Working Memory in Navigational and Reaching Spaces in Typically Developing Children at Increasing School Stages
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Working Memory in the Vista-Navigational and the Reaching Space
2.3. Statistics
3. Results
3.1. Age with Respect to School Stages
3.2. Topographical Working Memory in the Vista-Navigational Space
3.3. Visuospatial Working Memory in the Reaching Space
3.4. Working Memory in Vista-Navigational Space Versus Working Memory in Reaching Space
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartonek, Å.; Guariglia, C.; Piccardi, L. Topographical working memory in children and adolescents with motor disabilities. Cogent Psychol. 2020, 7, 1757855. [Google Scholar] [CrossRef]
- Bartonek, Å.; Piccardi, L.; Guariglia, C. Topographical Working Memory in Children with Cerebral Palsy. J. Mot. Behav. 2020, 53, 200–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos, J.J.; Anderson, D.I.; Barbu-Roth, M.A.; Hubbard, E.M.; Hertenstein, M.J.; Witherington, D. Travel broadens the mind. Infancy 2000, 1, 149–219. [Google Scholar] [CrossRef]
- Clearfield, M.V. The role of crawling and walking experience in infant spatial memory. Exp. Child. Psychol. 2004, 89, 214–241. [Google Scholar] [CrossRef] [PubMed]
- Foreman, N.; Foreman, D.; Cummings, A.; Owens, S. Locomotion, active choice, and spatial memory in children. J. Gen. Psychol. 1990, 2, 215–235. [Google Scholar] [CrossRef]
- Siegel, A.W.; White, S.H. The development of spatial representations of large-scale environments. In Advances in Child Development & Behavior; Reese, H.W., Ed.; Academic Press: New York, NY, USA, 1975; pp. 9–55. [Google Scholar]
- Lehnung, M.; Leplow, B.; Friege, L.; Ferstl, R.; Mehdorn, M. Development of spatial memory and spatial orientation in preschoolers and primary schoolchildren. Br. J. Psychol. 1998, 89, 463–480. [Google Scholar] [CrossRef]
- Newcombe, N.S. Navigation and the developing brain. J. Exp. Biol. 2019, 222 (Suppl. S1), jeb186460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burles, F.; Liu, I.; Hart, C.; Murias, K.; Graham, S.A.; Iaria, G. The emergence by processing sequential information? Neuropsychology 2020, 31, 564–574. [Google Scholar]
- Overman, W.H.; Pate, B.J.; Moore, K.; Peuster, A. Ontogeny of place learning in children as measured in the radial arm maze, Morris search task, and open field task. Behav. Neurosci. 1996, 110, 1205–1228. [Google Scholar] [CrossRef]
- Leplow, B.; Lehnung, M.; Pohl, J.; Herzog, A.; Ferstl, R.; Mehdorn, M. Navigational place learning in children and young adults as assessed with a standardized locomotor search task. Br. J. Psychol. 2003, 94, 299–317. [Google Scholar] [CrossRef]
- Piccardi, L.; Leonzi, M.; D’Amico, S.; Guariglia, C. Developmental of navigational working memory: Evidence from 6- to 10- year-old children. Br. J. Dev. Psychol. 2014, 32, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Murias, K.; Slone, E.; Tariq, S.; Iaria, G. Development of spatial orientation skills: An fMRI study. Brain Imaging Behav. 2019, 13, 1590–1601. [Google Scholar] [CrossRef] [PubMed]
- Muffato, V.; Hilton, C.; Meneghetti, C.; De Beni, R.; Wiener, J.M. Evidence for age-related deficits in object-location binding during place recognition. Hippocampus 2019, 29, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Ramanoël, S.; York, E.; Le Petit, M.; Lagrené, K.; Habas, C.; Arleo, A. Age-Related Differences in Functional and Structural Connectivity in the Spatial Navigation Brain Network. Front. Neural. Circuits 2019, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- van der Ham, I.J.M.; Claessen, M.H.G. How age relates to spatial navigation performance: Functional and methodological considerations. Ageing Res. Rev. 2020, 58, 101020. [Google Scholar]
