Serum Osteocalcin, Sclerostin and Lipocalin-2 Levels in Adolescent Boys with Obesity over a 12-Week Sprint Interval Training
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Design and Training Protocol
2.3. Anthropometric and Bone Mineral Measurements
2.4. Blood Sampling and Biochemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Anthropometric Characteristics
3.2. Bone Mineral and Bone Biochemical Parameters
3.3. Correlations among Independent Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 16 April 2023).
- Kansra, A.R.; Lakkunarajah, S.; Jay, M.S. Childhood and Adolescent Obesity: A Review. Front. Pediatr. 2021, 8, 581461. [Google Scholar] [CrossRef]
- Dias, K.A.; Ingul, C.B.; Tjønna, A.E.; Keating, S.E.; Gomersall, S.R.; Follestad, T.; Hosseini, M.S.; Hollekim-Strand, S.M.; Ro, T.B.; Haram, M.; et al. Effect of High-Intensity Interval Training on Fitness, Fat Mass and Cardiometabolic Biomarkers in Children with Obesity: A Randomised Controlled Trial. Sport. Med. 2018, 48, 733–746. [Google Scholar] [CrossRef]
- Josse, A.R.; Ludwa, I.A.; Kouvelioti, R.; Calleja, M.; Falk, B.; Ward, W.E.; Klentrou, P. Dairy product intake decreases bone resorption following a 12-week diet and exercise intervention in overweight and obese adolescent girls. Pediatr. Res. 2020, 88, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Julian, V.; Thivel, D.; Miguet, M.; Brengues, C.; Pereira, B.; Courteix, D.; Richard, R.; Duclos, M. Bone response to eccentric versus concentric cycling in adolescents with obesity. Obes. Res. Clin. Pract. 2020, 14, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.X.; Zhu, L.; Li, P.J.; Li, N.; Xu, Y. bing Effectiveness of high-intensity interval training on glycemic control and cardiorespiratory fitness in patients with type 2 diabetes: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2019, 31, 575–593. [Google Scholar] [CrossRef] [PubMed]
- Gillen, J.B.; Martin, B.J.; MacInnis, M.J.; Skelly, L.E.; Tarnopolsky, M.A.; Gibala, M.J. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PLoS ONE 2016, 11, e0154075. [Google Scholar] [CrossRef]
- Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Nam, J.S.; Yeo, D.-W.; Kim, K.R.; Suh, S.-H.; Ahn, C.W. The effects of aerobic exercise training on serum osteocalcin, adipocytokines and insulin resistance on obese young males. Clin. Endocrinol. 2015, 82, 686–694. [Google Scholar] [CrossRef]
- Vella, C.A.; Taylor, K.; Drummer, D. High-intensity interval and moderate-intensity continuous training elicit similar enjoyment and adherence levels in overweight and obese adults. Eur. J. Sport Sci. 2017, 17, 1203–1211. [Google Scholar] [CrossRef]
- Lee, S.J.; Spector, J.; Reilly, S. High-intensity interval training programme for obese youth (HIP4YOUTH): A pilot feasibility study. J. Sports Sci. 2017, 35, 1794–1798. [Google Scholar] [CrossRef]
- Coquart, J.B.J.; Lemaire, C.; Dubart, A.-E.; Luttembacher, D.-P.; Douillard, C.; Garcin, M. Intermittent versus Continuous Exercise. Med. Sci. Sport. Exerc. 2008, 40, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Racil, G.; Ben Ounis, O.; Hammouda, O.; Kallel, A.; Zouhal, H.; Chamari, K.; Amri, M. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur. J. Appl. Physiol. 2013, 113, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Tong, T.K.; Zhang, H.; Shi, H.; Liu, Y.; Ai, J.; Nie, J.; Kong, Z. Comparing Time Efficiency of Sprint vs. High-Intensity Interval Training in Reducing Abdominal Visceral Fat in Obese Young Women: A Randomized, Controlled Trial. Front. Physiol. 2018, 9, 1048. [Google Scholar] [CrossRef] [PubMed]
