Nephrotoxic Metal Mixtures and Preadolescent Kidney Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Collection of Participant Data
2.3. Serum Cystatin C and eGFR
2.4. Serum Creatinine
2.5. Blood and Urine Metals, and Urine Specific Gravity
2.6. Statistical Analyses
2.6.1. Weighted Quantile Sum Regression
2.6.2. Multi-Media Biomarkers
2.6.3. Data Analysis Workflow
3. Results
3.1. Characteristics of the Study Participants
3.2. Individual Metals Exposure Is Associated with Kidney Biomarkers
3.3. Metal Mixtures Are Associated with Kidney Biomarkers
3.4. Metals and Serum Creatinine
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
As | Arsenic |
BMI | Body mass index |
Bmix | Blood biomarker mixture |
Cd | Cadmium |
CKD | Chronic kidney disease |
eGFR | Estimated glomerular filtration rate |
LOD | Limit of detection |
MMBs | Multi-media biomarkers |
NMM | Nephrotoxic metal mixtures |
Pb | Lead |
PROGRESS | Programming Research in Obesity, Growth, Environment, and Social Stressors |
SD | Standard deviation |
SES | Socio-economic status |
Umix | Urine biomarker mixture |
US | United States |
WHO | World Health Organization |
WQS | Weighted quantile sum regression |
References
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease-A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef]
- Weidemann, D.K.; Weaver, V.M.; Fadrowski, J.J. Toxic environmental exposures and kidney health in children. Pediatr. Nephrol. 2016, 31, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Solhaug, M.J.; Bolger, P.M.; Jose, P.A. The developing kidney and environmental toxins. Pediatrics 2004, 113, 1084–1091. [Google Scholar] [PubMed]
- Kang, D.H.; Chen, M.; Ogunseitan, O.A. Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ. Sci. Technol. 2013, 47, 5495–5503. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, L.; Li, F.; Hua, H.; Liu, X.; Yuan, Z.; Wu, H. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. J. Environ. Manag. 2020, 262, 110253. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Oh, S.; Kang, H.; Kim, S.; Lee, G.; Li, L.; Kim, C.T.; An, J.N.; Oh, Y.K.; Lim, C.S.; et al. Environment-Wide Association Study of CKD. Clin. J. Am. Soc. Nephrol. 2020, 15, 766–775. [Google Scholar] [CrossRef]
- Vervaet, B.A.; D’Haese, P.C.; Verhulst, A. Environmental toxin-induced acute kidney injury. Clin. Kidney J. 2017, 10, 747–758. [Google Scholar] [CrossRef] [Green Version]
- Orr, S.E.; Bridges, C.C. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. Int. J. Mol. Sci. 2017, 18, 1039. [Google Scholar] [CrossRef] [Green Version]
- Satarug, S.; Vesey, D.A.; Gobe, G.C. Kidney Cadmium Toxicity, Diabetes and High Blood Pressure: The Perfect Storm. Tohoku J. Exp. Med. 2017, 241, 65–87. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Cordova, M.I.; Gonzalez-Horta, C.; Ayllon-Vergara, J.C.; Arreola-Mendoza, L.; Aguilar-Madrid, G.; Villareal-Vega, E.E.; Barrera-Hernandez, A.; Barbier, O.C.; Del Razo, L.M. Evaluation of vascular and kidney injury biomarkers in Mexican children exposed to inorganic fluoride. Environ. Res. 2019, 169, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Svensson, K.; Gennings, C.; Burris, H.H.; Oken, E.; Amarasiriwardena, C.; Basnet, P.; Pizano-Zarate, M.L.; Schnaas, L.; Tamayo-Ortiz, M.; et al. Prenatal lead exposure modifies the effect of shorter gestation on increased blood pressure in children. Environ. Int. 2018, 120, 464–471. [Google Scholar] [CrossRef]
