Posterior Fossa Tumor Rehabilitation: An Up-to-Date Overview
Abstract
:1. Introduction
2. Pediatric Brain Tumor
3. Methods
4. Posterior Fossa Tumor Rehabilitation
5. Executive Functions
6. Visuo Spatial Skills
7. Language
8. Ataxia and Motor Problems
9. Behavioral and Emotional Disturbances
10. Discussion
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Brandão, L.A.; Young Poussaint, T. Posterior Fossa Tumors. Neuroimaging Clin. N. Am. 2017, 27, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Pruitt, D.W.; Ayyangar, R.; Craig, K.; White, A.; Neufeld, J.A. Pediatric brain tumor rehabilitation. J. Pediatr. Rehabil. Med. 2011, 4, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.F.; DeLisa, J.A.; Warren, C.G.; Bryant, P.L.; Nicholson, C.G. Cancer rehabilitation assessment of need development and education of a model of care. Arch. Phys. Med. Rehabil. 1978, 59, 410–419. [Google Scholar] [PubMed]
- Fountain, D.; Burke, G.A.A. Multidisciplinary rehabilitation for children with brain tumors: A systematic review. Dev. Neurorehabilit. 2015, 20, 68–75. [Google Scholar] [CrossRef]
- Mukand, J.A.; Blackinton, D.D.; Crincoli, M.G.; Lee, J.J.; Santos, B.B. Incidence of Neurologic Deficits and Rehabilitation of Patients with Brain Tumors. Am. J. Phys. Med. Rehabil. 2001, 80, 346–350. [Google Scholar] [CrossRef]
- Limond, J.; Leeke, R. Practitioner Review: Cognitive rehabilitation for children with acquired brain injury. J. Child Psychol. Psychiatry 2005, 46, 339–352. [Google Scholar] [CrossRef]
- Slomine, B.; Locascio, G. Cognitive rehabilitation for children with acquired brain injury. Dev. Disabil. Res. Rev. 2009, 15, 133–143. [Google Scholar] [CrossRef]
- Tal, G.; Tirosh, E. Rehabilitation of Children with Traumatic Brain Injury: A Critical Review. Pediatr. Neurol. 2013, 48, 424–431. [Google Scholar] [CrossRef]
- Gordon, A.L.; di Maggio, A. Rehabilitation for children after acquired brain injury: Current and emerging approaches. Pediatric Neurol. 2012, 46, 339–344. [Google Scholar] [CrossRef]
- Vargo, M. Brain Tumor Rehabilitation. Am. J. Phys. Med. Rehabil. 2011, 90, S50–S62. [Google Scholar] [CrossRef]
- Ries, L.A.G.; Smith, M.A.; Gurney, J.G.; Linet, M.; Tamra, T.; Young, J.L.; Bunin, G.R. (Eds.) Cancer Incidence and Survival among Children and Adolescents: United States SEER Program 1975–1995; National Cancer Institute, SEER Program; No. 99-4649; NIH Pub.: Bethesda, MD, USA, 1999.
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Murray, T.; Thun, M.J. Cancer statistics, 2008. CA Cancer J. Clin. 2008, 58, 71–96. [Google Scholar] [CrossRef]
- Pui, C.-H.; Campana, D.; Pei, D.; Bowman, W.P.; Sandlund, J.T.; Kaste, S.C.; Ribeiro, R.C.; Rubnitz, J.E.; Raimondi, S.C.; Onciu, M.; et al. Treating Childhood Acute Lymphoblastic Leukemia without Cranial Irradiation. N. Engl. J. Med. 2009, 360, 2730–2741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehring, K.; Sitskoorn, M.M.; Aaronson, N.K.; Taphoorn, M.J. Interventions for cognitive deficits in adults with brain tumours. Lancet Neurol. 2008, 7, 548–560. [Google Scholar] [CrossRef]
- Wolfe, K.R.; Madan-Swain, A.; Kana, R.K. Executive Dysfunction in Pediatric Posterior Fossa Tumor Survivors: A Systematic Literature Review of Neurocognitive Deficits and Interventions. Dev. Neuropsychol. 2012, 37, 153–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conklin, H.M.; Ogg, R.J.; Ashford, J.M.; Scoggins, M.A.; Zou, P.; Clark, K.N.; Martin-Elbahesh, K.; Hardy, K.K.; Merchant, T.E.; Jeha, S.; et al. Computerized Cognitive Training for Amelioration of Cognitive Late Effects Among Childhood Cancer Survivors: A Randomized Controlled Trial. J. Clin. Oncol. 2015, 33, 3894–3902. [Google Scholar] [CrossRef] [Green Version]