- Logan, G.R.M.; Harris, N.; Duncan, S.; Schofield, G. A Review of Adolescent High-Intensity Interval Training. Sport. Med. 2014, 44, 1071–1085. [Google Scholar] [CrossRef]
- Cao, M.; Quan, M.; Zhuang, J. Effect of High-Intensity Interval Training versus Moderate-Intensity Continuous Training on Cardiorespiratory Fitness in Children and Adolescents: A Meta-Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1533. [Google Scholar] [CrossRef] [PubMed]
- Wyckelsma, V.L.; Venckunas, T.; Brazaitis, M.; Gastaldello, S.; Snieckus, A.; Eimantas, N.; Baranauskiene, N.; Subocius, A.; Skurvydas, A.; Pääsuke, M.; et al. Vitamin C and E Treatment Blunts Sprint Interval Training–Induced Changes in Inflammatory Mediator-, Calcium-, and Mitochondria-Related Signaling in Recreationally Active Elderly Humans. Antioxidants 2020, 9, 879. [Google Scholar] [CrossRef] [PubMed]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef]
- Jürimäe, J.; Karvelyte, V.; Remmel, L.; Tamm, A.-L.; Purge, P.; Gruodyte-Raciene, R.; Kamandulis, S.; Maasalu, K.; Gracia-Marco, L.; Tillmann, V. Serum sclerostin concentration is associated with specific adipose, muscle and bone tissue markers in lean adolescent females with increased physical activity. J. Pediatr. Endocrinol. Metab. 2021, 34, 755–761. [Google Scholar] [CrossRef]
- Kurgan, N.; Islam, H.; Matusiak, J.B.L.; Baranowski, B.J.; Stoikos, J.; Fajardo, V.A.; MacPherson, R.E.K.; Gurd, B.J.; Klentrou, P. Subcutaneous adipose tissue sclerostin is reduced and Wnt signaling is enhanced following 4-weeks of sprint interval training in young men with obesity. Physiol. Rep. 2022, 10, e15232. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, X.; Pan, X.; He, X.; Xiao, Y.; Bao, Y. Correlations between serum concentration of three bone-derived factors and obesity and visceral fat accumulation in a cohort of middle aged men and women. Cardiovasc. Diabetol. 2018, 17, 143. [Google Scholar] [CrossRef]
- Takashi, Y.; Kawanami, D. The Role of Bone-Derived Hormones in Glucose Metabolism, Diabetic Kidney Disease, and Cardiovascular Disorders. Int. J. Mol. Sci. 2022, 23, 2376. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.B.; Lee, W.Y.; Nam, H.-K.; Rhie, Y.-J.; Lee, K.-H. Serum osteocalcin levels in overweight children. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Kurgan, N.; McKee, K.; Calleja, M.; Josse, A.R.; Klentrou, P. Cytokines, Adipokines, and Bone Markers at Rest and in Response to Plyometric Exercise in Obese vs Normal Weight Adolescent Females. Front. Endocrinol. 2020, 11, 531926. [Google Scholar] [CrossRef] [PubMed]
- Luziani, S.; Candy, H.; Angraini, R.; Darma, P.; Juniari, S.; Juhanna, I.V.; Adiatmika, I.P.G. Effect of exercise on sclerostin concentrations in blood serum. Sport Fit. J. 2022, 10, 138–147. [Google Scholar]
