On the Diversification Effect in Solvency II for Extremely Dependent Risks
Abstract
:1. Introduction
2. Preliminaries
2.1. Overview of Extreme Value Theory
- 1.
- if , take and , where the function a is
- 2.
- if , take and ;
- 3.
- if , take and .
2.2. Copulas
3. Model Setting and Main Results
3.1. Dependence Structure
3.2. Across the MDA of Gumbel with an Infinite Right Endpoint
3.3. Marginals with a Finite Right Endpoint
3.4. Across the MDA of Fréchet
- (i)
- is a cumulative distribution function on ;
- (ii)
- is increasing in β;
- (iii)
- ; and
- (iv)
- .
- (i)
- By Equation (5) and the condition of on , we have for the measure H. Thus, the statement follows.
- (ii)
- Denote , thenHence, is an increasing function of and so is .
- (iii)
- With Equation (14), when , note that for and on ; adding all these d equations gives the result.
- (iv)
- From (ii) and (iii), is an upper bound of for , while there is a lower bound of it for . On the other hand, by Jensen inequality, is the lower bound of for while there is an upper bound of it for . Since is a cumulative distribution function on , we can combine the two bounds for both ranges and obtain the inequalities.
- (i)
- for , , is asymptotically subadditive;
- (ii)
- for , , is asymptotically superadditive;
- (iii)
- for , , is asymptotically additive.
4. Numerical Results
- (i)
- the risks are Gumbel-type random variables: Exp(1), Half-Normal(1);
- (ii)
- the risks have finite right endpoints: Beta(2, 3);
- (iii)
- the risks are Fréchet-type random variables with different regularly varying parameters: Fréchet (0.5), Fréchet (1), Fréchet (2).
4.1. Gumbel–Hougaard Copula (Logistic Model)
4.2. Hüsler–Reiss Copula
4.3. The t-EV Copula
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alink, Stan, Matthias Löwe, and Mario Wüthrich. 2004. Diversification of aggregate dependent risks. Insurance: Mathematics and Economics 35: 77–95. [Google Scholar] [CrossRef] [Green Version]
- Alm, Jonas. 2016. Signs of dependence and heavy tails in non-life insurance data. Scandinavian Actuarial Journal 2016: 859–75. [Google Scholar] [CrossRef] [Green Version]
- Asimit, Alexandru, and Bruce Jones. 2007. Extreme behavior of bivariate elliptical distributions. Insurance: Mathematics and Economics 41: 53–61. [Google Scholar] [CrossRef] [Green Version]
- Asimit, Alexandru, Edward Furman, Qihe Tang, and Raluca Vernic. 2011. Asymptotics for risk capital allocations based on conditional tail expectation. Insurance: Mathematics and Economics 49: 310–24. [Google Scholar] [CrossRef] [Green Version]
- Barbe, Philippe, Anne-Laure Fougères, and Christian Genest. 2006. On the tail behavior of sums of dependent risks. ASTIN Bulletin: The Journal of the IAA 36: 361–73. [Google Scholar] [CrossRef] [Green Version]
- Bäuerle, Nicole, and Alfred Müller. 1998. Modeling and comparing dependencies in multivariate risk portfolios. ASTIN Bulletin: The Journal of the IAA 28: 59–76. [Google Scholar] [CrossRef]
- Beirlant, Jan, Yuri Goegebeur, Johan Segers, and Jozef Teugels. 2006. Statistics of Extremes: Theory and Applications. Hoboken: John Wiley & Sons. [Google Scholar]
- Cherubini, Umberto, Sabrina Mulinacci, Fabio Gobbi, and Silvia Romagnoli. 2011. Dynamic Copula Methods in Finance. Hoboken: John Wiley & Sons. [Google Scholar]
- Cheung, Ka Chun, Hok Kan Ling, Qihe Tang, Sheung Chi Phillip Yam, and Fei Lung Yuen. 2019. On additivity of tail comonotonic risks. Scandinavian Actuarial Journal 2019: 837–66. [Google Scholar] [CrossRef]
- Cui, Hengxin, Ken Seng Tan, and Fan Yang. 2021. Diversification in Catastrophe Insurance Markets. ASTIN Bulletin 51: 753–78. [Google Scholar] [CrossRef]
