The Applications of Generalized Poisson Regression Models to Insurance Claim Data
Abstract
:1. Introduction
2. Mathematical Models
2.1. Various Forms of Generalized Poisson and Generalized Negative Binomial Random Variables
2.2. Hurdle Functional Form of the Generalized Poisson Regression Model
2.3. Hurdle Functional Form of the Generalized Negative Binomial Regression Model
3. Incorporating Exposure in Zero-Inflated and Hurdle Regression Models
A Simulation Study
4. Model Fitting Results
4.1. Malaysian Motor Insurance Data
4.2. The US National Medical Expenditure Survey Data
4.3. The freMTPL2freq Dataset
5. The Lasso Regression
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
CFMNB-2 | Constrained two-point finite mixture of negative binomials |
CFMNB-3 | Constrained three-point finite mixture of negative binomials |
FMNB-2 | Two-point finite mixture of negative binomials |
LL | Log likelihood |
LRT | Likelihood ratio test |
GP | Generalized Poisson |
GP-P | Functional form of generalized Poisson |
HGP | Hurdle-generalized Poisson |
HGP-P | Hurdle functional form of generalized Poisson |
HNB | Hurdle negative binomial |
HNB-P | Hurdle functional form of negative binomial |
HP | Hurdle Poisson |
NB-P | Functional form of negative binomial |
NBM2 | Two-point negative binomial mixture |
TGP-P | Truncated functional form of generalized Poisson |
TNB-P | Truncated functional form of negative binomial |
ZIGP-P | Zero-inflated functional form of generalized Poisson |
ZINB-P | Zero-inflated functional form of negative binomial |
ZIP | Zero-inflated Poisson |
References
- Agresti, Alan. 2015. Foundations of Linear and Generalized Linear Models. Hoboken: John Wiley & Sons. [Google Scholar]
- Bhaktha, Nivedita. 2018. Properties of Hurdle Negative Binomial Models for Zero-Inflated and Overdispersed Count Data. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA. [Google Scholar]
- Boucher, Jean-Philippe, Michel Denuit, and Montserrat Guillén. 2007. Risk classification for claim counts: A comparative analysis of various zero inflated mixed Poisson and hurdle models. North American Actuarial Journal 11: 110–31. [Google Scholar] [CrossRef]
- Calderín-Ojeda, Enrique, Emilio GóMez-Déniz, and Inmaculada Barranco-Chamorro. 2019. Modelling zero-inflated count data with a special case of the generalised Poisson distribution. ASTIN Bulletin: The Journal of the IAA 49: 689–707. [Google Scholar] [CrossRef]
- Cameron, A. Colin, and Pravin K. Trivedi. 2013. Regression Analysis of Count Data. Cambridge: Cambridge University Press, vol. 53. [Google Scholar]
- Consul, Prem. C. 1993. A model for distributions of injuries in auto-accidents. Insurance: Mathematics and Economics 13: 147. [Google Scholar] [CrossRef]
- Consul, Prem. C., and Mohamed M. Shoukri. 1988. Some chance mechanisms related to a generalized poisson probability model. American Journal of Mathematical and Management Sciences 8: 181–202. [Google Scholar] [CrossRef]
- Consul, Prem C., and Gaurav C. Jain. 1973. A generalization of the Poisson distribution. Technometrics 15: 791–9. [Google Scholar] [CrossRef]
- Cragg, John G. 1971. Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica: Journal of the Econometric Society 39: 829–44. [Google Scholar] [CrossRef]
- Czado, Claudia, Vinzenz Erhardt, Aleksey Min, and Stefan Wagner. 2007. Zero-inflated generalized Poisson models with regression effects on the mean, dispersion and zero-inflation level applied to patent outsourcing rates. Statistical Modelling 7: 125–53. [Google Scholar] [CrossRef]
