Assessment of Subclinical Renal Glomerular and Tubular Dysfunction in Children with Beta Thalassemia Major
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Design
2.2. Diagnostic Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.3. Sample Collection and Assay
2.3.1. Sample Size Calculation
2.3.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yesilipek, M.A. Stem cell transplantation in hemoglobinopathies. Hemoglobin 2007, 31, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Shinar, E.; Rachmilewitz, E.A. Oxidative denaturation of red blood cells in thalassemia. Semin. Hematol. 1990, 27, 70–82. [Google Scholar] [PubMed]
- Yuan, J.; Kannan, R.; Shinar, E.; Rachmilewitz, E.A.; Low, P.S. Isolation, characterization, and immune-precipitation studies of immune complexes from membranes of beta-thalassemic erythrocytes. Blood 1992, 79, 3007–3013. [Google Scholar] [CrossRef] [PubMed]
- Origa, R. Beta-thalassemia. Genet. Med. 2017, 19, 609–619. Available online: https://www.nature.com/articles/gim2016173/ (accessed on 3 November 2016). [CrossRef] [PubMed] [Green Version]
- Şen, V.; Ece, A.; Uluca, Ü.; Söker, M.; Güneş, A.; Kaplan, I.; Tan, İ.; Yel, S.; Mete, N.; Sahin, C. Urinary early kidney injury molecules in children with betathalassemia major. Ren. Fail. 2015, 37, 607–613. [Google Scholar] [CrossRef]
- Bakr, A.; Al-Tonbary, Y.; Osman, G.; El-Ashry, R. Renal complications of beta-thalassemia major in children. Am. J. Blood Res. 2014, 4, 1–6. [Google Scholar]
- Sleiman, J.; Tarhini, A.; Taher, A.T. Renal complications in thalassemia. Thalass. Rep. 2018, 8, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Musallam, K.M.; Taher, A.T. Mechanisms of renal disease in beta-thalassemia. J. Am. Soc. Nephrol. JASN 2012, 23, 1299–1302. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, A.; Suemaru, K.; Araki, H. A new approach for evaluating renal function and its practical application. J. Pharmacol. Sci. 2007, 105, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mohkam, M.; Ghafari, A. The Role of Urinary N-acetyl-beta-glucosaminidase in Diagnosis of Kidney Diseases. J. Pediatr. Nephrol. 2015, 3, 84–91. [Google Scholar] [CrossRef]
- Moresco, R.N.; Bochi, G.V.; Stein, C.S.; De Carvalho, J.A.M.; Cembranel, B.M.; Bollick, Y.S. Urinary kidney injury molecule-1 in renal disease. Clin. Chim. Acta 2018, 487, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Don-Wauchope, A.C. The clinical utility of kidney injury molecule 1 in the prediction, diagnosis and prognosis of acute kidney injury: A systematic review. Inflamm. Allergy Drug Targets 2011, 10, 260–271. [Google Scholar] [CrossRef]
- Bazzi, C.; Petrini, C.; Rizza, V.; Arrigo, G.; Napodano, P.; Paparella, M.; D’Amico, G. Urinary N-acetyl-bglucosaminidase excretion is a marker of tubular cell dysfunction and a predictor of outcome in primary glomerulonephritis. Nephrol. Dial. Transpl. 2002, 17, 1890–1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.T.; Song, J.S.; Kim, S.J.; Kim, C.H.; Moon, S.J. The Utility of the Random Urine Uric Acid-to-Creatinine Ratio for Patients with Gout Who Need Uricosuric Agents: Retrospective Cross-Sectional Study. J. Korean Med. Sci. 2020, 35, e95. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.J.; Laszik, Z.; Wang, X.Q.; Silva, F.G.; Vaziri, N.D. Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab. Investig. 2000, 80, 1905–1914. [Google Scholar] [CrossRef] [Green Version]
- Claudio, P.; Musallam, K.M.; Cianciulli, P.; Cappellini, M.D. Renal Complications in Transfusion-Dependent Beta Thalassaemia. Blood Rev. 2010, 24, 239–244. [Google Scholar] [CrossRef]