- de Haan, Laurens, and Ana Ferreira. 1999. Extreme Value Theory: An Introduction. New York: Springer. [Google Scholar]
- de Haan, Laurens, and Sidney Resnick. 1977. Limit theory for multivariate sample extremes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 40: 317–37. [Google Scholar] [CrossRef]
- Deheuvels, Paul. 1984. Probabilistic aspects of multivariate extremes. In Statistical Extremes and Applications. Dordrecht: Springer, pp. 117–30. [Google Scholar]
- Demarta, Stefano, and Alexander McNeil. 2005. The t copula and related copulas. International Statistical Review 73: 111–29. [Google Scholar] [CrossRef]
- Denuit, Michel, Jan Dhaene, Marc Goovaerts, and Rob Kaas. 2005. Actuarial Theory for Dependent Risks: Measures, Orders and Models. Hoboken: John Wiley & Sons, Ltd. [Google Scholar]
- Embrechts, Paul. 2000. Extreme value theory: Potential and limitations as an integrated risk management tool. Derivatives Use, Trading & Regulation 6: 449–56. [Google Scholar]
- Embrechts, Paul, Claudia Klüppelberg, and Thomas Mikosch. 2013. Modelling Extremal Events: For Insurance and Finance. Cham: Springer Science & Business Media, vol. 33. [Google Scholar]
- Embrechts, Paul, Dominik Lambrigger, and Mario Wüthrich. 2009a. Multivariate extremes and the aggregation of dependent risks: Examples and counter-examples. Extremes 12: 107–27. [Google Scholar] [CrossRef] [Green Version]
- Embrechts, Paul, Johanna Nešlehová, and Mario Wüthrich. 2009b. Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness. Insurance: Mathematics and Economics 44: 164–69. [Google Scholar] [CrossRef]
- Falk, Michael, Jürg Hüsler, and Rolf-Dieter Reiss. 2010. Laws of Small Numbers: Extremes and Rare Events. Cham: Springer Science & Business Media. [Google Scholar]
- Frees, Edward, and Emiliano Valdez. 1998. Understanding relationships using copulas. North American Actuarial Journal 2: 1–25. [Google Scholar] [CrossRef] [Green Version]
- Frey, Rüdiger, and Alexander McNeil. 2001. Modelling Dependent Defaults. Unpublished working paper. Zurich: ETH Zurich. [Google Scholar]
- Galambos, Janos. 1975. Order statistics of samples from multivariate distributions. Journal of the American Statistical Association 70: 674–80. [Google Scholar]
- Galambos, Janos. 1978. The Asymptotic Theory of Extreme Order Statistics. Wiley Series in Probability and Mathematical Statistics. New York, Chichester and Brisbane: John Wiley & Sons. [Google Scholar]
- Genest, Christian, and Louis-Paul Rivest. 1989. A characterization of Gumbel’s family of extreme value distributions. Statistics & Probability Letters 8: 207–11. [Google Scholar]
- Gudendorf, Gordon, and Johan Segers. 2010. Extreme-value Copulas. In Copula Theory and Its Applications. Berlin and Heidelberg: Springer, pp. 127–45. [Google Scholar]
- Gudendorf, Gordon, and Johan Segers. 2012. Nonparametric estimation of multivariate extreme-value copulas. Journal of Statistical Planning and Inference 142: 3073–85. [Google Scholar] [CrossRef] [Green Version]
- Hall, Peter, and Nader Tajvidi. 2000. Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6: 835–44. [Google Scholar] [CrossRef]
- Hua, Lei. 2017. On a bivariate copula with both upper and lower full-range tail dependence. Insurance: Mathematics and Economics 73: 94–104. [Google Scholar] [CrossRef]
- Hua, Lei, and Harry Joe. 2012. Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures. Insurance: Mathematics and Economics 51: 492–503. [Google Scholar] [CrossRef]
- Joe, Harry. 1997. Multivariate Models and Dependence Concepts. Volume 73 of Monographs on Statistics and Applied Probability. London: Chapman & Hall. [Google Scholar]
- Joe, Harry. 2014. Dependence Modeling with Copulas. London: Chapman & Hall. [Google Scholar]