- Mosialou, I.; Shikhel, S.; Liu, J.-M.; Maurizi, A.; Luo, N.; He, Z.; Huang, Y.; Zong, H.; Friedman, R.A.; Barasch, J.; et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 2017, 543, 385–390. [Google Scholar] [CrossRef]
- Zaki, M.; El-Bassyouni, H.; Youness, E.; Mohamed, N. Lipocalin-2 is an inflammatory biomarker associated with metabolic abnormalities in Egyptian obese children. J. Appl. Pharm. Sci. 2015, 5, 007–012. [Google Scholar] [CrossRef]
- Atashak, S.; Stannard, S.R.; Daraei, A.; Soltani, M.; Saeidi, A.; Moradi, F.; Laher, I.; Hackney, A.C.; Zouhal, H. High-intensity Interval Training Improves Lipocalin-2 and Omentin-1 Levels in Men with Obesity. Int. J. Sports Med. 2022, 43, 328–335. [Google Scholar] [CrossRef]
- Salus, M.; Tillmann, V.; Remmel, L.; Unt, E.; Mäestu, E.; Parm, Ü.; Mägi, A.; Tali, M.; Jürimäe, J. Effect of supervised sprint interval training on cardiorespiratory fitness and body composition in adolescent boys with obesity. J. Sports Sci. 2022, 40, 2010–2017. [Google Scholar] [CrossRef]
- Salus, M.; Tillmann, V.; Remmel, L.; Unt, E.; Mäestu, E.; Parm, Ü.; Mägi, A.; Tali, M.; Jürimäe, J. Effect of Sprint Interval Training on Cardiometabolic Biomarkers and Adipokine Levels in Adolescent Boys with Obesity. Int. J. Environ. Res. Public Health 2022, 19, 12672. [Google Scholar] [CrossRef]
- Murphy, A.; Kist, C.; Gier, A.J.; Edwards, N.M.; Gao, Z.; Siegel, R.M. The Feasibility of High-Intensity Interval Exercise in Obese Adolescents. Clin. Pediatr. 2015, 54, 87–90. [Google Scholar] [CrossRef]
- Morrissey, C.; Montero, D.; Raverdy, C.; Masson, D.; Amiot, M.-J.; Vinet, A. Effects of Exercise Intensity on Microvascular Function in Obese Adolescents. Int. J. Sports Med. 2018, 39, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Gist, N.H.; Fedewa, M.V.; Dishman, R.K.; Cureton, K.J. Sprint Interval Training Effects on Aerobic Capacity: A Systematic Review and Meta-Analysis. Sport. Med. 2014, 44, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sport. Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.M.; Kim, T.N.; Yoo, H.J.; Lee, K.W.; Cho, G.J.; Hwang, T.G.; Baik, S.H.; Choi, D.S.; Kim, S.M. Effect of exercise training on A-FABP, lipocalin-2 and RBP4 levels in obese women. Clin. Endocrinol. 2009, 70, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.E.; Denham, J.; Prestes, P.R.; Eikelis, N.; Lambert, E.A.; Straznicky, N.E.; Schlaich, M.P.; Esler, M.D.; O’Brien, B.J.; Charchar, F.J.; et al. Plasma lipocalin-2/NGAL is stable over 12 weeks and is not modulated by exercise or dieting. Sci. Rep. 2021, 11, 4056. [Google Scholar] [CrossRef] [PubMed]
- Paldánius, P.M.; Ivaska, K.K.; Mäkitie, O.; Viljakainen, H. Serum and Urinary Osteocalcin in Healthy 7- to 19-Year-Old Finnish Children and Adolescents. Front. Pediatr. 2021, 9, 610227. [Google Scholar] [CrossRef]
- Bouri, Z.S.; Peeri, M.; Azarbayjani, M.; Ahangarpour, A. The effect of physical activity on adiponectin and osteocalcin in overweight young females. Int. Med. J. 2015, 22, 43–46. [Google Scholar]
- Lee, N.K.; Sowa, H.; Hinoi, E.; Ferron, M.; Ahn, J.D.; Confavreux, C.; Dacquin, R.; Mee, P.J.; McKee, M.D.; Jung, D.Y.; et al. Endocrine Regulation of Energy Metabolism by the Skeleton. Cell 2007, 130, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T.; Roth, C.L. A new link between skeleton, obesity and insulin resistance: Relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss. Int. J. Obes. 2010, 34, 852–858. [Google Scholar] [CrossRef]