- Dai, Lin, Michael D. Sweat, and Mulugeta Gebregziabher. 2018. Modeling excess zeros and heterogeneity in count data from a complex survey design with application to the demographic health survey in sub-saharan africa. Statistical Methods in Medical Research 27: 208–20. [Google Scholar] [CrossRef]
- Dean, Charmaine, Jerry. F. Lawless, and Gord. E. Willmot. 1989. A mixed Poisson–inverse-gaussian regression model. Canadian Journal of Statistics 17: 171–81. [Google Scholar] [CrossRef]
- Deb, Partha, and Pravin K. Trivedi. 1997. Demand for medical care by the elderly: A finite mixture approach. Journal of Applied Econometrics 12: 313–336. [Google Scholar] [CrossRef]
- Denuit, Michel, Xavier Maréchal, Sandra Pitrebois, and Jean-François Walhin. 2007. Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems. Hoboken: John Wiley & Sons. [Google Scholar]
- Dionne, Georges, and Charles Vanasse. 1989. A generalization of automobile insurance rating models: The negative binomial distribution with a regression component. ASTIN Bulletin: The Journal of the IAA 19: 199–212. [Google Scholar] [CrossRef]
- Famoye, Felix, and Karan P. Singh. 2006. Zero-inflated generalized poisson regression model with an application to domestic violence data. Journal of Data Science 4: 117–30. [Google Scholar] [CrossRef]
- Feng, Cindy. 2022. Zero-inflated models for adjusting varying exposures: A cautionary note on the pitfalls of using offset. Journal of Applied Statistics 49: 1–23. [Google Scholar] [CrossRef]
- Frees, Edward W. 2009. Regression Modeling with Actuarial and Financial Applications. Cambridge: Cambridge University Press. [Google Scholar]
- Frees, Edward W., Richard A. Derrig, and Glenn Meyers. 2014. Predictive Modeling Applications in Actuarial Science. Cambridge: Cambridge University Press, vol. 1. [Google Scholar]
- Frees, Edward W., and Emiliano A. Valdez. 2008. Hierarchical insurance claims modeling. Journal of the American Statistical Association 103: 1457–69. [Google Scholar] [CrossRef]
- Fuzi, Mohd Fadzli Mohd, Abdul Aziz Jemain, and Noriszura Ismail. 2016. Bayesian quantile regression model for claim count data. Insurance: Mathematics and Economics 66: 124–37. [Google Scholar] [CrossRef]
- Gerber, Hans U. 1990. When does the surplus reach a given target? Insurance: Mathematics and Economics 9: 115–9. [Google Scholar] [CrossRef]
- Greene, William. 2008. Functional forms for the negative binomial model for count data. Economics Letters 99: 585–90. [Google Scholar] [CrossRef]
- Hilbe, Joseph M. 2011. Negative Binomial Regression. Cambridge: Cambridge University Press. [Google Scholar]
- Ismail, Noriszura, and Abdul Aziz Jemain. 2007. Handling overdispersion with negative binomial and generalized poisson regression models. In Casualty Actuarial Society Forum. Arlington County: Casualty Actuarial Society, vol. 2007, pp. 103–58. [Google Scholar]
- Ismail, Noriszura, and Hossein Zamani. 2013. Estimation of claim count data using negative binomial, generalized Poisson, zero-inflated negative binomial and zero-inflated generalized Poisson regression models. In Casualty Actuarial Society E-Forum. Arlington County: Casualty Actuarial Society, vol. 41, pp. 1–28. [Google Scholar]
- Kleiber, Christian, and Achim Zeileis. 2008. Applied Econometrics with R. Berlin: Springer Science & Business Media. [Google Scholar]