- Sanders, A.P.; Mazzella, M.J.; Malin, A.J.; Hair, G.M.; Busgang, S.A.; Saland, J.M.; Curtin, P. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environ. Int. 2019, 131, 104993. [Google Scholar] [CrossRef]
- Fadrowski, J.J.; Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Weaver, V.M.; Furth, S.L. Blood lead level and kidney function in US adolescents: The Third National Health and Nutrition Examination Survey. Arch. Intern. Med. 2010, 170, 75–82. [Google Scholar] [CrossRef]
- Sanders, A.P. Critical windows of perinatal toxic metal exposure and children’s kidney function. In Proceedings of the Presentation at International Society for Environmental Epidemiology, Washington, DC, USA, 25 August 2020. [Google Scholar]
- Rodriguez-Lopez, E.; Tamayo-Ortiz, M.; Ariza, A.C.; Ortiz-Panozo, E.; Deierlein, A.L.; Pantic, I.; Tolentino, M.; Estrada-Gutierrez, G.; Parra-Hernandez, S.; Espejel-Nunez, A.; et al. Early life dietary cadmium exposure and kidney function in 9-year-old children from the PROGRESS cohort. Toxics 2020, 8, 83. [Google Scholar] [CrossRef] [PubMed]
- Saylor, C.; Tamayo-Ortiz, M.; Pantic, I.; Amarasiriwardena, C.; McRae, N.; Estrada-Gutierrez, G.; Parra-Hernandez, S.; Tolentino, M.C.; Baccarelli, A.A.; Fadrowski, J.J.; et al. Prenatal blood lead levels and reduced preadolescent glomerular filtration rate: Modification by body mass index. Environ. Int. 2021, 154, 106414. [Google Scholar] [CrossRef]
- Pantic, I.; Tamayo-Ortiz, M.; Rosa-Parra, A.; Bautista-Arredondo, L.; Wright, R.O.; Peterson, K.E.; Schnaas, L.; Rothenberg, S.J.; Hu, H.; Tellez-Rojo, M.M. Children’s Blood Lead Concentrations from 1988 to 2015 in Mexico City: The Contribution of Lead in Air and Traditional Lead-Glazed Ceramics. Int. J. Environ. Res. Public Health 2018, 15, 2153. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, K.; Han, T.; Zhang, P.; Chen, X.; Wu, W.; Feng, Y.; Yang, H.; Li, M.; Xie, B.; et al. Exposure to multiple metals and prevalence for preeclampsia in Taiyuan, China. Environ. Int. 2020, 145, 106098. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood cadmium and lead and chronic kidney disease in US adults: A joint analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhu, G.; Wang, Z.; Zhou, H.; He, P.; Liu, Y.; Jin, T. The association between lead and cadmium co-exposure and renal dysfunction. Ecotoxicol. Environ. Saf. 2019, 173, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.L.; Kuo, C.C.; Pan, W.H.; Chung, Y.T.; Chen, C.Y.; Wu, T.N.; Wang, S.L. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int. 2017, 92, 710–720. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Habeebu, S.M.; Waalkes, M.P.; Klaassen, C.D. Chronic combined exposure to cadmium and arsenic exacerbates nephrotoxicity, particularly in metallothionein-I/II null mice. Toxicology 2000, 147, 157–166. [Google Scholar] [CrossRef]
- Phoon, W.H. Manganese exposure and biological indicators. Singapore Med. J. 1988, 29, 93–94. [Google Scholar]