- Pimentel, D.V.; Suttkus, A.; Vogel, M.; Lacher, M.; Jurkutat, A.; Poulain, T.; Ceglarek, U.; Kratzsch, J.; Kiess, W.; Körner, A.; et al. Effect of physical activity and BMI SDS on bone metabolism in children and adolescents. Bone 2021, 153, 116131. [Google Scholar] [CrossRef]
- Jürimaë, J.; Lätt, E.; Maëstu, J.; Saar, M.; Purge, P.; Maasalu, K.; Jürimaë, T. Osteocalcin is inversely associated with adiposity and leptin in adolescent boys. J. Pediatr. Endocrinol. Metab. 2015, 28, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Kord-Varkaneh, H.; Djafarian, K.; Khorshidi, M.; Shab-Bidar, S. Association between serum osteocalcin and body mass index: A systematic review and meta-analysis. Endocrine 2017, 58, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Nazari, S.; Taheri Chadorneshin, H.; Marefati, H.; Eivary Abtahi, S.-H. The effect of rope jump training on serum levels of lipocalin-2, anthropometric parameters, and aerobic power in obese adolescent boys. J. Sport. Sci. Clin. Biochem. 2020, 7, 7–18. [Google Scholar]
- Takaya, J.; Tanabe, Y.; Kaneko, K. Increased lipocalin 2 levels in adolescents with type 2 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2021, 34, 979–985. [Google Scholar] [CrossRef]
- Moschen, A.R.; Adolph, T.E.; Gerner, R.R.; Wieser, V.; Tilg, H. Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends Endocrinol. Metab. 2017, 28, 388–397. [Google Scholar] [CrossRef]
- Dror, N.; Carbone, J.; Haddad, F.; Falk, B.; Klentrou, P.; Radom-Aizik, S. Sclerostin and bone turnover markers response to cycling and running at the same moderate-to-vigorous exercise intensity in healthy men. J. Endocrinol. Investig. 2022, 45, 391–397. [Google Scholar] [CrossRef]
- Kouvelioti, R.; LeBlanc, P.; Falk, B.; Ward, W.E.; Josse, A.R.; Klentrou, P. Effects of High-Intensity Interval Running Versus Cycling on Sclerostin, and Markers of Bone Turnover and Oxidative Stress in Young Men. Calcif. Tissue Int. 2019, 104, 582–590. [Google Scholar] [CrossRef]
- Kouvelioti, R.; Kurgan, N.; Falk, B.; Ward, W.E.; Josse, A.R.; Klentrou, P. Response of sclerostin and bone turnover markers to high intensity interval exercise in young women: Does impact matter? Biomed Res. Int. 2018, 2018, 4864952. [Google Scholar] [CrossRef]
- D’Onofrio, L.; Maddaloni, E.; Buzzetti, R. Osteocalcin and sclerostin: Background characters or main actors in cardiovascular disease? Diabetes. Metab. Res. Rev. 2020, 36, 10–12. [Google Scholar] [CrossRef]
- Kim, S.-H.; Choi, Y.J.; Ahn, M.B.; Cho, W.K.; Cho, K.S.; Jung, M.H.; Suh, B.-K. Associations between Sclerostin and Anthropometric and Metabolic Parameters in Children and Adolescents. Children 2021, 8, 788. [Google Scholar] [CrossRef]
- Fintini, D.; Cianfarani, S.; Cofini, M.; Andreoletti, A.; Ubertini, G.M.; Cappa, M.; Manco, M. The Bones of Children With Obesity. Front. Endocrinol. 2020, 11, 200. [Google Scholar] [CrossRef] [PubMed]
- Klentrou, P.; Kouvelioti, R. Biochemistry of Exercise Training: Effects on Bone. In The Routledge Handbook on Biochemistry of Exercise; Routledge: London, UK, 2020; pp. 513–531. ISBN 9781003123835. [Google Scholar]