- Vichinsky, E. Clinical Application of Deferasirox: Practical Patient Management. Am. J. Hematol. 2008, 83, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Nangaku, M. Chronic hypoxia and tubule-interstitial injury: A final common pathwayto end-stage renal failure. J. Am. Socnephrol. 2006, 17, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Bekhit, O.E.; El Dash, H.H.; Ahmed, M.S. Early detection of kidney dysfunction in Egyptian patients with beta-thalassemia major. Egypt. Pediatr. Assoc. Gaz. 2017, 65, 85–89. [Google Scholar] [CrossRef]
- Hamed, E.A.; Elmelegy, N.T. Renal functions in pediatric patients with beta thalassemia major: Relation to chelation therapy: Original prospective study. Italian J. Pediatr. 2010, 36–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansi, K.; Talal, A.; Mohammed, A.; Muna, A. Biochemical factors relevant to kidney functions among Jordanian children with B thalassemia major treated with deferoxamine. Int. J. Med. Sci. 2013, 5, 374–379. [Google Scholar] [CrossRef]
- Oktenli, C.; Bulucu, F. Renal tubular dysfunction in a patient with beta thalassemia minor. Nephron 2002, 92, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Hashemieh, M.; Radfar, M.; Azarkeivan, A.; Tabatabaei, S.M.T.H.; Sedigheh Nikbakht, S.; Yaseri, M.; Sheibani, K. Renal Hemosiderosis among Iranian Transfusion Dependent β- Thalassemia Major Patients. Int. J. Hematol. Oncol. Stem. Cell Res. 2017, 11, 133–138. [Google Scholar] [PubMed]
- Quinn, C.T.; Johnson, V.L.; Kim, H.Y.; Trachtenberg, F.; Vogiatzi, M.G.; Kwiatkowski, J.L.; Neufeld, E.J.; Fung, E.; Oliveri, N.; Kirby, M.; et al. Renal dysfunction in patients with thalassaemia. Br. J. Hematol. 2011, 153, 111–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Economou, M.; Printza, N.; Teli, A.; Tzimouli, V.; Tsatra, I.; Papachristou, F.; Athanassiou-Metaxa, M. Renal dysfunction in patients with beta-thalassemia major receiving iron chelation therapy either with deferoxamine and deferiprone or with deferasirox. Acta Haematol. 2010, 123, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.; Milat, F.; Fuller, P.J.; Kerr, P.G.; Doery, J.C.G.; Oh, D.H.; Jackson, D.; Gillespie, M.T.; Bowden, D.K.; Pasricha, S.R.; et al. Urolithiasis is prevalent and associated with reduced bone mineral density in beta-thalassaemia major. Intern. Med. J. 2017, 47, 1064–1067. [Google Scholar] [CrossRef]
- Aldudak, B.; Bayazit, A.K.; Noyan, A.; Ozel, A.; Anarat, A.; Sasmaz, I.; Kilinç, Y.; Gali, E.; Anarat, R.; Dikmen, N. Renal Function in Pediatric Patients with Beta Thalassemia Major. Pediatr. Nephrol. 2000, 15, 109–112. [Google Scholar] [CrossRef]
- Tantawy, A.A.; El Bablawy, N.; Adly, A.A.; Ebeid, F.S. Early Predictors of Renal Dysfunction in Egyptian Patients with β- Thalassemia Major and Intermedia. Mediterr. J. Hematol. Infect. Dis. 2014, 6, e2014057. [Google Scholar] [CrossRef] [Green Version]
- Smolkin, V.; Halevy, R.; Levin, C.; Mines, M.; Sakran, W.; Ilia, K.; Koren, A. Renal function in children with beta-thalassemia major and thalassemia intermedia. Pediatr. Nephrol. 2008, 23, 1847–1851. [Google Scholar] [CrossRef]
- Ahmadzadeh, A.; Jalali, A.; Assar, S.; Khalilian, H.; Zandian, K.; Pedram, M. Renal tubular dysfunction in pediatric patients with beta-thalassemia major. Saud. J. Kidney Dis. Transpl. 2011, 22, 497–500. [Google Scholar]