- Gazzaniga, M.S.; Ivry, R.B.; Mangun, G.R. Cognitive Neuroscience: The Biology of the Mind; W. W. Norton: New York, NY, USA, 1998. [Google Scholar]
- Middleton, F.; Strick, P.L. Cerebellar Projections to the Prefrontal Cortex of the Primate. J. Neurosci. 2001, 21, 700–712. [Google Scholar] [CrossRef]
- Middleton, F.A.; Strick, P.L. Anatomical Evidence for Cerebellar and Basal Ganglia Involvement in Higher Cognitive Function. Science 1994, 266, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Hylin, M.J.; Holden, R.C.; Smith, A.C.; Logsdon, A.F.; Qaiser, R.; Lucke-Wold, B.P. Juvenile Traumatic Brain Injury Results in Cognitive Deficits Associated with Impaired Endoplasmic Reticulum Stress and Early Tauopathy. Dev. Neurosci. 2018, 40, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Aarsen, F.K.; Van Dongen, H.R.; Paquier, P.F.; Van Mourik, M. CatsmanBerrevoets CE Long-term sequelae in children after cerebellar astrocytoma surgery. Neurology 2004, 62, 1311–1316. [Google Scholar] [CrossRef]
- Butler, R.W.; Copeland, D.R.; Fairclough, D.L.; Mulhern, R.K.; Katz, E.R.; Kazak, A.E.; Noll, R.B.; Patel, S.K.; Sahler, O.J.Z. A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. J. Consult. Clin. Psychol. 2008, 76, 367–378. [Google Scholar] [CrossRef]
- Patel, S.K.; Katz, E.R.; Richardson, R.; Rimmer, M.; Kilian, S. Cognitive and Problem Solving Training in Children with Cancer: A Pilot Project. J. Pediatr. Hematol. 2009, 31, 670–677. [Google Scholar] [CrossRef]
- Hardy, K.K.; Willard, V.W.; Allen, T.M.; Bonner, M.J. Working memory training in survivors of pediatric cancer: A randomized pilot study. Psychooncology 2013, 22, 1856–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, L.E.; Ashford, J.M.; Clark, K.N.; Martin-Elbahesh, K.; Hardy, K.K.; Merchant, T.E.; Ogg, R.J.; Jeha, S.; Willard, V.W.; Huang, L.; et al. Feasibility and acceptability of a remotely administered computerized intervention to address cognitive late effects among childhood cancer survivors. Neurooncol. Pract. 2015, 2, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Zou, P.; Li, Y.; Conklin, H.M.; Mulhern, R.K.; Butler, R.W.; Ogg, R.J. Evidence of change in brain activity among childhood cancer survivors participating in a cognitive remediation program. Arch. Clin. Neuropsychol. 2012, 27, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Hardy, K.K.; Willard, V.W.; Bonner, M.J. Computerized cognitive training in survivors of childhood cancer: A pilot study. J. Pediatr. Oncol. Nurs. 2011, 28, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Van der Linden, S.D.; Sitskoorn, M.M.; Rutten, G.M.; Gehring, K. Feasibility of the evidence-based cognitive telerehabilitation program Remind for patients with primary brain tumors. J. Neurooncol. 2018, 137, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Chun, M.H.; Son, Y.R. Effect of Virtual Reality on Cognitive Dysfunction in Patients with Brain Tumor. Ann. Rehabil. Med. 2014, 38, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Levisohn, L.; Cronin-Golomb, A.; Schmahmann, J.D. Neuropsychological consequences of cerebellar tumour resection in children: Cerebellar cognitive affective syndrome in a paediatric population. Brain 2000, 123 Pt 5, 1041–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starowicz-Filip, A.; Chrobak, A.; Milczarek, O.; Kwiatkowski, S. The visuospatial functions in children after cerebellar low-grade astrocytoma surgery: A contribution to the pediatric neuropsychology of the cerebellum. J. Neuropsychol. 2015, 11, 201–221. [Google Scholar] [CrossRef] [PubMed]