- Grandjean, P.; Budtz-Jorgensen, E. An ignored risk factor in toxicology: The total imprecision of exposure assessment. Pure Appl. Chem. 2010, 82, 383–391. [Google Scholar] [CrossRef]
- Grandjean, P.; Budtz-Jorgensen, E. Total imprecision of exposure biomarkers: Implications for calculating exposure limits. Am. J. Ind. Med. 2007, 50, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Weisskopf, M.G.; Seals, R.M.; Webster, T.F. Bias Amplification in Epidemiologic Analysis of Exposure to Mixtures. Environ. Health Perspect. 2018, 126, 047003. [Google Scholar] [CrossRef]
- Levin-Schwartz, Y.; Gennings, C.; Claus Henn, B.; Coull, B.A.; Placidi, D.; Lucchini, R.; Smith, D.R.; Wright, R.O. Multi-media biomarkers: Integrating information to improve lead exposure assessment. Environ. Res. 2020, 183, 109148. [Google Scholar] [CrossRef]
- Levin-Schwartz, Y.; Henn, B.C.; Gennings, C.; Coull, B.A.; Placidi, D.; Horton, M.K.; Smith, D.R.; Lucchini, R.G.; Wright, R.O. Integrated measures of lead and manganese exposure improve estimation of their joint effects on cognition in Italian school-age children. Environ. Int. 2021, 146, 106312. [Google Scholar] [CrossRef]
- Rechtman, E.; Curtin, P.; Papazaharias, D.M.; Renzetti, S.; Cagna, G.; Peli, M.; Levin-Schwartz, Y.; Placidi, D.; Smith, D.R.; Lucchini, R.G.; et al. Sex-specific associations between co-exposure to multiple metals and visuospatial learning in early adolescence. Transl. Psychiaty 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Burris, H.H.; Braun, J.M.; Byun, H.M.; Tarantini, L.; Mercado, A.; Wright, R.J.; Schnaas, L.; Baccarelli, A.A.; Wright, R.O.; Tellez-Rojo, M.M. Association between birth weight and DNA methylation of IGF2, glucocorticoid receptor and repetitive elements LINE-1 and Alu. Epigenomics 2013, 5, 271–281. [Google Scholar] [CrossRef] [Green Version]
- The World Health Organization. WHO Child Growth Standards. 2007. Available online: http://www.who.int/childgrowth/en/ (accessed on 20 April 2021).
- Ng, D.K.; Schwartz, G.J.; Schneider, M.F.; Furth, S.L.; Warady, B.A. Combination of pediatric and adult formulas yield valid glomerular filtration rate estimates in young adults with a history of pediatric chronic kidney disease. Kidney Int. 2018, 94, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Jaffé, M. Ueber den Niederschlag, Welchen Pikrinsäure in Normalem Harn Erzeugt und über eine neue Reaction des Kreatinins. 1886. Available online: https://www.degruyter.com/document/doi/10.1515/bchm1.1886.10.5.391/html (accessed on 20 April 2021).
- DJ, H. Total Fecundability and Fetal Loss in Rural Bangladesh; Pennsylvania State University: State College, PA, USA, 1996. [Google Scholar]
- White, B.C.; Jamison, K.M.; Grieb, C.; Lally, D.; Luckett, C.; Kramer, K.S.; Phillips, J. Specific gravity and creatinine as corrections for variation in urine concentration in humans, gorillas, and woolly monkeys. Am. J. Primatol. 2010, 72, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef] [PubMed]
