Effects of Four Weeks of Plyometric Training Performed in Different Training Surfaces on Physical Performances in School Children: Age and Sex Comparisons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measurements
2.3.1. Anthropometric Measurements
2.3.2. Sprint Testing
2.3.3. Vertical Jumping
2.3.4. Change of Direction Speed Testing
2.4. Plyometric Training Programs
2.5. Statistical Analysis
3. Results
3.1. Sprint Testing
3.2. Vertical Jumping
3.3. Change of Direction Speed Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landry, B.W.; Driscoll, S.W. Physical activity in children and adolescents. PM R 2012, 4, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef] [PubMed]
- Potach, D.; Chu, D.A. Plyometric training. In Essential of Strength and Conditioning; Bachle, T., Erale, R., Eds.; Human Kinetic: Champaign, IL, USA, 2000; pp. 135–141. [Google Scholar]
- Sáez de Villarreal, E.; Requena, B.; Cronin, J.B. The Effects of plyometric training on sprint performance: A meta-analysis. J. Strength Cond. Res. 2012, 26, 575–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotzamanidis, C. Effect of plyometric training on running performance and vertical jumping in prepubertal boys. J. Strength Cond. Res. 2006, 20, 441–445. [Google Scholar] [PubMed]
- Behm, D.G.; Young, J.D.; Whitten, J.H.; Reid, J.C.; Quigley, P.J.; Low, J.; Li, Y.; de Lima, C.; Hodgson, D.D.; Chaouachi, A.; et al. Effectiveness of traditional strength versus power training on muscle strength, power and speed with youth: A systematic review and meta-analysis. Front. Physiol. 2017, 8, 423. [Google Scholar] [CrossRef] [Green Version]
- Almeida, M.B.; Leandro, C.G.; Queiroz, D.D.R.; José-da-Silva, M.; Pessôa Dos Prazeres, T.M.; Pereira, G.M.; das-Neves, G.S.; Carneiro, R.C.; Figueredo-Alves, A.D.; Nakamura, F.Y.; et al. Plyometric training increases gross motor coordination and associated components of physical fitness in children. Eur. J. Sport Sci. 2021, 21, 1263–1272. [Google Scholar] [CrossRef]
- Michailidis, Y.; Fatouros, I.G.; Primpa, E.; Michailidis, C.; Avloniti, A.; Chatzinikolaou, A.; Barbero-Álvarez, J.C.; Tsoukas, D.; Douroudos, I.I.; Draganidis, D.; et al. Plyometrics’ trainability in preadolescent soccer athletes. J. Strength Cond. Res. 2013, 27, 38–49. [Google Scholar] [CrossRef]
- Pereira, L.A.; Freitas, T.T.; Marín-Cascales, E.; Bishop, C.; McGuigan, M.R.; Loturco, I. Effects of training on sand or hard surfaces on sprint and jump performance of team-sport players: A systematic review with meta-analysis. Strength Cond. J. 2021, 43, 56–66. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Moran, J.; Chaabene, H.; Granacher, U.; Behm, D.G.; Garcia-Hermoso, A.; Izquierdo, M. Methodological characteristics and future directions for plyometric jump training research: A scoping review update. Scand. J. Med. Sci. Sports 2020, 30, 983–997. [Google Scholar] [CrossRef]