- Kotz, Samuel, and Saralees Nadarajah. 2000. Extreme Value Distributions: Theory and Applications. Singapore: World Scientific. [Google Scholar]
- Kremer, Erhard. 1998. Largest claims reinsurance premiums under possible claims dependence. ASTIN Bulletin: The Journal of the IAA 28: 257–67. [Google Scholar] [CrossRef]
- Li, Haijun. 2013. Toward a Copula Theory for Multivariate Regular Variation. In Copulae in Mathematical and Quantitative Finance. Edited by Piotr Jaworski, Fabrizio Durante and Wolfgang Härdle. Lecture Notes in Statistics. Berlin/Heidelberg: Springer, vol. 213. [Google Scholar]
- McNeil, Alexander, Rüdiger Frey, and Paul Embrechts. 2005. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton Series in Finance. Princeton: Princeton University Press. [Google Scholar]
- Nelsen, Roger. 2006. An Introduction to Copulas. Cham: Springer Science & Business Media. [Google Scholar]
- Nikoloulopoulos, Aristidis, Harry Joe, and Haijun Li. 2009. Extreme value properties of multivariate t copulas. Extremes 12: 129–148. [Google Scholar] [CrossRef]
- Pfeifer, Dietmar, and Doreen Strassburger. 2008. Solvency II: Stability Problems with the SCR Aggregation Formula. Scandinavian Actuarial Journal 2008: 61–77. [Google Scholar] [CrossRef]
- Pfeifer, Dietmar, and Olena Ragulina. 2018. Generating VaR Scenarios under Solvency II with Product Beta Distributions. Risks 6: 122. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, Dietmar, and Olena Ragulina. 2021. Generating unfavourable VaR scenarios under Solvency II with patchwork copulas. Dependence Modeling 9: 327–46. [Google Scholar] [CrossRef]
- Pickands, James. 1981. Multivariate extreme value distributions. Paper presented at 43rd Session of the International Statistical Institute (Buenos Aires), Buenos Aire, Argentina, November 30–December 11; pp. 859–78. [Google Scholar]
- Poon, Ser-Huang, Michael Rockinger, and Jonathan Tawn. 2004. Extreme value dependence in financial markets: Diagnostics, models, and financial implications. The Review of Financial Studies 17: 581–610. [Google Scholar] [CrossRef] [Green Version]
- Resnick, Sidney. 2013. Extreme Values, Regular Variation and Point Processes. Cham: Springer. [Google Scholar]
- Sandström, Arne. 2007. Solvency II: Calibration for skewness. Scandinavian Actuarial Journal 2007: 126–34. [Google Scholar] [CrossRef]
- Su, Jianxi, and Lei Hua. 2017. A general approach to full-range tail dependence copulas. Insurance: Mathematics and Economics 77: 49–64. [Google Scholar] [CrossRef]
- Vesa, Ronkainen, Koskinen Lasse, and Berglund Raoul. 2007. Topical modelling issues in Solvency II. Scandinavian Actuarial Journal 2007: 135–46. [Google Scholar] [CrossRef]
Name of Copula | d-Variate Form | Note |
---|---|---|
Gumbel–Hougaard | ||
Galambos | ||
Hüsler–Reiss | ||
t-EV | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Cheung, K.C.; Yam, S.C.P.; Yuen, F.L.; Zeng, J. On the Diversification Effect in Solvency II for Extremely Dependent Risks. Risks 2023, 11, 143. https://doi.org/10.3390/risks11080143
Chen Y, Cheung KC, Yam SCP, Yuen FL, Zeng J. On the Diversification Effect in Solvency II for Extremely Dependent Risks. Risks. 2023; 11(8):143. https://doi.org/10.3390/risks11080143
Chicago/Turabian StyleChen, Yongzhao, Ka Chun Cheung, Sheung Chi Phillip Yam, Fei Lung Yuen, and Jia Zeng. 2023. "On the Diversification Effect in Solvency II for Extremely Dependent Risks" Risks 11, no. 8: 143. https://doi.org/10.3390/risks11080143
APA StyleChen, Y., Cheung, K. C., Yam, S. C. P., Yuen, F. L., & Zeng, J. (2023). On the Diversification Effect in Solvency II for Extremely Dependent Risks. Risks, 11(8), 143. https://doi.org/10.3390/risks11080143