- Levin-Schwartz, Y.; Gennings, C.; Schnaas, L.; Del Carmen Hernandez Chavez, M.; Bellinger, D.C.; Tellez-Rojo, M.M.; Baccarelli, A.A.; Wright, R.O. Time-varying associations between prenatal metal mixtures and rapid visual processing in children. Environ. Health 2019, 18, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melsom, T.; Nair, V.; Schei, J.; Mariani, L.; Stefansson, V.T.N.; Harder, J.L.; Jenssen, T.G.; Solbu, M.D.; Norvik, J.V.; Looker, H.; et al. Correlation Between Baseline GFR and Subsequent Change in GFR in Norwegian Adults Without Diabetes and in Pima Indians. Am. J. Kidney Dis. 2019, 73, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Thomson, H.J.; Ekinci, E.I.; Radcliffe, N.J.; Seah, J.M.; MacIsaac, R.J.; Jerums, G.; Premaratne, E. Elevated baseline glomerular filtration rate (GFR) is independently associated with a more rapid decline in renal function of patients with type 1 diabetes. J. Diabetes Complicat. 2016, 30, 256–261. [Google Scholar] [CrossRef]
- Luo, J.; Hendryx, M. Metal mixtures and kidney function: An application of machine learning to NHANES data. Environ. Res. 2020, 191, 110126. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.; Zhu, X.; Shrubsole, M.J.; Yu, C.; Xia, Z.; Dai, Q. Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003-2012. Environ. Int. 2018, 121, 1355–1362. [Google Scholar] [CrossRef]
- Buser, M.C.; Ingber, S.Z.; Raines, N.; Fowler, D.A.; Scinicariello, F. Urinary and blood cadmium and lead and kidney function: NHANES 2007-2012. Int. J. Hyg. Environ. Health 2016, 219, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Weaver, V.M.; Vargas, G.G.; Silbergeld, E.K.; Rothenberg, S.J.; Fadrowski, J.J.; Rubio-Andrade, M.; Parsons, P.J.; Steuerwald, A.J.; Navas-Acien, A.; Guallar, E. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ. Res. 2014, 132, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Weidemann, D.; Kuo, C.C.; Navas-Acien, A.; Abraham, A.G.; Weaver, V.; Fadrowski, J. Association of arsenic with kidney function in adolescents and young adults: Results from the National Health and Nutrition Examination Survey 2009-2012. Environ. Res. 2015, 140, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Fadrowski, J.J.; Abraham, A.G.; Navas-Acien, A.; Guallar, E.; Weaver, V.M.; Furth, S.L. Blood lead level and measured glomerular filtration rate in children with chronic kidney disease. Environ. Health Perspect. 2013, 121, 965–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, D.A.; Qayyum, S.; Saleem, S.; Ansari, W.M.; Khan, F.A. Lead exposure and its adverse health effects among occupational worker’s children. Toxicol. Ind. Health 2010, 26, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; VanDreel, A.; Ackerman, C.D.; Stock, I.; Papaeliou, A.; Yasmine, C.; Wilson, K.; Lamar, P.C.; Sears, V.L.; Gasiorowski, J.Z.; et al. Evaluation of cystatin C as an early biomarker of cadmium nephrotoxicity in the rat. Biometals 2016, 29, 131–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, V.M.; Kim, N.S.; Jaar, B.G.; Schwartz, B.S.; Parsons, P.J.; Steuerwald, A.J.; Todd, A.C.; Simon, D.; Lee, B.K. Associations of low-level urine cadmium with kidney function in lead workers. Occup. Environ. Med. 2011, 68, 250–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, G.L.; Thayer, W.C.; Brown, J.S.; Burgess, M.; Follansbee, M.H.; Gaines, L.G.T.; Klotzbach, J.M. Estimates of urinary blood lead clearance and its relationship to glomerular filtration rate based on a large population survey. J. Toxicol. Environ. Health A 2019, 82, 379–382. [Google Scholar] [CrossRef]