- Lambert, Diane. 1992. Zero-inflated poisson regression, with an application to defects in manufacturing. Technometrics 34: 1–14. [Google Scholar] [CrossRef]
- Ledoit, Olivier, and Michael Wolf. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance 10: 603–21. [Google Scholar] [CrossRef]
- Lee, Andy H, Kui Wang, and Kelvin K. W. Yau. 2001. Analysis of zero-inflated Poisson data incorporating extent of exposure. Biometrical Journal 43: 963–75. [Google Scholar] [CrossRef]
- Loquiha, Osvaldo, Niel Hens, Leonardo Chavane, Marleen Temmerman, and Marc Aerts. 2013. Modeling heterogeneity for count data: A study of maternal mortality in health facilities in mozambique. Biometrical Journal 55: 647–60. [Google Scholar] [CrossRef] [PubMed]
- Månsson, Kristofer, B. M. Golam Kibria, and Ghazi Shukur. 2012. On liu estimators for the logit regression model. Economic Modelling 29: 1483–88. [Google Scholar] [CrossRef]
- Mullahy, John. 1986. Specification and testing of some modified count data models. Journal of Econometrics 33: 341–65. [Google Scholar] [CrossRef]
- Park, Myung Hyun, and Joseph H. T. Kim. 2021. Modelling healthcare demand count data with excessive zeros and overdispersion. Global Economic Review 50: 358–81. [Google Scholar] [CrossRef]
- Park, Mee Young, and Trevor Hastie. 2007. L1-regularization path algorithm for generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69: 659–77. [Google Scholar] [CrossRef]
- Renshaw, Arthur E. 1994. Modelling the claims process in the presence of covariates. ASTIN Bulletin: The Journal of the IAA 24: 265–85. [Google Scholar] [CrossRef]
- Saffari, Seyed Ehsan, Robiah Adnan, and William Greene. 2013. Investigating the impact of excess zeros on hurdle-generalized Poisson regression model with right censored count data. Statistica Neerlandica 67: 67–80. [Google Scholar] [CrossRef]
- Scollnik, David P. M. 1995. Bayesian analysis of two overdispersed Poisson models. Biometrics 51: 1117–26. [Google Scholar] [CrossRef]
- Stein, Charles M. 1981. Estimation of the mean of a multivariate normal distribution. The Annals of Statistics 9: 1135–51. [Google Scholar] [CrossRef]
- Tang, Yanlin, Liya Xiang, and Zhongyi Zhu. 2014. Risk factor selection in rate making: EM adaptive LASSO for zero-inflated poisson regression models. Risk Analysis 34: 1112–27. [Google Scholar] [CrossRef]
- Tibshirani, Robert. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological) 58: 267–88. [Google Scholar] [CrossRef]
- Wang, Shuo, Wangxue Chen, Meng Chen, and Yawen Zhou. 2023. Maximum likelihood estimation of the parameters of the inverse gaussian distribution using maximum rank set sampling with unequal samples. Mathematical Population Studies 30: 1–21. [Google Scholar] [CrossRef]
- Wang, Weiren, and Felix Famoye. 1997. Modeling household fertility decisions with generalized Poisson regression. Journal of Population Economics 10: 273–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, Zhu, Shuangge Ma, and Ching-Yun Wang. 2015. Variable selection for zero-inflated and overdispersed data with application to health care demand in germany. Biometrical Journal 57: 867–84. [Google Scholar] [CrossRef]
- Wüthrich, Mario V., and Michael Merz. 2008. Stochastic Claims Reserving Methods in Insurance. Hoboken: John Wiley & Sons. [Google Scholar]
- Yip, Karen C. H., and Kelvin K. W. Yau. 2005. On modeling claim frequency data in general insurance with extra zeros. Insurance: Mathematics and Economics 36: 153–63. [Google Scholar] [CrossRef]