- Nazareth, A.; Huang, X.; Voyer, D.; Newcombe, N. A meta-analysis of sex differences in human navigation skills. Psychon. Bull. Rev. 2019, 5, 1503–1528. [Google Scholar] [CrossRef] [PubMed]
- Lawton, C.A. Gender, spatial abilities and wayfinding. In Handbook of Gender Research in Psychology; Chrisler, J., McCreary, D., Eds.; Springer: New York, NY, USA, 2010; pp. 317–341. [Google Scholar]
- Bianchini, F.; Verde, P.; Colangeli, S.; Boccia, M.; Strollo, F.; Guariglia, C.; Bizzarro, G.; Piccardi, L. Effects of oral contraceptives and natural menstrual cycling on environmental learning. BMC Women’s Health 2018, 18, 179. [Google Scholar] [CrossRef] [PubMed]
- Montello, D.R. How significant are cultural differences in spatial cognition? In COSIT 1995: Spatial Information Theory a Theoretical Basis for GIS, Semmering, Austria, 21–23 September 1995, Proceedings; Springer: Berlin/Heidelberg, Germany, 1995; pp. 485–500. [Google Scholar]
- Wolbers, T.; Wiener, J.M. Challenges for identifying the neural mechanisms that support spatial navigation: The impact of spatial scale. Front. Hum. Neurosci. 2014, 4, 571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piccardi, L.; Berthoz, A.; Baulac, M.; Denos, M.; Dupont, S.; Samson, S.; Guariglia, C. Different spatial memory systems are involved in small and large-scale environments: Evidence from patients with temporal lobe epilepsy. Exp. Brain. Res. 2010, 206, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, L.; Iaria, G.; Bianchini, F.; Zompanti, L.; Guariglia, C. Dissociated deficits of visuo-spatial memory in near space and navigational space: Evidences from brain-damaged patients and healthy older participants. Aging Neuropsychol. Cogn. 2011, 18, 362–384. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, F.; Incoccia, C.; Palermo, L.; Piccardi, L.; Zompanti, L.; Sabatini, U.; Guariglia, C. Developmental topographical disorientation in a healthy subject. Neuropsychologia 2010, 48, 1563–1573. [Google Scholar] [CrossRef]
- Bianchini, F.; Di Vita, A.; Palermo, L.; Piccardi, L.; Blundo, C.; Guariglia, C. A selective egocentric topographical working memory deficit in the early stages of Alzheimer’s disease. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 749–754. [Google Scholar] [CrossRef]
- De Nigris, A.; Piccardi, L.; Bianchini, F.; Palermo, L.; Incoccia, C.; Guariglia, C. Role of visuo-spatial working memory on navigational disorders in neglect. Cortex 2013, 49, 920–930. [Google Scholar] [CrossRef]
- Tedesco, A.M.; Bianchini, F.; Piccardi, L.; Clausi, S.; Berthoz, A.; Molinari, M.; Guariglia, C.; Leggio, M. Does the cerebellum contribute to human navigation by processing sequential information? Neuropsychology 2017, 31, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, L.; Palermo, L.; Leonzi, M.; Risetti, M.; Zompanti, L.; D’Amico, S.; Guariglia, C. The Walking Corsi Test (WalCT): A Normative Study of Topographical Working Memory in a Sample of 4- to 11-Year-Olds. Clin. Neuropsychol. 2014, 28, 84–96. [Google Scholar] [CrossRef]
- Hegarty, M.; Montello, D.R.; Richardson, A.E.; Ishikawa, T.; Lovelace, K. Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence 2006, 34, 151–376. [Google Scholar] [CrossRef]
- Newcombe, N.S. The Puzzle of Spatial Sex Differences: Current Status and Prerequisites to Solutions. Child Dev. Perspect. 2020, 4, 251–257. [Google Scholar] [CrossRef]
- Piccardi, L.; Bianchini, F.; Argento, O.; De Nigris, A.; Maialetti, A.; Palermo, L.; Guariglia, C. The Walking Corsi Test (WalCT): Standardization of topographical memory in an Italian population. Neurol. Sci. 2013, 34, 971–978. [Google Scholar] [CrossRef]
- Compulsory School Education in Sweden. Available online: https://utbildningsguiden.skolverket.se/languages/english-engelska/grundskolan (accessed on 9 September 2022).