- Andrade, D.C.; Manzo, O.; Beltrán, A.R.; Álvarez, C.; Del Rio, R.; Toledo, C.; Moran, J.; Ramirez-Campillo, R. Kinematic and neuromuscular measures of intensity during plyometric jumps. J. Strength Cond. Res. 2020, 34, 3395–3402. [Google Scholar] [CrossRef]
- Rosas, F.; Ramirez-Campillo, R.; Diaz, D.; Abad-Colil, F.; Martinez-Salazar, C.; Caniuqueo, A.; Cañas-Jamet, R.; Loturco, I.; Nakamura, F.Y.; McKenzie, C.; et al. Jump training in youth soccer players: Effects of haltere type handheld loading. Int. J. Sports Med. 2016, 37, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Ozen, G.; Atar, O.; Koc, H. The effects of A 6-week plyometric training programme on sand versus wooden parquet surfaces on the physical performance parameters of well-trained young basketball players. Montenegrin J. Sports Sci. Med. 2020, 9, 27–32. [Google Scholar] [CrossRef]
- Hammami, M.; Bragazzi, N.L.; Hermassi, S.; Gaamouri, N.; Aouadi, R.; Shephard, R.J.; Chelly, M.S. The effect of a sand surface on physical performance responses of junior male handball players to plyometric training. BMC Sports Sci. Med. Rehabil. 2020, 12, 26. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Mohammadi, M.; Asadi, A. Muscular adaptations to depth jump plyometric training: Comparison of sand vs. land surface. Interv. Med. Appl. Sci. 2014, 6, 125–130. [Google Scholar] [CrossRef]
- Sharma, R.; Chaubey, D. Effect of sand training on jumping abilities of junior volleyball players. J. Educ. Pract. 2013, 4, 101–106. [Google Scholar]
- Impellizzeri, F.M.; Rampinini, E.; Castagna, C.; Martino, F.; Fiorini, S.; Wisloff, U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. Br. J. Sports Med. 2008, 42, 42–46. [Google Scholar] [CrossRef]
- Ramlan, M.H.; Pitil, P.P.; Wahed, W.J.E. Effects of plyometric training on grass surface and concrete surface on jumping performance among volleyball athletes. Malays. J. Mov. Health Exerc. 2018, 7, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.A.; Salzberg, C.L.; Stevenson, D.A. A systematic review: Plyometric training programs for young children. J. Strength Cond. Res. 2011, 25, 2623–2633. [Google Scholar]
- World Medical Association. Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Ortega, F.B.; Artero, E.G.; Ruiz, J.R.; Espana-Romero, V.; Jimenez-Pavon, D.; Vicente-Rodriguez, G.; Moreno, L.A.; Manios, Y.; Beghin, L.; Ottevaere, C.; et al. Physical fitness levels among European adolescents: The HELENA study. Br. J. Sports Med. 2011, 45, 20–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. The effects of 4-weeks of plyometric training on reactive strength index and leg stiffness in male youths. J. Strength Cond. Res. 