Gaussian Process Regression with a Hybrid Risk Measure for Dynamic Risk Management in the Electricity Market
Abstract
1. Introduction
2. Precluding Remarks
3. Problem Formulation
4. Electricity Price Prediction
5. Case Study
5.1. Numerical Results
5.2. Discussion
6. Critical Reflections and Practical Implications
6.1. Economical and Social Implications
6.2. Policy Implications
6.3. Critical Reflections
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Convex Reformulation of the Optimization Problem
- The objective function is a combination of a linear term t and , which is also linear;
- The constraints are linear with respect to and .
1 | Please refer to the https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics (accessed on 18 November 2024). |
References
- Agakishiev, Ilyas, Wolfgang Karl Härdle, Milos Kopa, Karel Kozmik, and Alla Petukhina. 2025. Multivariate probabilistic forecasting of electricity prices with trading applications. Energy Economics 141: 108008. [Google Scholar] [CrossRef]
- AL-Alimi, Dalal, Ayman Mutahar AlRassas, Mohammed A.A. Al-qaness, Zhihua Cai, Ahmad O. Aseeri, Mohamed Abd Elaziz, and Ahmed A. Ewees. 2023. Tlia: Time-series forecasting model using long short-term memory integrated with artificial neural networks for volatile energy markets. Applied Energy 343: 121230. [Google Scholar] [CrossRef]
- Alberini, Anna, Milan Ščasný, Mikolaj Czajkowski, and Andrea Bigano. 2023. Volatile energy markets, consumers and energy price expectations. Energy Economics 126: 107039. [Google Scholar] [CrossRef]
- Basak, Suleyman, and Alexander Shapiro. 2001. Value-at-risk-based risk management: Optimal policies and asset prices. The Review of Financial Studies 14: 371–405. [Google Scholar] [CrossRef]
- Ben-Tal, Aharon, and Arkadi Nemirovski. 2002. Robust optimization-methodology and applications. Mathematical Programming 92: 453–80. [Google Scholar] [CrossRef]
- Berrisch, Jonathan, and Florian Ziel. 2022. Distributional modeling and forecasting of natural gas prices. Journal of Forecasting 41: 1065–86. [Google Scholar] [CrossRef]
- Bozlak, Çağatay Berke, and Claudia Fernanda Yaşar. 2024. An optimized deep learning approach for forecasting day-ahead electricity prices. Electric Power Systems Research 229: 110129. [Google Scholar] [CrossRef]
- Chen, Qihao, Zhuo Huang, and Fang Liang. 2024. Forecasting volatility and value-at-risk for cryptocurrency using garch-type models: The role of the probability distribution. Applied Economics Letters 31: 1907–14. [Google Scholar] [CrossRef]
- Chen, Wengang, Ying Zhang, Jiajia Chen, and Bingyin Xu. 2023. Pricing mechanism and trading strategy optimization for microgrid cluster based on cvar theory. Electronics 12: 4327. [Google Scholar] [CrossRef]
- Chopra, Vijay, and William Ziemba. 1993. The effect of errors in means, variances, and covariances on optimal portfolio choice. The Journal of Portfolio Management 19: 6–11. [Google Scholar] [CrossRef]
- Conejo, Antonio J., Javier Contreras, Rosa Espínola, and Miguel A. Plazas. 2005. Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting 21: 435–62. [Google Scholar] [CrossRef]
- Conejo, Antonio J., Miguel A. Plazas, Rosa Espínola, and Ana B. Molina. 2005. Day-ahead electricity price forecasting using the wavelet transform and arima models. IEEE Transactions on Power Systems 20: 1035–42. [Google Scholar] [CrossRef]
- Contreras, Javier, Rosario Espínola, Francisco J. Nogales, and Antonio J. Conejo. 2003. Arima models to predict next-day electricity prices. IEEE Transactions on Power Systems 18: 1014–20. [Google Scholar] [CrossRef]
- Cornell, Cameron, Nam Trong Dinh, and S. Ali Pourmousavi. 2024. A probabilistic forecast methodology for volatile electricity prices in the australian national electricity market. International Journal of Forecasting 40: 1421–37. [Google Scholar] [CrossRef]
- Das, Abhinav, Stephan Schlüter, and Lorenz Schneider. 2024. Electricity price prediction using multi-kernel gaussian process regression combined with kernel-based support vector regression. arXiv arXiv:2412.00123. [Google Scholar]
- Demirdöğen, Yavuz. 2024. Market risk analysis with value at risk models using machine learning in bist-30 banking index. ADAM AKADEMİ Sosyal Bilimler Dergisi 14: 63–89. [Google Scholar] [CrossRef]
- Dempster, Michael Alan Howarth. 2002. Risk Management: Value at Risk and Beyond. Cambridge: Cambridge University Press. [Google Scholar]