- Zamani, Hossein, and Noriszura Ismail. 2012. Functional form for the generalized poisson regression model. Communications in Statistics-Theory and Methods 41: 3666–75. [Google Scholar] [CrossRef]
- Zhen, Zhen, Liyang Shao, and Lianjun Zhang. 2018. Spatial hurdle models for predicting the number of children with lead poisoning. International Journal of Environmental Research and Public Health 15: 1792. [Google Scholar] [CrossRef]
- Zuo, Guoxin, Kang Fu, Xianhua Dai, and Liwei Zhang. 2021. Generalized Poisson hurdle model for count data and its application in ear disease. Entropy 23: 1206. [Google Scholar] [CrossRef]
ZIP | ZIPee | ZIPe | ZIP11 | ZIP1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Par | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| |
Logistic proportion of models | ||||||||||
−1.53 | 34.92 | 0.49 | 7.20 | −1.60 | 35.20 | −2.92 | 72.02 | −1.85 | 36.64 | |
0.55 | 12.52 | 0.71 | 14.00 | 0.58 | 12.95 | 0.69 | 17.43 | 0.68 | 14.34 | |
0.53 | 22.25 | 0.70 | 25.07 | 0.56 | 22.93 | 0.66 | 29.60 | 0.66 | 25.23 | |
−1.59 | 39.98 | |||||||||
Count proportion of models | ||||||||||
1.86 | 336.0 | 1.16 | 106.9 | 1.16 | 105.6 | 0.04 | 6.75 | 0.04 | 7.51 | |
0.80 | 164.4 | 0.79 | 162.5 | 0.79 | 162.5 | 0.79 | 160.9 | 0.79 | 160.8 | |
0.83 | 341.6 | 0.82 | 334.4 | 0.82 | 334.4 | 0.81 | 329.1 | 0.81 | 328.9 | |
0.41 | 78.01 | 0.41 | 78.17 | |||||||
LL | −45,067 | −40,652 | −41,671 | −50,271 | −47,284 | |||||
AIC | 90,147 | 81,319 | 83,356 | 100,553 | 94,579 | |||||
BIC | 90,190 | 81,377 | 83,406 | 100,597 | 94,623 |
ZIGP-P | ZIGP-Pee | ZIGP-Pe | ZIGP-P11 | ZIGP-P1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Par | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| |
Logistic part of the models | ||||||||||
−1.65 | 35.03 | 0.40 | 5.75 | −1.74 | 35.16 | −3.23 | 66.73 | 0.46 | 33.39 | |
0.60 | 13.24 | 0.74 | 14.40 | 0.64 | 13.72 | 0.81 | 18.94 | −1.47 | 31.21 | |
0.58 | 23.24 | 0.74 | 25.52 | 0.62 | 23.94 | 0.77 | 31.09 | 0.61 | 13.49 | |
– | – | −1.58 | 39.43 | |||||||
Non-zero part of the models | ||||||||||
1.88 | 138.5 | 1.06 | 41.95 | 0.99 | 37.48 | 0.07 | 4.69 | 0.61 | 13.49 | |
0.79 | 57.80 | 0.79 | 61.5 | 0.79 | 61.21 | 0.80 | 51.87 | 0.78 | 60.03 | |
0.82 | 111.7 | 0.81 | 115.9 | 0.81 | 115.8 | 0.81 | 95.22 | 0.80 | 115.9 | |
0.47 | 37.30 | 0.50 | 38.09 | |||||||
a | 0.39 | 15.31 | 0.17 | 13.41 | 0.19 | 13.28 | 0.45 | 14.50 | 0.39 | 16.60 |
P | 1.46 | 75.21 | 1.67 | 77.16 | 1.64 | 75.51 | 1.46 | 72.39 | 1.43 | 82.04 |
LL | −30,270 | −28,606 | −29582 | −33,088 | −29,685 | |||||
AIC | 60556 | 57,233 | 59,181 | 66,193 | 59,386 | |||||
BIC | 60,614 | 57,304 | 59,246 | 66,250 | 59,443 |
n | ZIGP-Pee | ZIGP-Pe | ZIGP-P11 | ZIGP-P1 | |
---|---|---|---|---|---|
AIC | 1000 | 5721.15 | 5915.20 | 6633.57 | 6037.35 |
5000 | 28,575.05 | 29,503.79 | 33,097.63 | 30,157.15 | |
10,000 | 57,194.15 | 59,054.38 | 66,010.11 | 60,329.38 | |
BIC | 1000 | 5770.23 | 5959.37 | 6672.83 | 6076.62 |
5000 | 28,640.22 | 29,562.44 | 33,149.77 | 30,209.29 | |
10,000 | 57,266.26 | 59,119.27 | 66,067.79 | 60,387.06 |
HGP-P | HGP-Pee | HGP-Pe | HGP-P11 | HGP-P1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Par | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| |
Logistic part of the models | ||||||||||
−1.46 | 34.72 | 0.59 | 9.06 | −1.46 | 34.72 | −2.54 | 73.88 | −1.46 | 34.72 | |