2012, 26, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Oliver, J.; Meyers, R.W. The natural development and trainability of plyometric ability during childhood. J. Strength Cond. Res. 2011, 33, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Chaouachi, M.; Granacher, U.; Makhlouf, I.; Hammami, R.; Behm, D.G.; Chaouachi, A. Within session sequence of balance and plyometric exercises does not affect training adaptations with youth soccer athletes. J. Sports Sci. Med. 2017, 16, 125–136. [Google Scholar]
- McKay, D.; Henschke, N. Plyometric training programmes improve motor performance in prepubertal children. Br. J. Sports Med. 2012, 46, 727–728. [Google Scholar] [CrossRef]
- Konczak, J.; Jansen-Osmann, P.; Kalveram, K.-T. Development of force adaptation during childhood. J. Mot. Behav. 2003, 35, 41–52. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Grosset, J.-F.; Piscione, J.; Lambertz, D.; Pérot, C. Paired changes in electromechanical delay and musculo-tendinous stiffness after endurance or plyometric training. Eur. J. Appl. Physiol. 2009, 105, 131–139. [Google Scholar] [CrossRef]
- Nobre, G.G.; de Almeida, M.B.; Nobre, I.G.; dos Santos, F.K.; Brinco, R.A.; Arruda-Lima, T.R.; de-Vasconcelos, K.L.; de-Lima, J.G.; Borba-Neto, M.E.; Damasceno-Rodrigues, E.M.; et al. Twelve weeks of plyometric training improves motor performance of 7-to 9-year-old boys who were overweight/obese: A randomized controlled intervention. J. Strength Cond. Res. 2017, 31, 2091–2099. [Google Scholar] [CrossRef]
- Bergeron, M.F.; Mountjoy, M.; Armstrong, N.; Chia, M.; Cote, J.; Emery, C.A.; Faigenbaum, A.; Hall, G., Jr.; Kriemler, S.; Leglise, M.; et al. International Olympic Committee consensus statement on youth athletic development. Br. J. Sports Med. 2015, 49, 843–851. [Google Scholar] [CrossRef] [Green Version]
- Nicol, C.; Avela, J.; Komi, P.V. The stretch-shortening cycle: A model to study naturally occurring neuromuscular fatigue. Sports Med. 2006, 36, 977–999. [Google Scholar] [CrossRef] [PubMed]
- Miyama, M.; Nosaka, K. Influence of surface on muscle damage and soreness induced by consecutive drop jumps. J. Strength Cond. Res. 2004, 18, 206–211. [Google Scholar] [PubMed]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Binnie, M.J.; Dawson, B.; Arnot, M.A.; Pinnington, H.; Landers, G.; Peeling, P. Effect of sand versus grass training surfaces during an 8-week pre-season conditioning programme in team sport athletes. J. Sports Sci. 2014, 32, 1001–1012. [Google Scholar] [CrossRef]
- Mirzaei, B.; Norasteh, A.A.; Asadi, A. Neuromuscular adaptations to plyometric training: Depth jump vs. countermovement jump on sand. Sport Sci. Health 2013, 9, 145–149. [Google Scholar] [CrossRef]
