Integrals. Edited by Daniel F. Styer. New York: Dover Editions. [Google Scholar]
- Graham, John W. 2009. Missing data analysis: Making it work in the real world. Annual Review of Psychology 60: 549–76. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, David J., and Darrell F. Schroeter. 2018. Introduction to Quantum Mechanics, 3rd ed. Cambridge: Cambridge University Press. [Google Scholar]
- Hastie, Trevor, and Robert Tibshirani. 1996. Discriminant adaptive nearest neighbor classification and regression. Advances in Neural Information Processing Systems 18: 409–15. [Google Scholar]
- Hastie, Trevor, Robert Tibshirani, and Jerome H. Friedman. 2009. The Elements of Statistical Learning, 2nd ed. New York: Springer. [Google Scholar]
- Ignatov, Zvetan G., Vladimir K. Kaishev, and Rossen S. Krachunov. 2001. An improved finite-time ruin probability formula and its Mathematica implementation. Insurance: Mathematics and Economics 29: 375–86. [Google Scholar] [CrossRef]
- Mantegna, Rosario N., and H. Eugene Stanley. 2000. An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge: Cambridge University Press. [Google Scholar]
- Parthasarathy, Kalyanapuram Rangachari. 1992. An Introduction to Quantum Stochastic Calculus. Basel: Springer. [Google Scholar]
- Picard, Philippe, and Claude Lefèvre. 1997. The probability of ruin in finite time with discrete claim size distribution. Scandinavian Actuarial Journal 1: 58–69. [Google Scholar] [CrossRef]
- Plenio, Martin. 2002. Quantum Mechanics. Ebook. London: Imperial College. [Google Scholar]
- Quinlan, Ross. 1988. C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann. [Google Scholar]
- Rullière, Didier, and Stéphane Loisel. 2004. Another look at the Picard-Lefèvre formula for finite-time ruin probabilities. Insurance: Mathematics and Economics 35: 187–203. [Google Scholar] [CrossRef]
- Schmidli, Hanspeter. 2018. Risk Theory. Cham: Springer. [Google Scholar]
- Tamturk, Muhsin, and Sergey Utev. 2018. Ruin probability via quantum mechanics approach. Insurance: Mathematics and Economics 79: 69–74. [Google Scholar] [CrossRef]
Given | Maximum Likelihood | Optimum | Optimum u | Optimum d | Risk | |
---|---|---|---|---|---|---|
(40,25) | 4.361099 × 10 | (0.01,0.99) | 18 | 17 | 12.8500 | 12.8500 |
(18,17) | 1.569022 × 10 | (0.4,0.6) | 19 | 15 | 7.7255 | 5.1245 |
(19,15) | 9.962820 × 10 | (0.33,0.67) | 19 | 11 | 6.6365 | 1.089 |
(19,11) | 3.810307 × 10 | (0.43,0.57) | 19 | 10 | 3.5169 | 3.1196 |
(19,10) | 1.141128 × 10 | (0.38,0.62) | 17 | 9 | 2.5768 | 0.9401 |
(17,9) | 9.649455 × 10 | (0.22,0.78) | 15 | 9 | 2.668082 | 0.091282 |
(15,9) | 2.198608 × 10 | (0.1,0.9) | 15 | 9 | 2.987181 | 0.319099 |
(15,9) | 2.198608 × 10 | (0.1,0.9) | 15 | 9 | 2.987181 | 0 |
Training Data | Test Data | ||||
---|---|---|---|---|---|
Training Set | Test Set | ||||
(15,8) | (0.4,06) | (11,9) | (0.2,0.8) | ||
(17,11) | (0.67,0.33) | (15,8) | (0.4,0.6) |
Given | Maximum Likelihood | Optimum | Optimum u | Optimum d | Risk | |
---|---|---|---|---|---|---|
(40,25) | 4.361099 × 10 | (0.01,0.99) | 18 | 17 | 12.8500 | 12.8500 |
(18,17) | 1.569022 × 10 | (0.4,0.6) | 19 | 15 | 7.7255 | 5.1245 |
(19,15) | 9.962820 × 10 | (0.33,0.67) | 19 | 11 | 6.6365 | 1.089 |
(19,11) | 3.810307 × 10 | (0.43,0.57) | 19 | 10 | 3.5169 | 3.1196 |
(19,10) | 1.492842 × 10 | (0.38,0.62) | 17 | 9 | 2.620360 | 0.89654 |