0.52 | 11.99 | 0.66 | 13.29 | 0.52 | 11.99 | 0.54 | 14.44 | 0.52 | 11.99 | |
0.49 | 21.40 | 0.64 | 24.12 | 0.49 | 21.40 | 0.48 | 24.93 | 0.49 | 21.40 | |
−1.58 | 40.38 | |||||||||
Non-zero part of the models | ||||||||||
1.88 | 135.3 | 1.07 | 41.75 | 1.07 | 41.75 | 0.10 | 7.29 | 0.10 | 7.29 | |
0.80 | 57.70 | 0.79 | 61.35 | 0.79 | 61.35 | 0.81 | 52.75 | 0.81 | 52.75 | |
0.82 | 110.5 | 0.81 | 114.6 | 0.81 | 114.7 | 0.82 | 95.28 | 0.82 | 95.28 | |
0.46 | 36.68 | 0.46 | 36.68 | |||||||
a | 0.41 | 14.94 | 0.17 | 13.22 | 0.17 | 13.22 | 0.26 | 15.71 | 0.26 | 15.71 |
P | 1.45 | 73.14 | 1.66 | 75.85 | 1.66 | 75.85 | 1.62 | 86.18 | 1.62 | 86.18 |
LL | −30,287 | −28,633 | −29,678 | −33,564 | −30,472 | |||||
AIC | 60,589 | 57,286 | 59,374 | 67,144 | 60,960 | |||||
BIC | 60,647 | 57,358 | 59,439 | 67,201 | 61,018 |
Coefficients for the Non-Zero Part of the Models | Logistic Coef. | |||||||
---|---|---|---|---|---|---|---|---|
Poisson | GP-P | NB-P | ||||||
Parameter | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| |
Intercept | −2.59 | 49.29 | −2.75 | 17.14 | −2.81 | 16.94 | 3.00 | 3.14 |
2–3 year | 0.50 | 39.68 | 0.54 | 12.30 | 0.53 | 12.24 | −2.14 | 2.92 |
4–5 year | 0.48 | 36.46 | 0.49 | 10.78 | 0.49 | 10.99 | −0.99 | 1.66 |
6–7 year | 0.41 | 31.15 | 0.44 | 9.85 | 0.43 | 9.78 | −1.31 | 2.02 |
above 8 | 0.26 | 20.33 | 0.27 | 6.11 | 0.27 | 6.10 | 0.15 | 0.25 |
1001–1300 cc | −0.10 | 4.40 | −0.10 | 1.45 | −0.10 | 1.51 | −0.49 | 0.78 |
1301–1500 cc | 0.10 | 4.26 | 0.07 | 1.12 | 0.08 | 1.07 | −1.72 | 2.04 |
1501–1800 cc | 0.30 | 12.56 | 0.27 | 3.93 | 0.28 | 3.91 | −1.51 | 1.66 |
above 1800 cc | 0.38 | 16.12 | 0.37 | 5.30 | 0.37 | 5.13 | −1.47 | 1.49 |
Local type 2 | −0.26 | 12.01 | −0.33 | 5.31 | −0.31 | 4.76 | −0.09 | 0.09 |
Foreign type 1 | −0.28 | 23.55 | −0.25 | 6.14 | −0.25 | 6.33 | 1.27 | 1.43 |
Foreign type 2 | 0.00 | 0.15 | 0.06 | 1.03 | 0.06 | 1.01 | 0.12 | 0.15 |
Foreign type 3 | −0.16 | 7.69 | −0.13 | 1.87 | −0.13 | 1.90 | 2.03 | 2.03 |
East | 0.24 | 13.27 | 0.30 | 5.13 | 0.29 | 4.92 | −0.47 | 0.73 |
Central | 0.35 | 30.02 | 0.33 | 8.24 | 0.33 | 8.27 | −1.54 | 1.77 |
South | 0.23 | 18.15 | 0.26 | 5.89 | 0.25 | 5.79 | 0.36 | 0.56 |
East Malaysia | 0.08 | 5.48 | 0.07 | 1.42 | 0.08 | 1.53 | −0.02 | 0.04 |
log(Exposure) | 0.93 | 187.48 | 0.95 | 59.64 | 0.95 | 59.21 | −1.15 | 6.19 |
a | - | - | 1.51 | 8.01 | 5.34 | 6.64 | - | - |
P | - | - | 1.09 | 42.39 | 1.12 | 34.66 | - | - |
LL | −3809.43 | −2028.35 | −2036.86 | −82.35 | ||||
AIC | 7654.85 | 4096.70 | 4113.73 | 200.71 | ||||
BIC | 7730.61 | 4180.87 | 4197.90 | 278.35 |
Models | No. of Parameters | LL | AIC | BIC |
---|---|---|---|---|
Poisson | 18 | −3917.5 | 7871.1 | 7948.7 |
GP-1 | 19 | −2166.1 | 4370.1 | 4452.1 |
GP-2 | 19 | −2441.6 | 4921.2 | 5003.1 |
GP-P | 20 | −2146.4 | 4332.8 | 4419.1 |
NB-1 | 19 | −2191.0 | 4419.9 | 4501.9 |
NB-2 | 19 | −2324.1 | 4686.2 | 4768.2 |
NB-P | 20 | −2173.6 | 4387.3 | 4473.5 |
ZIP | 36 | −3899.9 | 7871.9 | 8027.2 |
ZIGP-1 | 37 | −2281.4 | 4636.9 | 4796.5 |
ZIGP-2 | 37 | −2659.2 | 5392.3 | 5551.9 |
ZIGP-P | 38 | −2167.1 | 4410.3 | 4574.2 |
ZINB-1 | 37 | −2695.5 | 5464.9 | 5624.5 |
ZINB-2 | 37 | −2356.8 | 4787.5 | 4947.1 |
ZINB-P | 38 | −2153.8 | 4383.6 | 4547.5 |
HP | 36 | −3891.8 | 7855.6 | 8008.9 |
HGP-1 | 37 | −2116.2 | 4306.5 | 4464.1 |
HGP-2 | 37 | −2420.6 | 4915.1 | 5072.7 |
HGP-P | 38 | −2110.7 | 4297.4 | 4459.2 |
HNB-1 | 37 | −2125.9 | 4325.8 | 4483.4 |
HNB-2 | 37 | −2321.9 | 4717.8 | 4875.4 |
HNB-P | 38 | −2119.2 | 4314.4 | 4476.2 |