- Lloyd, R.S.; Oliver, J.L.; Faigenbaum, A.D.; Myer, G.D.; Croix, M.B.D.S. Chronological age vs. biological maturation: Implications for exercise programming in youth. J. Strength Cond. Res. 2014, 28, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Woodhouse, L.; Casaburi, R.; Singh, A.B.; Bhasin, D.; Berman, N.; Chen, X.; Yarasheski, K.E.; Magliano, L.; Dzekov, C.; et al. Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 2001, 281, 1172–1181. [Google Scholar] [CrossRef] [Green Version]
- Asadi, A.; Arazi, H.; Ramirez-Campillo, R.; Moran, J.; Izquierdo, M. Influence of maturation stage on agility performance gains after plyometric training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 2609–2617. [Google Scholar] [CrossRef]
- Peitz, M.; Behringer, M.; Granacher, U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth- What do comparative studies tell us? PLoS ONE 2018, 13, 0205525. [Google Scholar] [CrossRef] [Green Version]
- Meylan, C.M.; Cronin, J.B.; Oliver, J.L.; Hopkins, W.G.; Contreras, B. The effect of maturation on adaptations to strength training and detraining in 11-15-year-olds. Scand. J. Med. Sci. Sports. 2014, 24, 156–164. [Google Scholar] [CrossRef]
- Degache, F.; Richard, R.; Edouard, P.; Oullion, R.; Calmels, P. The relationship between muscle strength and physiological age: A crosssectional study in boys aged from 11 to 15. Ann. Phys. Rehabil. Med. 2010, 53, 180–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenney, W.L.; Wilmore, J.; Costill, D. Physiology of Sport and Exercise, 7th ed.; Human Kinetics: Champaign, IL, USA, 2019. [Google Scholar]
- Marta, C.C.; Marinho, D.A.; Izquierdo, M.; Marques, M.C. Differentiating maturational influence on training-induced strength and endurance adaptations in prepubescent children. Am. J. Hum. Biol. 2014, 26, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Skurvydas, A.; Brazaitis, M. Plyometric training does not affect central and peripheral muscle fatigue differently in prepubertal girls and boys. Pediatr. Exerc. Sci. 2010, 22, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Vom Heede, A.; KleinoÈder, H.; Mester, J. Kindgemäßes Krafttraining im Schulsport—Untersuchungsergebnisse. Haltung Bewegung. 2007, 27, 11–19. [Google Scholar]
- Veligekas, P.; Tsoukos, A.; Bogdanis, G.C. Determinants of standing long jump performance in 9–12 year old children. Serb. J. Sport Sci. 2012, 6, 147–155. [Google Scholar]
- Dumith, S.C.; Ramires, V.V.; Souza, M.A.; Moraes, D.S.; Petry, F.G.; Oliveira, E.S.; Ramires, S.V.; Hallal, P.C. Overweight/obesity and physical fitness among children and adolescents. J. Phys. Act. Health 2010, 7, 641–648. [Google Scholar] [CrossRef]