- Duffie, Darrell, and Jun Pan. 1997. An overview of value at risk. Journal of Derivatives 4: 7–49. [Google Scholar] [CrossRef]
- Dybowski, Richard, and Stephen Roberts. 2000. Confidence intervals and prediction intervals for feed-forward neural networks. In Clinical Applications of Artificial Neural Networks. Cambridge: Cambridge University Press. [Google Scholar] [CrossRef]
- Emmer, Susanne, Claudia Klüppelberg, and Ralf Korn. 2001. Optimal portfolios with bounded capital at risk. Mathematical Finance 11: 365–84. [Google Scholar] [CrossRef]
- Gaivoronski, Alexei A., and Georg Pflug. 2005. Value-at-risk in portfolio optimization: Properties and computational approach. Journal of Risk 7: 1–31. [Google Scholar] [CrossRef]
- Grootveld, Henk, and Winfried Hallerbach. 2000. Upgrading Value-at-Risk from Diagnostic Metric to Decision Variable: A Wise Thing to Do? Rotterdam: Erasmus University Rotterdam. [Google Scholar]
- Guo, Yufeng, Yilin Du, Pu Wang, Xueqin Tian, Zhuofan Xu, Fuyuan Yang, Longxiang Chen, and Jie Wan. 2024. A hybrid forecasting method considering the long-term dependence of day-ahead electricity price series. Electric Power Systems Research 235: 110841. [Google Scholar] [CrossRef]
- Halbrügge, Stephanie, Paula Heess, Paul Schott, and Martin Weibelzahl. 2023. Negative electricity prices as a signal for lacking flexibility? on the effects of demand flexibility on electricity prices. International Journal of Energy Sector Management 18: 596–616. [Google Scholar] [CrossRef]
- Hamilton, James D. 2020. Time Series Analysis. Princeton: Princeton University Press. [Google Scholar] [CrossRef]
- Hilger, Hannes, Dirk Witthaut, Manuel Dahmen, Leonardo Rydin Gorjão, Julius Trebbien, and Eike Cramer. 2024. Multivariate scenario generation of day-ahead electricity prices using normalizing flows. Applied Energy 367: 123241. [Google Scholar] [CrossRef]
- Janczura, Joanna, and Edyta Wójcik. 2022. Dynamic short-term risk management strategies for the choice of electricity market based on probabilistic forecasts of profit and risk measures. the german and the polish market case study. Energy Economics 110: 106015. [Google Scholar] [CrossRef]
- Jensen, Vilde, Filippo Maria Bianchi, and Stian Normann Anfinsen. 2024. Ensemble conformalized quantile regression for probabilistic time series forecasting. IEEE Transactions on Neural Networks and Learning Systems 35: 9014–25. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Ping, Ying Nie, Jianzhou Wang, and Xiaojia Huang. 2023. Multivariable short-term electricity price forecasting using artificial intelligence and multi-input multi-output scheme. Energy Economics 117: 106471. [Google Scholar] [CrossRef]
- Jin, Bingzi, and Xiaojie Xu. 2024a. Forecasts of coking coal futures price indices through gaussian process regressions. Mineral Economics, 1–15. [Google Scholar] [CrossRef]
- Jin, Bingzi, and Xiaojie Xu. 2024b. Forecasts of thermal coal prices through gaussian process regressions. Ironmaking & Steelmaking 51: 819–34. [Google Scholar] [CrossRef]
- Krężołek, Dominik, and Grażyna Trzpiot. 2018. The effectiveness of the gluevar risk measure on the metals market—The application of omega performance measure. Acta Universitatis Lodziensis. Folia Oeconomica 5: 153–67. [Google Scholar] [CrossRef]
- Larsen, Nicklas, Helmut Mausser, and Stan Uryasev. 2002. Algorithms for optimization of value-at-risk. Financial Engineering, E-Commerce and Supply Chain 70: 19–46. [Google Scholar] [CrossRef]
- Loizidis, Stylianos, Andreas Kyprianou, and George E. Georghiou. 2024. Electricity market price forecasting using elm and bootstrap analysis: A case study of the german and finnish day-ahead markets. Applied Energy 363: 123058. [Google Scholar] [CrossRef]
- Mainik, Georg, Georgi Mitov, and Ludger Rüschendorf. 2015. Portfolio optimization for heavy-tailed assets: Extreme risk index vs. markowitz. Journal of Empirical Finance 32: 115–34. [Google Scholar] [CrossRef]
- Massidda, Luca, Fabio Bettio, and Marino Marrocu. 2024. Probabilistic day-ahead prediction of pv generation. A comparative analysis of forecasting methodologies and of the factors influencing accuracy. Solar Energy 271: 112422. [Google Scholar] [CrossRef]
- McNeil, Alexander, Rüdiger Frey, and Paul Embrechts. 2005. Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton: Princeton University Press, vol. 101. [Google Scholar]