- Tremmel, M.; Gerdtham, U.-G.; Nilsson, P.; Saha, S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef] [PubMed]
Variable | Week 1–4 | Week 5–8 | Week 9–12 |
---|---|---|---|
Warm-up (min) | 10 | 10 | 10 |
Sprint intervals | 4 | 5 | 6 |
Interval time (s) | 30 | 30 | 30 |
Recovery time between intervals (min) | 4 | 4 | 4 |
Cool-down (min) | 5 | 5 | 5 |
HRmax (%) | 81.7 | 82.5 | 79.8 |
Peak power (W/kg) | 5.8 | 6.5 * | 7.0 *# |
Attendance (%) | 89.0 | 81.0 | 80.0 |
Workload time per session (min) | 2.0 | 2.5 | 3.0 |
Training time per session (min) | 29.0 | 33.5 | 38.0 |
Weekly training time (min) | 87.0 | 100.5 | 114.0 |
Variable | SIT (n = 14) | CONT (n = 14) | Difference a (95% CI) | ||||||
---|---|---|---|---|---|---|---|---|---|
Before | After | ES | Before | After | ES | SIT | CONT | p | |
Height (cm) | 170.6 ± 2.7 | 172.7 ± 2.6 # | 1.77 | 173.5 ± 2.9 | 174.8 ± 2.8 # | 1.50 | 2.0 ± 0.3 (1.4, 2.5) | 1.5 ± 0.3 (1.0, 2.1) | 0.216 |
Body mass (kg) | 89.1 ± 4.3 | 90.3 ± 4.1 | 0.46 | 99.3 ± 6.4 | 102.0 ± 6.5 # | 1.05 | 1.2 ± 0.7 (−0.3, 2.7) | 2.8 ± 0.7 (1.3, 4.3) | 0.141 |
BMI (kg·m−2) | 30.3 ± 0.9 | 30.0 ± 0.9 | 0.32 | 32.6 ± 1.6 | 33.0 ± 1.6 | 0.39 | −0.3 ± 0.3 (−0.8, 0.3) | 0.4 ± 0.3 (0.1, 1.0) | 0.088 |
WB BMD (g·cm2) | 1.05 ± 0.03 | 1.06 ± 0.03 | 0.33 | 1.15 ± 0.05 | 1.13 ± 0.04 | 0.13 | −0.01 ± 0.02 (−0.06, 0.04) | 0.003 ± 0.02 (−0.05, 0.05) | 0.645 |
LL BMD (g·cm2) | 1.16 ± 0.04 | 1.19 ± 0.03 # | 0.75 | 1.29 ± 0.05 | 1.28 ± 0.05 | 0.13 | 0.009 ± 0.03 (−0.05, 0.07) | 0.002 ± 0.03 (−0.06, 0.06) | 0.870 |
WB BMC (g) | 2247.98 ± 123.0 | 2325.05 ± 123.0 # | 0.89 | 2478.63 ± 160.2 | 2560.89 ± 170.6 # | 0.90 | 80.10 ± 24.4 (29.83, 130.4) | 79.23 ± 24.4 (28.96, 129.5) | 0.980 |
Osteocalcin (ng·mL−1) | 26.31 ± 4.9 | 24.66 ± 3.6 | 0.12 | 24.34 ± 4.3 | 20.84 ± 3.6 | 0.31 | −1.22 ± 2.6 (−6.63, 4.20) | −3.95 ± 2.6 (−9.36, 1.46) | 0.241 |
Sclerostin (pg·mL−1) | 275.18 ± 30.5 | 284.97 ± 27.6 | 0.24 | 284.49 ± 24.4 | 287.33 ± 26.8 | 0.05 | 9.17 ± 13.3 (−18.14, 36.48) | 3.46 ± 13.3 (−23.85, 30.77) | 0.764 |
Lipocalin-2 (ng·mL−1) | 33.07 ± 1.9 | 31.00 ± 1.7 | 0.32 | 37.46 ± 3.2 | 33.67 ± 1.6 | 0.32 | −3.77 ± 1.6 (−7.05, −0.48) | −2.09 ± 1.6 (−5.38, 1.20) | 0.470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salus, M.; Tillmann, V.; Remmel, L.; Unt, E.; Mäestu, E.; Parm, Ü.; Mägi, A.; Tali, M.; Jürimäe, J. Serum Osteocalcin, Sclerostin and Lipocalin-2 Levels in Adolescent Boys with Obesity over a 12-Week Sprint Interval Training. Children 2023, 10, 850. https://doi.org/10.3390/children10050850
Salus M, Tillmann V, Remmel L, Unt E, Mäestu E, Parm Ü, Mägi A, Tali M, Jürimäe J. Serum Osteocalcin, Sclerostin and Lipocalin-2 Levels in Adolescent Boys with Obesity over a 12-Week Sprint Interval Training. Children. 2023; 10(5):850. https://doi.org/10.3390/children10050850
Chicago/Turabian StyleSalus, Marit, Vallo Tillmann, Liina Remmel, Eve Unt, Evelin Mäestu, Ülle Parm, Agnes Mägi, Maie Tali, and Jaak Jürimäe. 2023. "Serum Osteocalcin, Sclerostin and Lipocalin-2 Levels in Adolescent Boys with Obesity over a 12-Week Sprint Interval Training" Children 10, no. 5: 850. https://doi.org/10.3390/children10050850