- D’Hont, E.; Deforche, B.; Bourdeaudhuij, I.; Lenoir, M. Relationship between motor skill and body mass index in 5-to 10-year-old children. Adapt. Phys. Activ. Q. 2009, 26, 21–37. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Kraemer, W.J.; Blimkie, C.J.; Jeffreys, I.; Micheli, L.J.; Nitka, M.; Rowland, T.W. Youth resistance training: Updated position statement paper from the National Strength and Conditioning Association. J. Strength Cond. Res. 2009, 23, 60–79. [Google Scholar] [CrossRef]
Age Group | Sex | Condition (n) | Age (Years) | Height (cm) | Weight (kg) | BMI (kg·m−2) |
---|---|---|---|---|---|---|
U8 | Boys | FG (10) | 7.2 ± 0.4 | 125.1 ± 0.0 | 22.5 ± 1.5 | 14.4 ± 0.5 |
SG (10) | 7.0 ± 0.5 | 123.9 ± 0.1 | 21.9 ± 3.8 | 14.2 ± 1.6 | ||
CG (10) | 7.1 ± 0.5 | 124.6 ± 0.0 | 21.7 ± 2.9 | 13.9 ± 1.5 | ||
Girls | FG (10) | 7.1 ± 0.6 | 125.0 ± 0.0 | 22.8 ± 2.1 | 14.8 ± 1.1 | |
SG (10) | 7.1 ± 0.5 | 124.8 ± 0.0 | 22.9 ± 4.3 | 14.6 ± 1.8 | ||
CG (10) | 7.2 ± 0.5 | 124.0 ± 0.0 | 22.0 ± 2.6 | 14.3 ± 1.4 | ||
U10 | Boys | FG (10) | 9.1 ± 0.4 | 135.6 ± 0.1 | 30.1 ± 4.4 | 16.3 ± 1.3 |
SG (10) | 8.9 ± 0.6 | 134.0 ± 0.0 | 28.9 ± 3.9 | 16.1 ± 2.1 | ||
CG (10) | 8.9 ± 0.5 | 134.8 ± 0.0 | 30.2 ± 3.8 | 16.6 ± 1.7 | ||
Girls | FG (10) | 9.0 ± 0.4 | 133.6 ± 0.1 | 30.7 ± 7.3 | 17.0 ± 3.0 | |
SG (10) | 9.0 ± 0.6 | 135.3 ± 0.1 | 31.2 ± 6.8 | 16.9 ± 2.3 | ||
CG (10) | 9.1 ± 0.5 | 135.5 ± 0.1 | 31.5 ± 5.9 | 17.2 ± 3.6 | ||
U12 | Boys | FG (10) | 11.1 ± 0.5 | 150.6 ± 0.1 | 42.0 ± 10.3 | 18.4 ± 3.6 |
SG (10) | 11.0 ± 0.5 | 150.3 ± 0.1 | 41.9 ± 4.4 | 18.5 ± 0.9 | ||
CG (10) | 11.0 ± 0.6 | 148.6 ± 0.1 | 41.1 ± 8.3 | 18.4 ± 1.9 | ||
Girls | FG (10) | 11.1 ± 0.6 | 153.0 ± 0.1 | 45.5 ± 7.9 | 19.5 ± 3.4 | |
SG (10) | 11.0 ± 0.4 | 150.6 ± 0.1 | 43.5 ± 4.8 | 19.1 ± 1.1 | ||
CG (10) | 11.1 ± 0.6 | 151.5 ± 0.1 | 46.1 ± 11.6 | 19.8 ± 2.9 |
Week 1 | Week 2 | Week 3 | Week 4 | |||||
---|---|---|---|---|---|---|---|---|
Type of Jumps | Session 1 | Session 2 | Session 1 | Session 2 | Session 1 | Session 2 | Session 1 | Session 2 |
Pogo jump | 2 × 6 | 2 × 6 | 2 × 8 | 2 × 10 | 2 × 10 | 4 × 8 | 4 × 8 | 4 × 10 |
Lateral jump | 2 × 6 | 4 × 6 | 2 × 8 | |||||
Hopscotch | 3 × 4 | |||||||
Bilateral power hops | 4 × 4 | 4 × 4 | 4 × 4 | |||||
Ankle hops | 2 × 6 | 3 × 5 | 3 × 5 | 3 × 5 | ||||
Power skipping | 2 × 6 | 2 × 8 | 3 × 8 | |||||
Unilateral pogo jump | 2 × 8 | 2 × 10 | 2 × 8 | 2 × 8 | 2 × 10 | |||
Max rebound hops | 3 × 5 | 3 × 5 | 3 × 5 | 4 × 5 | ||||
Drop jump | 2 × 5 | 2 × 5 | 2 × 5 | 2 × 6 | ||||
Hurdle power hops | 2 × 6 | 2 × 5 | 2 × 5 | |||||
Double tuck jumps | 2 × 5 | 2 × 6 | 2 × 6 | |||||
Alternating jump lunges | 2 × 5 | |||||||
Total foot contacts | 64 | 67 | 75 | 82 | 89 | 95 | 100 | 104 |
Variables | Age Group | Sex | Condition (n) | Pre-Test | Post-Test | Δ (%) | ANOVA Analysis | |
---|---|---|---|---|---|---|---|---|
F-Value | ES (p-Value) | |||||||