Demographics | Category | n (%) |
---|---|---|
Total | 300 (100%) | |
Child Sex | Male | 158 (53%) |
Female | 142 (47%) | |
Indoor Tobacco Smoke Exposure during Pregnancy | No | 207 (69%) |
Yes | 93 (31%) | |
Socio-economic Status during Pregnancy | Lower | 161 (54% |
Medium | 112 (37%) | |
Higher | 27 (9%) | |
Child Body Mass Index | Normal | 162 (54%) |
Overweight | 71 (24%) | |
Obese | 67 (22%) | |
Mean ± SD | ||
Child Age (years) | 9.6 ± 0.6 | |
Serum Creatinine (mg/dL) | 89.9 ± 35.6 | |
Estimated Glomerular Filtration Rate (Cystatin C, mL/min/1.73 m2) | 100.5 ± 23.1 | |
Serum Cystatin C (ng/mL) | 724 ± 172 |
Metal | 25th Percentile | Median | 75th Percentile | Mean ± SD | Mean ± SD [12] a |
---|---|---|---|---|---|
Blood As (ng/dL) | 36.9 | 45.6 | 62.2 | 64.5 ± 85.6 | N/A |
Blood Cd (ng/dL) | 5.4 | 7.2 | 9.5 | 7.8 ± 3.6 | 20 ± 46 |
Blood Pb (μg/dL) | 1.3 | 1.6 | 2.4 | 2.3 ± 2.4 | 0.7 ± 1.0 |
Urine As (μg/L) | 8.9 | 13.6 | 20.1 | 19.0 ± 25.8 | 13.6 ± 62.0 |
Urine Cd (ng/L) | 44.9 | 63.5 | 92.3 | 75.2 ± 67.8 | 90 ± 130 |
Urine Pb (μg/L) | 0.9 | 1.5 | 2.5 | 2.3 ± 4.2 | 0.4 ± 0.5 |
Blood Mixture (Bmix) | Urine Mixture (Umix) | MMB | All Biomarkers | |
---|---|---|---|---|
As | 26% | 8% | 22% | 19% |
Cd | 10% | 84% | 74% | 73% |
Pb | 65% | 8% | 4% | 8% |
As MMB | Cd MMB | Pb MMB | MMB Overall | All Biomarkers | |
---|---|---|---|---|---|
Blood | 69% | 22% | 68% | 34% | 33% |
Urine | 31% | 78% | 33% | 66% | 67% |
Blood Mixture (Bmix) | Urine Mixture (Umix) | MMB | All Biomarkers | |
---|---|---|---|---|
As | 23% | 8% | 22% | 19% |
Cd | 15% | 84% | 73% | 73% |
Pb | 62% | 8% | 5% | 8% |
As MMB | Cd MMB | Pb MMB | MMB Overall | All Biomarkers | |
---|---|---|---|---|---|
Blood | 70% | 22% | 26% | 32% | 33% |
Urine | 30% | 78% | 74% | 68% | 67% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin-Schwartz, Y.; Politis, M.D.; Gennings, C.; Tamayo-Ortiz, M.; Flores, D.; Amarasiriwardena, C.; Pantic, I.; Tolentino, M.C.; Estrada-Gutierrez, G.; Lamadrid-Figueroa, H.; et al. Nephrotoxic Metal Mixtures and Preadolescent Kidney Function. Children 2021, 8, 673. https://doi.org/10.3390/children8080673
Levin-Schwartz Y, Politis MD, Gennings C, Tamayo-Ortiz M, Flores D, Amarasiriwardena C, Pantic I, Tolentino MC, Estrada-Gutierrez G, Lamadrid-Figueroa H, et al. Nephrotoxic Metal Mixtures and Preadolescent Kidney Function. Children. 2021; 8(8):673. https://doi.org/10.3390/children8080673
Chicago/Turabian StyleLevin-Schwartz, Yuri, Maria D. Politis, Chris Gennings, Marcela Tamayo-Ortiz, Daniel Flores, Chitra Amarasiriwardena, Ivan Pantic, Mari Cruz Tolentino, Guadalupe Estrada-Gutierrez, Hector Lamadrid-Figueroa, and et al. 2021. "Nephrotoxic Metal Mixtures and Preadolescent Kidney Function" Children 8, no. 8: 673. https://doi.org/10.3390/children8080673
APA StyleLevin-Schwartz, Y., Politis, M. D., Gennings, C., Tamayo-Ortiz, M., Flores, D., Amarasiriwardena, C., Pantic, I., Tolentino, M. C., Estrada-Gutierrez, G., Lamadrid-Figueroa, H., Tellez-Rojo, M. M., Baccarelli, A. A., Wright, R. O., & Sanders, A. P. (2021). Nephrotoxic Metal Mixtures and Preadolescent Kidney Function. Children, 8(8), 673. https://doi.org/10.3390/children8080673