- Botez, M.I.; Botez, T.; Elie, R.; Attig, E. Role of the cerebellum in complex human behavior. Neurol. Sci. 1989, 10, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Molinari, M.; Petrosini, L.; Misciagna, S.; Leggio, M.G. Visuospatial abilities in cerebellar disorders. J. Neurol. Neurosurg. Psychiatry 2004, 75, 235–240. [Google Scholar] [PubMed]
- Tedesco, A.M.; Chiricozzi, F.R.; Clausi, S.; Lupo, M.; Molinari, M.; Leggio, M. The cerebellar cognitive profile. Brain 2011, 134, 3672–3686. [Google Scholar] [CrossRef] [PubMed]
- Corti, C.; Urgesi, C.; Poggi, G.; Strazzer, S.; Borgatti, R.; Bardoni, A. Home-based cognitive training in pediatric patients with acquired brain injury: Preliminary results on efficacy of a randomized clinical trial. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudrunardottir, T.; Iceland Delphi Group; Morgan, A.T.; Lux, A.L.; Walker, D.A.; Walsh, K.S.; Wells, E.M.; Wisoff, J.H.; Juhler, M.; Schmahmann, J.D.; et al. Consensus paper on post-operative pediatric cerebellar mutism syndrome: The Iceland Delphi results. Child’s Nerv. Syst. 2016, 32, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Küper, M.; Timmann, D. Cerebellar mutism. Brain Lang. 2013, 127, 327–333. [Google Scholar] [CrossRef]
- Catsman-Berrevoets, C.E.; Aarsen, F.K. The spectrum of neurobehavioral deficits in the posterior fossa syn-drome in children after cerebellar tumor surgery. Cortex 2010, 46, 933–946. [Google Scholar] [CrossRef] [PubMed]
- Catsman-Berrevoets, C.E.; Patay, Z. Cerebellar mutism syndrome. In Handbook of Clinical Neurology Vol 155 (3rd. Series) The Cerebellum: Disorders and Treatment; Manto, M., Huisman, T.A.G.M., Eds.; Elsevier B.V.: Amsterdam, The Netherlands, 2018; pp. 273–288. [Google Scholar]
- Bleyer, A.; O’Leary, M.; Barr, R.; Ries, L.A.G. (Eds) Cancer Epidemiology in Older Adolescents and Young Adults 15 to 29 Years of Age, Including SEER Incidence and Survival: 1975–2000; National Cancer Institute; No. 06-5767; NIH Pub.: Bethesda, MD, USA, 2006.
- Paquier, P.F.; Walsh, K.S.; Docking, K.M.; Hartley, H.; Kumar, R.; Catsman-Berrevoets, C.E. Post-operative cerebellar mutism syndrome: Rehabilitation issues. Childs Nerv. Syst. 2020, 36, 1215–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, P.L.; Muraszko, K.M.; Holmes, E.J.; Sposto, R.; Packer, R.J.; Gajjar, A.; Dias, M.S.; Allen, J.C. Incidence and seve-rity of postoperative cerebellar mutism syndrome in children with medulloblastoma: A prospective study by the Children’s Oncology Group. J. Neurosurg. 2006, 105, 444–451. [Google Scholar]
- Walsh, K.; Paltin, I. Neuropsychological effects of pediatric brain tumors and associated treatment. In Handbook of Long Term Care of the Childhood Cancer Survivor; Mucci, G., Torno, L., Eds.; Springer: New York, NY, USA, 2015; pp. 249–262. [Google Scholar]
- Huber, J.F.; Bradley, K.; Spiegler, B.J.; Dennis, M. Long-term effects of transient cerebellar mutism after cerebellar astrocytoma or medulloblastoma tumor resection in childhood. Child’s Nerv. Syst. 2005, 22, 132–138. [Google Scholar] [CrossRef]
- Van Dongen, H.R.; Catsman-Berrevoets, C.E.; Van Mourik, M. The syndrome of ‘cerebellar’ mutism and sub-sequent dysarthria. Neurology 1994, 44, 2040–2046. [Google Scholar] [CrossRef]
- Di Rocco, C.; Chieffo, D.; Frassanito, P.; Caldarelli, M.; Massimi, L.; Tamburrini, G. Heralding cerebellar mu-tism: Evidence for pre-surgical language impairment as primary risk factor in posterior fossa surgery. Cerebellum 2011, 10, 551–562. [Google Scholar] [CrossRef] [PubMed]
- De Smet, H.J.; Baillieux, H.; Catsman-Berrevoets, C.; De Deyn, P.P.; Mariën, P.; Paquier, P.F. Postoperative motor speech production in children with the syndrome of ‘cerebellar’ mutism and subsequent dysarthria: A critical review of the literature. Eur. J. Paediatr. Neurol. 2007, 11, 193–207. [Google Scholar] [CrossRef]