S10 | U8 | Boys | FG (10) | 2.92 ± 0.09 | 2.78 ± 0.08 | −4.5 ± 0.5 ¶ | - interaction age × sex × condition: F(4, 162) = 2.008 age × condition: F(4, 162) = 1.019 sex × condition: F(2, 162) = 3.814 age × sex: F(2, 162) = 18.481 - main effect Condition: F(2, 162) = 269.551 Age: F(2, 162) = 15.282 Sex: F(1, 162) = 34.969 | |
SG (10) | 2.91 ± 0.26 | 2.79 ± 0.26 | −4.2 ± 0.9 ¶ | |||||
CG (10) | 2.91 ± 0.41 | 2.88 ± 0.40 | −1.0 ± 0.3 | 0.155 (0.096) | ||||
Girls | FG (10) | 2.92 ± 0.14 | 2.80 ± 0.12 | −4.2 ± 0.5 ¶ | ||||
SG (10) | 2.92 ± 0.18 | 2.79 ± 0.17 | −4.4 ± 1.1 ¶ | 0.021 (0.399) | ||||
CG (10) | 2.91 ± 0.23 | 2.88 ± 0.23 | −1.2 ± 0.5 | |||||
U10 | Boys | FG (10) | 2.74 ± 0.19 | 2.62 ± 0.18 | −4.4 ± 0.4 ¶ | 0.185 (0.024) | ||
SG (10) | 2.72 ± 0.20 | 2.59 ± 0.19 | −4.8 ± 1.0 ¶ | |||||
CG (10) | 2.72 ± 0.18 | 2.68 ± 0.18 | −1.4 ± 0.4 | 0.460 (<0.0001) | ||||
Girls | FG (10) | 2.83 ± 0.24 | 2.71 ± 0.23 | −4.1 ± 1.2 ¶ | ||||
SG (10) | 2.84 ± 0.16 | 2.72 ± 0.15 | −4.3 ± 0.9 ¶ | |||||
CG (10) | 2.84 ± 0.06 | 2.81 ± 0.06 | −1.1 ± 0.4 | 1.804 (<0.0001) | ||||
U12 | Boys | FG (10) | 2.51 ± 0.19 | 2.40 ± 0.18 | −4.5 ± 0.8 ¶†‡§ | |||
SG (10) | 2.53 ± 0.24 | 2.42 ± 0.21 | −4.4 ± 1.2 ¶†‡§ | 0.416 (0.011) | ||||
CG (10) | 2.50 ± 0.19 | 2.46 ± 0.19 | −1.6 ± 0.5 | |||||
Girls | FG (10) | 2.54 ± 0.18 | 2.47 ± 0.19 | −2.9 ± 0.8 ¶ | 0.455 (<0.0001) | |||
SG (10) | 2.55 ± 0.13 | 2.48 ± 0.12 | −2.9 ± 0.4 ¶ | |||||
CG (10) | 2.55 ± 0.16 | 2.52 ± 0.16 | −1.2 ± 1.1 | |||||
CMJ | U8 | Boys | FG (10) | 13.1 ± 5.4 | 14.3 ± 6.1 | 9.7 ± 7.3 ¶ | - interaction age × sex × condition: F(4, 162) = 1.369 age × condition: F(4, 162) = 5.752 sex × condition: F(2, 162) = 3.987 age × sex: F(2, 162) = 9.526 - main effect Condition: F(2, 162) = 234.654 Age: F(2, 162) = 4.644 Sex: F(1, 162) = 11.283 | |
SG (10) | 12.5 ± 5.3 | 13.7 ± 5.8 | 9.6 ± 7.3 ¶ | |||||
CG (10) | 13.2 ± 2.8 | 13.6 ± 2.7 | 3.5 ± 2.7 | 0.097 (0.238) | ||||
Girls | FG (10) | 11.6 ± 4.7 | 12.7 ± 5.3 | 9.1 ± 6.7 ¶ | ||||
SG (10) | 11.8 ± 4.9 | 12.9 ± 5.5 | 9.1 ± 7.3 ¶ | 0.037 (<0.0001) | ||||
CG (10) | 12.3 ± 2.7 | 12.7 ± 2.7 | 3.5 ± 2.7 | |||||
U10 | Boys | FG (10) | 15.4 ± 2.2 | 16.9 ± 2.2 | 10.0 ± 2.1 ¶ | 0.190 (0.020) | ||
SG (10) | 15.1 ± 1.5 | 16.6 ± 1.7 | 9.8 ± 0.7 ¶ | |||||
CG (10) | 16.2 ± 0.8 | 16.6 ± 0.9 | 3.0 ± 0.5 | 0.321 (<0.0001) | ||||
Girls | FG (10) | 13.7 ± 2.0 | 15.0 ± 1.8 | 9.8 ± 3.4 ¶ | ||||
SG (10) | 13.9 ± 2.7 | 15.2 ± 2.4 | 9.8 ± 2.0 ¶ | |||||
CG (10) | 13.9 ± 1.6 | 14.4 ± 1.6 | 3.8 ± 1.4 | 1.681 (<0.0001) | ||||
U12 | Boys | FG (10) | 18.2 ± 2.2 | 20.7 ± 2.4 | 13.8 ± 0.8 ¶†‡§ | |||
SG (10) | 18.1 ± 2.0 | 20.7 ± 2.3 | 13.9 ± 1.6 ¶†‡§ | 0.210 (0.011) | ||||
CG (10) | 17.3 ± 2.5 | 17.7 ± 2.5 | 2.4 ± 1.4 | |||||
Girls | FG (10) | 17.1 ± 1.5 | 18.7 ± 1.6 | 9.5 ± 1.2 ¶ | 0.250 (<0.0001) | |||
SG (10) | 16.5 ± 1.1 | 18.1 ± 1.3 | 9.6 ± 1.1 ¶ | |||||