Coefficients for the Non-Zero Part of the Models | Logistic Coef. | |||||||
---|---|---|---|---|---|---|---|---|
Poisson | GP-P | NB-P | ||||||
Parameter | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| |
Intercept | 1.84 | 20.46 | 1.62 | 7.01 | 1.60 | 6.63 | −1.37 | 2.27 |
Poorhlth | 0.28 | 15.19 | 0.31 | 6.18 | 0.31 | 6.18 | 0.07 | 0.42 |
Exclhlth | −0.34 | 10.67 | −0.37 | 4.86 | −0.39 | 4.81 | −0.32 | 2.27 |
Numchron | 0.12 | 24.80 | 0.15 | 12.40 | 0.15 | 11.92 | 0.55 | 12.14 |
Adldiff | 0.12 | 7.19 | 0.10 | 2.26 | 0.12 | 2.71 | −0.18 | −1.44 |
Noreast | 0.11 | 5.92 | 0.10 | 2.09 | 0.12 | 2.32 | 0.03 | 0.21 |
Other regions | 0.02 | 1.24 | 0.01 | 0.33 | 0.02 | 0.46 | −0.10 | −0.89 |
Midwest | 0.12 | 6.06 | 0.12 | 2.45 | 0.14 | 2.62 | 0.10 | 0.71 |
Age | −0.08 | 6.92 | −0.07 | 2.47 | −0.08 | 2.68 | 0.19 | 2.51 |
Black | 0.00 | 0.03 | −0.03 | 0.53 | −0.03 | 0.50 | −0.32 | 2.52 |
Male | −0.01 | 0.71 | −0.02 | 0.65 | −0.02 | 0.61 | −0.46 | 4.82 |
Married | −0.07 | 4.60 | −0.06 | 1.66 | −0.07 | 1.80 | 0.25 | 2.41 |
School | 0.02 | 9.58 | 0.02 | 3.77 | 0.02 | 3.82 | 0.05 | 4.24 |
Faminc | 0.00 | 1.31 | 0.00 | 0.35 | 0.00 | 0.46 | 0.01 | 0.36 |
Employed | 0.06 | 2.69 | −0.01 | 0.10 | 0.03 | 0.56 | −0.01 | 0.09 |
Private health | 0.19 | 9.51 | 0.24 | 4.58 | 0.27 | 4.90 | 0.76 | 6.85 |
Medicaid | 0.19 | 7.35 | 0.25 | 3.63 | 0.27 | 3.75 | 0.55 | 3.21 |
a | - | - | 0.60 | 5.43 | 1.67 | 4.20 | - | - |
P | - | - | 1.45 | 14.95 | 1.56 | 12.28 | - | - |
Models | No. of Parameters | LL | AIC | BIC |
---|---|---|---|---|
Poisson | 17 | −18,134 | 36,303 | 36,412 |
GP-1 | 18 | −12,147 | 24,330 | 24,445 |
GP-2 | 18 | −12,237 | 24,510 | 24,625 |
GP-P | 19 | −12,147 | 24,332 | 24,453 |
NB-1 | 18 | −12,156 | 24,348 | 24,463 |
NB-2 | 18 | −12,202 | 24,440 | 24,555 |
NB-P | 19 | −12,155 | 24,348 | 24,470 |
ZIP | 34 | −16,290 | 32,648 | 32,862 |
ZIGP-1 | 35 | −12,096 | 24,261 | 24,485 |
ZIGP-2 | 35 | −12,095 | 24,259 | 24,483 |
ZIGP-P | 36 | −12,085 | 24,242 | 24,472 |
ZINB-1 | 35 | −12,133 | 24,336 | 24,560 |
ZINB-2 | 35 | −12,117 | 24,304 | 24,528 |
ZINB-P | 36 | −12,114 | 24,301 | 24,531 |
HP | 34 | −16,290 | 32,648 | 32,862 |
HGP-1 | 35 | −12,085 | 24,240 | 24,460 |
HGP-2 | 35 | −12,096 | 24,262 | 24,482 |
HGP-P | 36 | −12,077 | 24,227 | 24,453 |
HNB-1 | 35 | −12,113 | 24,296 | 24,517 |
HNB-2 | 35 | −12,110 | 24,291 | 24,511 |
HNB-P | 36 | −12,104 | 24,280 | 24,507 |
NBM2 | 33 | −12,139 | 24,343 | 24,554 |
CFMNB-2 * | 21 | −12,098 | 24,238 | 24,372 |
FMNB-2 * | 37 | −12,073 | 24,220 | 24,456 |
CFMNB-3 * | 24 | −12,098 | 24,244 | 24,397 |
CFMNB-2 ** | 21 | −12,149 | 24,340 | 24,474 |
FMNB-2 ** | 37 | −12,134 | 24,342 | 24,579 |
CFMNB-3 ** | 24 | −12,149 | 24,346 | 24,499 |
Variable | Description |
---|---|
VehPower | The power of the car. |
VehAge | The vehicle age in years |
DriveAge | The driver age in years. |
Log(density) | The log of the number of residents per square kilometer of the city where the car driver lives. |
BonusMalus | Zero indicate a bonus, while one indicates a malus. |
VehGas | The car’s fuel equals zero for regular fuel and one for diesel. |
Log(exposure) | The log of the period of exposure for a policy in years. |
Models | LL | AIC | BIC | CT (Seconds) |
---|---|---|---|---|
Poisson | −140,092 | 280,201 | 280,292 | 69 |
GP-1 | −139,593 | 279,205 | 279,308 | 236 |
GP-2 | −139,694 | 279,407 | 279,510 | 471 |
GP-P | −139,586 | 279,191 | 279,305 | 1562 |