- Corsi, P.M. Human Memory and the Medial Temporal Region of the Brain. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1972. [Google Scholar]
- Piccardi, L.; Iaria, G.; Ricci, M.; Bianchini, F.; Zompanti, L.; Guariglia, C. Walking in the Corsi test: Which type of memory do you need? Neurosci. Lett. 2008, 432, 127–131. [Google Scholar] [CrossRef]
- McKenzie, B.E.; Skouteris, H.; Day, R.H.; Hartman, B.; Yonas, A. Effective action by infants to contact objects by reaching and leaning. Child. Dev. 1993, 64, 415–429. [Google Scholar] [CrossRef]
- Serino, A. Peripersonal space (PPS) as a multisensory interface between the individual and the environment, defining the space of the self. Neurosci. Biobehav. Rev. 2019, 99, 138–159. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, L.; Palermo, L.; Bocchi, A.; Guariglia, C.; D’Amico, S. Does spatial locative comprehension predict landmark-based navigation? PLoS ONE 2015, 10, e0115432. [Google Scholar] [CrossRef] [PubMed]
- Verdine, B.N.; Golinkoff, R.M.; Hirsh-Pasek, K.; Newcombe, N.S. Spatial skills, their development, and their links to mathematics. Monogr. Soc. Res. Child Dev. 2017, 82, 7–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawes, Z.; Moss, J.; Caswell, B.; Seo, J.; Ansari, D. Relations between numerical, spatial, and executive function skills and mathematics achievement: A latent-variable approach. Cogn. Psychol. 2019, 109, 68–90. [Google Scholar] [CrossRef]
- Trifunovic, A.; Pesic, D.; Cicevic, S.; Antic, B. The importance of spatial orientation and knowledge of traffic signs for children’s traffic safety. Accid. Anal. Prev. 2017, 102, 81–92. [Google Scholar] [CrossRef]
- Hatfield, J.; Dozza, M.; Patton, D.A.; Maharaja, P.; Boufous, S.; Eveston, T. On the use of naturalistic methods to examine safety-relevant behaviours amongst children and evaluate a cycling education program. Accid. Anal. Prev. 2017, 108, 91–99. [Google Scholar] [CrossRef]
- Nori, R.; Palmiero, M.; Bocchi, A.; Giannini, A.M.; Piccardi, L. The specific role of spatial orientation skills in predicting driving behaviour. Transp. Res. 2020, 71, 259–271. [Google Scholar] [CrossRef]
- Boccia, M.; Rosella, M.; Vecchione, F.; Tanzilli, A.; Palermo, L.; D’Amico, S.; Guariglia, C.; Piccardi, L. Enhancing allocentric recall in pre-schoolers through navigational training programme. Front. Neurosci. 2017, 11, 57. [Google Scholar] [CrossRef]
School Stage | PS n = 27 | LS n = 35 | MS n = 36 | US n = 22 | p | PS– LS | PS– MS | PS– US | LS– MS | LS– US | MS– US |
---|---|---|---|---|---|---|---|---|---|---|---|
Grades | pre-school | 1–3 | 4–6 | 7–9 | |||||||
Age | |||||||||||
(mean, SD) | 5 (0.63) | 8.59 (0.93) | 11.17 (0.82) | 14.77 (0.88) | |||||||
(range) | (5.09–6.95) | (7–9.94) | (10.01 –12.97) | (13.37–16.33) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Gender f/m | 14/13 | 14/21 | 22/14 | 13/9 | 0.308 | ns | ns | ns | ns | ns | ns |
WalCT span (mean, SD) | 2.7 (0.95) | 3.86 (0.84) | 4.78 (1.01) | 5.77 (1.19) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
CBT span (mean, SD) | 3.7 (0.66) | 4.69 (0.67) | 5.33 (0.71) | 5.41 (0.66) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.684 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartonek, Å.; Guariglia, C.; Piccardi, L. Working Memory in Navigational and Reaching Spaces in Typically Developing Children at Increasing School Stages. Children 2022, 9, 1629. https://doi.org/10.3390/children9111629
Bartonek Å, Guariglia C, Piccardi L. Working Memory in Navigational and Reaching Spaces in Typically Developing Children at Increasing School Stages. Children. 2022; 9(11):1629. https://doi.org/10.3390/children9111629
Chicago/Turabian StyleBartonek, Åsa, Cecilia Guariglia, and Laura Piccardi. 2022. "Working Memory in Navigational and Reaching Spaces in Typically Developing Children at Increasing School Stages" Children 9, no. 11: 1629. https://doi.org/10.3390/children9111629