CG (10) | 17.2 ± 1.1 | 17.5 ± 1.0 | 2.1 ± 0.9 |
Variables | Age Group | Sex | Condition (n) | Pre-Test | Post-Test | Δ (%) | Anova Analysis | |
---|---|---|---|---|---|---|---|---|
F-Value | ES (p-Value) | |||||||
SHT | U8 | Boys | FG (10) | 15.9 ± 0.6 | 15.0 ± 0.6 | −5.3 ± 0.6 ¶ | - interaction age × sex × condition: F(4, 162) = 18.291 age × condition: F(4, 162) = 43.111 sex × condition: F(2, 162) = 18.185 age × sex: F(2, 162) = 59.691 - main effect Condition: F(2, 162) = 930.927 Age: F(2, 162) = 148.827 Sex: F(1, 162) = 59.691 | |
SG (10) | 15.8 ± 0.6 | 15.0 ± 0.6 | −5.1 ± 0.6 ¶ | |||||
CG (10) | 16.0 ± 0.8 | 15.5 ± 0.7 | −2.9 ± 0.4 | 0.644 (<0.0001) | ||||
Girls | FG (10) | 16.7 ± 0.6 | 15.9 ± 0.5 | −5.0 ± 0.3 ¶ | ||||
SG (10) | 16.7 ± 0.8 | 15.9 ± 0.8 | −4.8 ± 0.3 ¶ | 1.004 (<0.0001) | ||||
CG (10) | 16.4 ± 1.1 | 16.0 ± 1.1 | −2.6 ± 0.4 | |||||
U10 | Boys | FG (10) | 14.9 ± 0.9 | 14.0 ± 0.8 | −6.2 ± 0.6 ¶¥ | 0.456 (<0.0001) | ||
SG (10) | 14.5 ± 0.6 | 13.6 ± 0.6 | −6.5 ± 0.5 ¶¥ | |||||
CG (10) | 14.6 ± 0.6 | 14.2 ± 0.6 | −2.6 ± 0.5 | 0.843 (<0.0001) | ||||
Girls | FG (10) | 15.3 ± 0.9 | 14.4 ± 0.8 | −6.1 ± 0.6 ¶¥ | ||||
SG (10) | 15.6 ± 1.0 | 14.7 ± 1.0 | −6.2 ± 0.5 ¶¥ | |||||
CG (10) | 15.4 ± 0.7 | 15.0 ± 0.7 | −2.4 ± 0.6 | 3.357 (<0.0001) | ||||
U12 | Boys | FG (10) | 12.9 ± 0.5 | 11.7 ± 0.4 | −9.3 ± 0.7 ¶†‡§ | |||
SG (10) | 12.8 ± 0.8 | 11.6 ± 0.7 | −9.2 ± 0.6 ¶†‡§ | 1.339 (<0.0001) | ||||
CG (10) | 12.9 ± 0.8 | 12.5 ± 0.8 | −2.6 ± 0.5 | |||||
Girls | FG (10) | 14.5 ± 0.9 | 13.6 ± 0.4 | −6.2 ± 0.7 ¶‡ | 0.843 (<0.0001) | |||
SG (10) | 14.5 ± 0.6 | 13.6 ± 0.6 | −6.0 ± 0.5 ¶‡ | |||||
CG (10) | 14.6 ± 0.6 | 14.2 ± 0.6 | −2.6 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzouki, H.; Ouergui, I.; Dridi, R.; Selmi, O.; Mbarki, R.; Mjadri, N.; Thuany, M.; Andrade, M.S.; Bouhlel, E.; Weiss, K.; et al. Effects of Four Weeks of Plyometric Training Performed in Different Training Surfaces on Physical Performances in School Children: Age and Sex Comparisons. Children 2022, 9, 1914. https://doi.org/10.3390/children9121914
Marzouki H, Ouergui I, Dridi R, Selmi O, Mbarki R, Mjadri N, Thuany M, Andrade MS, Bouhlel E, Weiss K, et al. Effects of Four Weeks of Plyometric Training Performed in Different Training Surfaces on Physical Performances in School Children: Age and Sex Comparisons. Children. 2022; 9(12):1914. https://doi.org/10.3390/children9121914
Chicago/Turabian StyleMarzouki, Hamza, Ibrahim Ouergui, Rached Dridi, Okba Selmi, Rania Mbarki, Nour Mjadri, Mabliny Thuany, Marilia S. Andrade, Ezdine Bouhlel, Katja Weiss, and et al. 2022. "Effects of Four Weeks of Plyometric Training Performed in Different Training Surfaces on Physical Performances in School Children: Age and Sex Comparisons" Children 9, no. 12: 1914. https://doi.org/10.3390/children9121914