NB-1 | −139,602 | 279,222 | 279,325 | 898 |
NB-2 | −139,700 | 279,419 | 279,521 | 401 |
NB-P | −139,596 | 279,212 | 279,327 | 1292 |
ZIP | −139,709 | 279,450 | 279,632 | 1850 |
ZIGP-1 | −139,573 | 279,180 | 279,374 | 1711 |
ZIGP-2 | −139,653 | 279,340 | 279,534 | 1331 |
ZIGP-P | −139,474 | 278,984 | 279,190 | 915 |
ZINB-1 | −139,490 | 279,014 | 279,209 | 741 |
ZINB-2 | −139,593 | 279,220 | 279,414 | 700 |
ZINB-P | −139,481 | 278,997 | 279,203 | 1339 |
HP | −139,665 | 279,361 | 279,521 | 125 |
HGP-1 | −139,565 | 279,163 | 279,331 | 132 |
HGP-2 | −139,572 | 279,177 | 279,345 | 157 |
HGP-P | −139,562 | 279,160 | 279,336 | 211 |
HNB-1 | −139,573 | 279,180 | 279,347 | 139 |
HNB-2 | −139,578 | 279,190 | 279,357 | 135 |
HNB-P | −139,571 | 279,178 | 279,354 | 269 |
Count Model Coefficients | ||||||||
---|---|---|---|---|---|---|---|---|
ZIGP-P | ZINB-P | HGP-P | HNB-P | |||||
Parameter | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| | Est. | |t.ratio| |
Logistic Proportion of models | ||||||||
Intercept | −0.14 | 0.39 | −0.14 | 0.43 | 2.77 | 78.12 | 2.77 | 78.12 |
VehPower | 0.10 | 2.51 | 0.10 | 2.67 | −0.01 | 1.25 | −0.01 | 1.25 |
VehAge | −0.06 | 7.61 | −0.06 | 7.97 | 0.01 | 27.85 | 0.01 | 27.85 |
DrivAge | 0.01 | 3.18 | 0.01 | 3.57 | −0.01 | 7.83 | −0.01 | 7.83 |
Log(density) | 0.06 | 1.97 | 0.06 | 1.95 | −0.03 | 10.56 | −0.03 | 10.56 |
BonusMalus | 5.93 | 2.54 | 5.93 | 2.38 | −1.04 | 47.42 | −1.04 | 47.42 |
VehGas | 5.38 | 3.92 | 5.37 | 3.93 | 0.10 | 8.28 | 0.10 | 8.28 |
Log(Exposure) | −0.54 | 6.21 | −0.54 | 6.69 | −0.38 | 60.67 | −0.38 | 60.67 |
Count Proportion of models | ||||||||
Intercept | −2.45 | 49.70 | −2.44 | 50.11 | −5.20 | 8.64 | −5.35 | 6.63 |
VehPower | −0.01 | 1.25 | 0.00 | 1.18 | 0.12 | 3.49 | 0.12 | 3.38 |
VehAge | −0.02 | 13.54 | −0.02 | 13.79 | −0.05 | 2.97 | −0.05 | 2.81 |
DrivAge | 0.00 | 3.96 | 0.00 | 3.70 | 0.01 | 1.00 | 0.01 | 1.04 |
Log(density) | 0.03 | 7.07 | 0.03 | 7.32 | 0.16 | 3.56 | 0.17 | 2.98 |
BonusMalus | 0.80 | 24.45 | 0.80 | 26.29 | 1.68 | 7.66 | 1.74 | 6.01 |
VehGas | −0.32 | 8.37 | −0.32 | 9.74 | 0.31 | 2.05 | 0.31 | 1.96 |
Log(Exposure) | 0.41 | 50.46 | 0.41 | 51.96 | 0.54 | 4.05 | 0.55 | 3.45 |
a | 0.01 | 2.36 | 0.02 | 3.09 | 0.02 | 3.80 | 0.05 | 2.09 |
P | 0.72 | 5.08 | 0.71 | 6.52 | 0.83 | 13.03 | 0.84 | 7.48 |
Models | Exposure as an Offset in the Count Part | Exposure as a Covariate |
---|---|---|
Poisson | 288,718 | 280,201 |
GP-P | 287,192 | 279,191 |
NB-P | 287,212 | 279,212 |
ZIP | 287,774 | 279,450 |
ZIGP-P | 287,102 | 278,984 |
ZINB-P | 287,120 | 278,997 |
HP | 284,806 | 279,361 |
HGP-P | 283,571 | 279,160 |
HNB-P | 283,588 | 279,178 |
Models Compared | LRT Value | p-Value |
---|---|---|
GP-1 vs. Poisson | 997.8 | < |
GP-2 vs. Poisson | 795.8 | < |
GP-P vs. GP-1 | 15.6 | 0.0001 |
GP-P vs. GP-2 | 217.6 | < |
NB-1 vs. Poisson | 980.6 | < |
NB-2 vs. Poisson | 784.2 | < |
NB-P vs. NB-1 | 11.6 | 0.0007 |
NB-P vs. NB-2 | 208 | < |
ZIGP-1 vs. ZIP | 272.4 | < |
ZIGP-2 vs. ZIP | 111.6 | < |
ZIGP-P vs. ZIGP-1 | 196.8 | < |
ZIGP-P vs. ZIGP-2 | 357.6 | < |
ZINB-1 vs. ZIP | 437.4 | < |
ZINB-2 vs. ZIP | 231.4 | < |
ZINB-P vs. ZINB-1 | 19 | < |
ZINB-P vs. ZINB-2 | 225 | < |
HGP-1 vs. HP | 200.3 | < |
HGP-2 vs. HP | 186.4 | < |
HGP-P vs. HGP-1 | 5.1 | 0.024 |
HGP-P vs. HGP-2 | 19 | < |
HNB-1 vs. HP | 183.9 | < |
HNB-2 vs. HP | 173.9 | < |
HNB-P vs. HNB-1 | 2.8 | 0.093 |
HNB-P vs. HNB-2 | 12.8 | < |
Full Model | Lasso Regression | |||
---|---|---|---|---|