- Piscione, P.J.; Bouffet, E.; Mabbott, D.J.; Shams, I.; Kulkarni, A.V. Physical functioning in pediatric survivors of childhood posterior fossa brain tumors. Neuro-Oncology 2013, 16, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Wilne, S.; Collier, J.; Kennedy, C.; Koller, K.; Grundy, R.; Walker, D. Presentation of childhood CNS tumours: A systematic review and meta-analysis. Lancet Oncol. 2007, 8, 685–695. [Google Scholar] [CrossRef]
- Küper, M.; Döring, K.; Spangenberg, C.; Konczak, J.; Gizewski, E.R.; Schoch, B.; Timmann, D. Location and restoration of function after cerebellar tumor removal—A longitudinal study of children and adolescents. Cerebellum 2013, 12, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Sabel, M.; Sjölund, A.; Broeren, J.; Arvidsson, D.; Saury, J.M.; Blomgren, K.; Lannering, B.; Emanuelson, I. Active vi-deo gaming improves coordination in survivors of childhood brain tumours. Disabil. Rehabil. 2016, 38, 2073–2084. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, A.H.; Birgani, P.M.; Azizi, S.; Shahrokhi, A.; Mirbagheri, M.M. Therapeutic effects of an anti-gravity lo-comotor training (Alter G) on postural balance and cerebellar structure in children with cerebral palsy. In Proceedings of the 2017 International Conference on Rehabilitation Robotics, London, UK, 17–20 July 2017; pp. 101–105. [Google Scholar]
- Manuli, A.; Maggio, M.G.; Latella, D.; Cannavò, A.; Balletta, T.; De Luca, R.; Naro, A.; Calabrò, R.S. Can robotic gait rehabi-litation plus Virtual Reality affect cognitive and behavioural outcomes in patients with chronic stroke? A rando-mized controlled trial involving three different protocols. J. Stroke Cerebrovasc. Dis. 2020, 29, 104994. [Google Scholar] [CrossRef]
- Barbarulo, A.M.; Lus, G.; Signoriello, E.; Trojano, L.; Grossi, D.; Esposito, M.; Costabile, T.; Lanzillo, R.; Saccà, F.; Morra, V.B.; et al. Integrated Cognitive and Neuromotor Rehabilitation in Multiple Sclerosis: A Pragmatic Study. Front. Behav. Neurosci. 2018, 12, 196. [Google Scholar] [CrossRef]
- Sacks, P.; Lucke-Wold, B.; Rivera-Zengotita, M.; Blatt, J. Suboccipital Craniotomy and C1 Laminectomy for Atypical Choroid Plexus Papilloma. J. Clin. Neurol. Neurosci. 2021, 2, JCNN-21-12. [Google Scholar]
- Lanier, J.C.; Abrams, A.N. Posterior fossa syndrome: Review of the behavioral and emotional aspects in pediatric cancer patients. Cancer 2016, 123, 551–559. [Google Scholar] [CrossRef]
- Wells, E.M.; Khademian, Z.P.; Walsh, K.S.; Vezina, G.; Sposto, R.; Keating, R.F.; Packer, R.J. Postoperative cerebellar mutism syndrome following treatment of medulloblastoma: Neuroradiographic features and origin. J. Neurosurg. Pediatr. 2010, 5, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Varela, M.; Liakopoulou, M.; Alexiou, G.A.; Pitsouni, D.; Alevizopoulos, G.A. Presurgical neuropsychological and beha-vioral evaluation of children with posterior fossa tumors. J. Neurosurg. Pediatr. 2011, 8, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Lassaletta, A.; Bouffet, E.; Mabbott, N.; Kulkarni, A.V. Functional and neuropsychological late outcomes in posterior fossa tumors in children. Child’s Nerv. Syst. 2015, 31, 1877–1890. [Google Scholar] [CrossRef] [PubMed]
- Reimers, T.S.; Mortensen, E.L.; Schmiegelow, K. Memory deficits in long-term survivors of childhood brain tumors may primarily reflect general cognitive dysfunctions. Pediatr. Blood Cancer 2007, 48, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Keng, A.; Stewart, D.E.; Sheehan, K.A. Neuropsychiatric symptoms following brain tumor resection in children and adolescents: A scoping review. J. Acad. Consult Liaison Psychiatry 2021, 63, 110–118. [Google Scholar] [CrossRef]