- Munari, Cosimo, Justin Plückebaum, and Stefan Weber. 2024. Robust portfolio selection under recovery average value at risk. SIAM Journal on Financial Mathematics 15: 295–314. [Google Scholar] [CrossRef]
- Narajewski, Michał, and Florian Ziel. 2020. Ensemble forecasting for intraday electricity prices: Simulating trajectories. Applied Energy 279: 115801. [Google Scholar] [CrossRef]
- Pav, Steven. 2021. The Sharpe Ratio: Statistics and Applications. New York: Chapman and Hall/CRC. [Google Scholar] [CrossRef]
- Poggi, Aurora, Luca Di Persio, and Matthias Ehrhardt. 2023. Electricity price forecasting via statistical and deep learning approaches: The german case. AppliedMath 3: 316–42. [Google Scholar] [CrossRef]
- Rasmussen, Carl Edward, and Christopher K. I. Williams. 2005. Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning Series; Cambridge: MIT Press. [Google Scholar]
- Rockafellar, R. Tyrrell, and Stanislav Uryasev. 2000. Optimization of conditional value-at-risk. Journal of Risk 2: 21–42. [Google Scholar] [CrossRef]
- Rockafellar, R. Tyrrell, and Stanislav Uryasev. 2002. Conditional value-at-risk for general loss distributions. Journal of Banking & Finance 26: 1443–71. [Google Scholar] [CrossRef]
- Schulz, Eric, Maarten Speekenbrink, and Andreas Krause. 2018. A tutorial on gaussian process regression: Modelling, exploring, and exploiting functions. Journal of Mathematical Psychology 85: 1–16. [Google Scholar] [CrossRef]
- Syuhada, Khreshna, Venansius Tjahjono, and Arief Hakim. 2023. Improving value-at-risk forecast using ga-arma-garch and ai-kde models. Applied Soft Computing 148: 110885. [Google Scholar] [CrossRef]
- Weron, Rafał, and Florian Ziel. 2019. Electricity price forecasting. In Routledge Handbook of Energy Economics. London: Routledge, pp. 506–21. [Google Scholar] [CrossRef]
- Xiong, Xiaoping, and Guohua Qing. 2023. A hybrid day-ahead electricity price forecasting framework based on time series. Energy 264: 126099. [Google Scholar] [CrossRef]
- Yadav, Anamika, Rashmi Bareth, Matushree Kochar, Mohammad Pazoki, and Ragab A. El Sehiemy. 2024. Gaussian process regression-based load forecasting model. IET Generation, Transmission & Distribution 18: 899–910. [Google Scholar] [CrossRef]
- Zamee, Muhammad Ahsan, Yeongsang Lee, and Dongjun Won. 2024. Self-supervised adaptive learning algorithm for multi-horizon electricity price forecasting. IEEE Access 12: 54913–33. [Google Scholar] [CrossRef]
- Zhang, Rongquan, Gangqiang Li, and Zhengwei Ma. 2020. A deep learning based hybrid framework for day-ahead electricity price forecasting. IEEE Access 8: 143423–36. [Google Scholar] [CrossRef]
- Zhao, Mengshuo, and Chuancun Yin. 2024. Best- and worst-case scenarios for gluevar distortion risk measure with incomplete information. arXiv arXiv:2409.19902. [Google Scholar]
Setting | ||||||
---|---|---|---|---|---|---|
Performance for and | ||||||
Real Data | −1.2340 | − | − | |||
Predicted Data | −0.5429 | − | − | |||
Performance for and | ||||||
Real Data | −1.2473 | − | − | |||
Predicted Data | −0.5503 | − | − | |||
Performance for and | ||||||
Real Data | −1.2475 | − | − | |||
Predicted Data | −0.5522 | − | − | |||
Performance for and | ||||||
Real Data | −1.2615 | − | − | |||
Predicted Data | −0.5529 | − | − | |||
Performance for and | ||||||
Real Data | −1.2577 | − | − | |||
Predicted Data | −0.5532 | − | − |
Real | −0.0054 | −1.2340 | 0.0131 | 0.0020 | −0.0289 | 0.0843 |
Predicted | −0.0089 | −0.5427 | 0.0134 | 0.0055 | −0.0526 | 0.1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, A.; Schlüter, S. Gaussian Process Regression with a Hybrid Risk Measure for Dynamic Risk Management in the Electricity Market. Risks 2025, 13, 13. https://doi.org/10.3390/risks13010013
Das A, Schlüter S. Gaussian Process Regression with a Hybrid Risk Measure for Dynamic Risk Management in the Electricity Market. Risks. 2025; 13(1):13. https://doi.org/10.3390/risks13010013
Chicago/Turabian StyleDas, Abhinav, and Stephan Schlüter. 2025. "Gaussian Process Regression with a Hybrid Risk Measure for Dynamic Risk Management in the Electricity Market" Risks 13, no. 1: 13. https://doi.org/10.3390/risks13010013
APA StyleDas, A., & Schlüter, S. (2025). Gaussian Process Regression with a Hybrid Risk Measure for Dynamic Risk Management in the Electricity Market. Risks, 13(1), 13. https://doi.org/10.3390/risks13010013