(17,9) | 1.434357 × 10 | (0.25,0.75) | 15 | 9 | 2.681275 | 0.060915 |
(15,9) | 3.019659 × 10 | (0.13,0.87) | 15 | 9 | 2.963947 | 0.282672 |
(15,9) | 3.019659 × 10 | (0.13,0.87) | 15 | 9 | 2.963947 | 0 |
Training Data | Test Data | ||||
---|---|---|---|---|---|
Training Set | Test Set | ||||
(15,8) | (0.41,0.59) | (11,9) | (0.25,0.75) | ||
(17,11) | (0.67,0.33) | (15,8) | (0.41,0.59) |
Given | Maximum Likelihood L | Optimum | Optimum u | Optimum d | Risk | |
---|---|---|---|---|---|---|
(40,25) | 4.361099 × 10 | (0.01,0.99) | 18 | 17 | 17.421881 | 17.421881 |
(18,17) | 1.569022 × 10 | (0.4,0.6) | 19 | 15 | 9.905660 | 7.516221 |
(19,15) | 9.962820 × 10 | (0.33,0.67) | 19 | 11 | 8.547535 | 1.358125 |
(19,11) | 3.810307 × 10 | (0.43,0.57) | 19 | 10 | 4.504016 | 4.043519 |
(19,10) | 3.810307 × 10 | (0.57,0.43) | 17 | 9 | 3.835010 | 0.669006 |
(17,9) | 3.810307 × 10 | (0.57,0.43) | 17 | 9 | 3.835010 | 0 |
Model | Maxwell-Boltzmann | Bose-Einstein | ||
---|---|---|---|---|
p | 0.30 | 0.99 | 0.33 | 0.99 |
q | 0.70 | 0.01 | 0.67 | 0.01 |
Likelihood | 5.5996 × 10 | 0 | 3.1488 × 10 | 0 |
u | 56 | 42 | 56 | 40 |
d | 35 | 23 | 35 | 21 |
Risk value | 132.2545 | 771.4357 | 129.8278 | 773.2864 |
Loop size | 7 | 16 | 7 | 16 |
Model | Maxwell-Boltzmann | Bose-Einstein | ||||
---|---|---|---|---|---|---|
p | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
q | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Likelihood | 0 | 0 | 0 | 0 | 0 | 0 |
u | 60 | 60 | 80 | 60 | 60 | 60 |
d | 40 | 40 | 50 | 40 | 40 | 40 |
Risk value | 79.5889 | 141.8641 | 821.6990 | 79.6845 | 141.9939 | 630.2925 |
Loop size | 2 | 2 | 7 | 2 | 2 | 2 |
Model | Maxwell-Boltzmann | Bose-Einstein | ||||
---|---|---|---|---|---|---|
p | 0.44 | 0.52 | 0.27 | 0.45 | 0.52 | 0.16 |
q | 0.56 | 0.48 | 0.73 | 0.55 | 0.48 | 0.84 |
Likelihood | 2.0197 × 10 | 3.4390 × 10 | 1.1716 × 10 | 5.0452 × 10 | 3.0095 × 10 | 1.6389 × 10 |
u | 60 | 60 | 70 | 60 | 60 | 70 |
d | 40 | 40 | 50 | 40 | 40 | 50 |
Risk value | 13.2531 | 30.1508 | 134.9512 | 13.0994 | 30.0282 | 156.9196 |
Loop size | 2 | 2 | 2 | 2 | 2 | 4 |
Model | Maxwell-Boltzmann | Bose-Einstein | ||||
---|---|---|---|---|---|---|
p | 0.37 | 0.38 | 0.38 | 0.39 | 0.39 | 0.37 |
q | 0.63 | 0.62 | 0.62 | 0.61 | 0.61 | 0.63 |
Likelihood | 2.7343 × 10 | 4.3868 × 10 | 3.3073 × 10 | 5.4464 × 10 | 1.3609 × 10 | 1.0870 × 10 |
u | 60 | 60 | 68 | 60 | 60 | 68 |
d | 40 | 40 | 50 | 40 | 40 | 50 |
Risk value | 142.4854 | 142.8270 | 133.9227 | 141.6344 | 142.7307 | 134.5446 |
Loop size | 2 | 2 | 3 | 2 | 2 | 5 |
0.1745 | 0.1676 | 0.1573 | 0.1470 | 0.1368 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefèvre, C.; Loisel, S.; Tamturk, M.; Utev, S. A Quantum-Type Approach to Non-Life Insurance Risk Modelling. Risks 2018, 6, 99. https://doi.org/10.3390/risks6030099
Lefèvre C, Loisel S, Tamturk M, Utev S. A Quantum-Type Approach to Non-Life Insurance Risk Modelling. Risks. 2018; 6(3):99. https://doi.org/10.3390/risks6030099
Chicago/Turabian StyleLefèvre, Claude, Stéphane Loisel, Muhsin Tamturk, and Sergey Utev. 2018. "A Quantum-Type Approach to Non-Life Insurance Risk Modelling" Risks 6, no. 3: 99. https://doi.org/10.3390/risks6030099
APA StyleLefèvre, C., Loisel, S., Tamturk, M., & Utev, S. (2018). A Quantum-Type Approach to Non-Life Insurance Risk Modelling. Risks, 6(3), 99. https://doi.org/10.3390/risks6030099