Variables | Est. | p-Value | Est. | p-Value |
Intercept | −1.04 | 0.00 | −1.24 | 0.00 |
healthpoor | −0.53 | 0.00 | −0.28 | 0.09 |
healthexcellent | 0.62 | 0.00 | 0.36 | 0.03 |
numchron | 0.09 | 0.10 | 0.02 | 0.76 |
adldiffyes | −0.20 | 0.17 | −0.08 | 0.56 |
regionnoreast | −0.04 | 0.80 | 0.00 | 1.00 |
regionother | 0.12 | 0.35 | 0.07 | 0.53 |
regionwest | −0.30 | 0.06 | −0.13 | 0.33 |
age | 0.01 | 0.78 | 0.00 | 1.00 |
blackyes | 0.57 | 0.00 | 0.40 | 0.00 |
gendermale | 0.52 | 0.00 | 0.39 | 0.00 |
marriedyes | −0.24 | 0.03 | −0.08 | 0.46 |
school | 0.14 | 0.01 | 0.10 | 0.05 |
faminc | 0.02 | 0.71 | 0.00 | 1.00 |
employedyes | 0.04 | 0.80 | 0.00 | 1.00 |
privinsyes | −1.02 | 0.00 | −0.82 | 0.00 |
medicaidyes | −0.57 | 0.00 | −0.22 | 0.23 |
In-sample LL | −1436.9 | −1446.7 | ||
Out-of-sample LL | −373.0 | −370.2 | ||
In-sample deviance | 2873.8 | 2893.4 | ||
Out-of-sample deviance | 746.0 | 740.4 |
TGP-P | TNB-P | |||||||
---|---|---|---|---|---|---|---|---|
Full Model | Lasso Reg. | Full Model | Lasso Reg. | |||||
Variables | Est. | p-Val | Est. | p-Val | Est. | p-Val | Est. | p-Val |
Intercept | 1.27 | 0.00 | 1.39 | 0.00 | 1.19 | 0.00 | 1.30 | 0.00 |
healthpoor | 0.31 | 0.00 | 0.26 | 0.00 | 0.32 | 0.00 | 0.30 | 0.00 |
healthexcellent | −0.42 | 0.00 | −0.28 | 0.00 | −0.40 | 0.00 | −0.31 | 0.00 |
numchron | 0.15 | 0.00 | 0.15 | 0.00 | 0.14 | 0.00 | 0.14 | 0.00 |
adldiffyes | 0.10 | 0.04 | 0.07 | 0.14 | 0.12 | 0.02 | 0.11 | 0.04 |
regionnoreast | 0.13 | 0.02 | 0.06 | 0.23 | 0.11 | 0.06 | 0.04 | 0.46 |
regionother | 0.04 | 0.45 | 0.00 | 1.00 | 0.06 | 0.23 | 0.00 | 1.00 |
regionwest | 0.12 | 0.03 | 0.05 | 0.32 | 0.14 | 0.02 | 0.07 | 0.20 |
age | −0.04 | 0.04 | −0.03 | 0.14 | −0.04 | 0.05 | −0.04 | 0.09 |
blackyes | −0.03 | 0.50 | 0.00 | 1.00 | 0.01 | 0.92 | 0.00 | 1.00 |
gendermale | −0.03 | 0.53 | −0.01 | 0.72 | −0.05 | 0.27 | −0.04 | 0.34 |
marriedyes | −0.08 | 0.08 | −0.05 | 0.27 | −0.05 | 0.26 | −0.04 | 0.41 |
school | 0.07 | 0.00 | 0.06 | 0.00 | 0.09 | 0.00 | 0.08 | 0.00 |
faminc | −0.01 | 0.76 | 0.00 | 1.00 | −0.02 | 0.34 | −0.02 | 0.43 |
employedyes | 0.10 | 0.12 | 0.00 | 1.00 | 0.07 | 0.32 | 0.00 | 1.00 |
privinsyes | 0.24 | 0.00 | 0.15 | 0.01 | 0.29 | 0.00 | 0.22 | 0.00 |
medicaidyes | 0.27 | 0.00 | 0.16 | 0.04 | 0.30 | 0.00 | 0.24 | 0.00 |
a | 0.57 | 0.00 | 0.67 | 0.00 | 1.85 | 0.00 | 2.00 | 0.00 |
P | 1.48 | 0.00 | 1.40 | 0.00 | 1.49 | 0.00 | 1.45 | 0.00 |
In-sample LL | −8290.6 | −8297.7 | −8311.3 | −8314.3 | ||||
Out-of-sample LL | −2108.3 | −2105.1 | −2106.7 | −2088.2 | ||||
In-sample deviance | 2825.5 | 2852.8 | 2734.2 | 2748.4 | ||||
Out-of-sample deviance | 762.3 | 759.0 | 755.9 | 720.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faroughi, P.; Li, S.; Ren, J. The Applications of Generalized Poisson Regression Models to Insurance Claim Data. Risks 2023, 11, 213. https://doi.org/10.3390/risks11120213
Faroughi P, Li S, Ren J. The Applications of Generalized Poisson Regression Models to Insurance Claim Data. Risks. 2023; 11(12):213. https://doi.org/10.3390/risks11120213
Chicago/Turabian StyleFaroughi, Pouya, Shu Li, and Jiandong Ren. 2023. "The Applications of Generalized Poisson Regression Models to Insurance Claim Data" Risks 11, no. 12: 213. https://doi.org/10.3390/risks11120213
APA StyleFaroughi, P., Li, S., & Ren, J. (2023). The Applications of Generalized Poisson Regression Models to Insurance Claim Data. Risks, 11(12), 213. https://doi.org/10.3390/risks11120213