- Mulhern, R.K.; Palmer, S.L.; Merchant, T.E.; Wallace, D.; Kocak, M.; Brouwers, P.; Krull, I.K.; Chintagumpala, M.; Stargatt, R.; Ashley, D.M.; et al. Neurocognitive consequences of risk-adapted therapy for chil-dhood medulloblastoma. J. Clin. Oncol. 2005, 20, 5511–5519. [Google Scholar] [CrossRef]
- Due-Tonnessen, B.; Helseth, E. Management of hydrocephalus in children with posterior fossa tumors: Role of tumor surgery. Pediatr. Neurosurg. 2007, 43, 92–96. [Google Scholar]
- Hocking, M.C.; McCurdy, M.; Turner, E.; Kazak, A.E.; Noll, R.B.; Phillips, P.; Barakat, L.P. Social competence in pediatric brain tumor survivors: Application of a model from social neuroscience and developmental psychology. Pediatr. Blood Cancer 2014, 62, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Chieffo, D.P.R.; Arcangeli, V.; Moriconi, F.; Zanetti, C.; Frassanito, P.; Bianchi, F.; Massimi, L.; Tamburrini, G. Correlation between Pre- and Post-Surgical Findings for Long-Term Neurocognitive and Behaviour Development Due to Posterior Fossa Pilocytic Astrocytomas: The Trend after 10 Years. Diagnostics 2021, 11, 1489. [Google Scholar] [CrossRef]
- Morone, G.; Spitoni, G.F.; De Bartolo, D.; Ghanbari Ghooshchy, S.; Di Iulio, F.; Paolucci, S.; Zoccolotti, P.; Iosa, M. Rehabi-litative devices for a top-down approach. Expert Rev. Med. Devices 2019, 16, 187–195. [Google Scholar] [CrossRef]
- Deutsch, J.E.; McCoy, S.W. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation. Pediatr. Phys. Ther. 2017, 29, S23–S36. [Google Scholar] [CrossRef] [PubMed]
- Lino, F.; Arcangeli, V.; Chieffo, D. The Virtual Challenge: Virtual Reality Tools for Intervention in Children with Developmental Coordination Disorder. Children 2021, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Crepaldi, M.; Colombo, V.; Mottura, S.; Baldassini, D.; Sacco, M.; Cancer, A.; Antonietti, A. Antonyms: A Computer Game to Improve Inhibitory Control of Impulsivity in Children with Attention Deficit/Hyperactivity Disorder (ADHD). Information 2020, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.-T.; Daneault, J.-F.; Nanglo, T.; Lee, H.; Kim, B.; Kim, Y.; Lee, S.I. Effectiveness of a Serious Game for Cognitive Training in Chronic Stroke Survivors with Mild-to-Moderate Cognitive Impairment: A Pilot Randomized Controlled Trial. Appl. Sci. 2020, 10, 6703. [Google Scholar] [CrossRef]
- Clemenson, G.D.; Stark, C.E. Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory. J. Neurosci. 2015, 35, 16116–16125. [Google Scholar] [CrossRef] [Green Version]
- Corbetta, D.; Imeri, F.; Gatti, R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J. Physiother. 2015, 61, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Jack, D.; Boian, R.; Merians, A.; Tremaine, M.; Burdea, G.; Adamovich, S.; Recce, M.; Poizner, H. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 308–318. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chieffo, D.P.R.; Lino, F.; Arcangeli, V.; Moriconi, F.; Frassanito, P.; Massimi, L.; Tamburrini, G. Posterior Fossa Tumor Rehabilitation: An Up-to-Date Overview. Children 2022, 9, 904. https://doi.org/10.3390/children9060904
Chieffo DPR, Lino F, Arcangeli V, Moriconi F, Frassanito P, Massimi L, Tamburrini G. Posterior Fossa Tumor Rehabilitation: An Up-to-Date Overview. Children. 2022; 9(6):904. https://doi.org/10.3390/children9060904
Chicago/Turabian StyleChieffo, Daniela Pia Rosaria, Federica Lino, Valentina Arcangeli, Federica Moriconi, Paolo Frassanito, Luca Massimi, and Gianpiero Tamburrini. 2022. "Posterior Fossa Tumor Rehabilitation: An Up-to-Date Overview" Children 9, no. 6: 904. https://doi.org/10.3390/children9060904