- ElAlfy, M.S.; Khalil, E.N.H.; Ebeid, F.S.E.; Ismail, E.A.; Ahmed, K.A.; Darwish, Y.W.; Ibrahim, A.S.; Elghamry, I.R.F.; Shokrey, N.A.; Alajeil, D.N. Renal iron deposition by magnetic resonance imaging in pediatric β-thalassemia major patients: Relation to renal biomarkers, total body iron and chelation therapy. Eur J. Radiol. 2018, 103, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Nafea, O.E.; Zakria, M.; Hassan, T.; El Gebaly, S.; Salah, H. Subclinical Nephrotoxicity in Patients with Beta-Thalassemia: Role of Urinary Kidney Injury Molecule. Drug Chem. Toxicol. 2019, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dou, H.; Qin, Y.; Chen, G.; Zhao, Y. Effectiveness and Safety of Deferasirox in Thalassemia with Iron Overload: A Meta-Analysis. Acta Haematol. 2019, 141, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Al-Khabori, M.; Bhandari, S.; Al-Huneini, M.; Panjwani, V.; Darr, S. Side Effects of Deferasirox Iron Chelation in Patients with Beta Thalassemia Major or Intermedia. Oman Med. J. 2013, 28, 121–124. [Google Scholar] [CrossRef]
- Diaz-Garcia, J.D.; Gallegos-Villalobos, A.; Gonzalez-Espinoza, L.; Villarrubia, J.; Ortiz, A. Deferasirox nephrotoxicity-the knowns and unknowns. Nat. Rev. Nephrol. 2014, 10, 574–586. [Google Scholar] [CrossRef]
- Sánchez-González, P.D.; López-Hernandez, F.J.; Morales, A.I.; Macías-Nuñez, J.F.; López-Novoa, J.M. Effects of deferasirox on renal function and renal epithelial cell death. Toxicol. Lett. 2011, 203, 154–161. [Google Scholar] [CrossRef]
- Martin-Sanchez, D.; Gallegos-Villalobos, A.; Fontecha-Barriuso, M.; Carrasco, S.; Sanchez-Nino, M.D.; Lopez-Hernandez, F.J.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A.; Sanz, A.B. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells. Sci. Rep. 2017, 7, 41510. [Google Scholar] [CrossRef] [Green Version]
- Balocco, M.; Carrara, P.; Pinto, V.; Forni, G.L. Daily alternating deferasirox and deferiprone therapy for “hard-to-chelate” beta-thalassemia major patients. Am. J. Hematol. 2010, 85, 460–461. [Google Scholar] [CrossRef] [Green Version]
- Behairy, O.G.; Abd Almonaem, E.R.; Abed, N.T.; Abdel Haiea, O.M.; Zakaria, R.M.; AbdEllatay, R.I.; Asr, E.H.; Mansour, A.I.; Abdelrahman, A.M.; Elhady, H.A. Role of serum cystatin-C and beta-2 microglobulin as early markers of renal dysfunction in children with beta thalassemia major. Int. J. Nephrol. Renov. Dis. 2017, 10, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Baxmann, A.C.; Ahmed, M.S.; Marques, N.C.; Menon, V.B.; Pereira, A.B.; Kirsztajn, G.M.; Heilberg, I.P. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin, C. Clin. J. Am. Soc. Nephrol. 2008, 3, 348–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong-ajyooth, L.; Malasit, P.; Ong-ajyooth, S.; Fucharoen, S.; Pootrakul, P.; Vasuvattakul, S.; Siritanaratkul, N.; Nilwarangkur, S. Renal function in adult Beta thalassemic/HbE disease. Nephron 1998, 78, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Belhoul, K.M.; Bakir, M.L.; Saned, M.S.; Kadhim, A.M.A.; Musallam, K.M.; Taher, A.T. Serum ferritin levels and endocrinopathy in medically treated patients with thalassemia major. Ann. Hematol. 2012, 91, 1107–1114. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.A.; Moustafa, N.O.; Habib, S.A.; Mohammad, N.A.; El Kafoury, M.R.; Talaat, A.A. Impact of Splenectomy and Chelating Agents on Serum Cystatin C Levels in Egyptian Children With Beta-Thalassemia. Aust. J. Basic Appl. Sci. 2012, 6, 85–89. [Google Scholar]
- Ali, B.A.; Mahmoud, A.M. Frequency of glomerular dysfunction in children with beta thalassemia major. Sultan Qaboos Univ. Med. J. 2014, 14, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Elbedewy, T.A.; Gawaly, A.M.; Abd El-Naby, A.Y. Serum cystatin-C and urinary N-acetyl-beta-D- glucosaminidase as biomarkers for early renal dysfunction in adult Egyptian patients with β-thalassemia major. Tanta Med. J. 2015, 43, 28–35. [Google Scholar] [CrossRef]
- Afshan, S.; Parisa, M.H.; Shahram, A.; Azita, A.; Hashemieh, M. Renal Iron Load Estimation in Thalassemia Patients Using T2* Magnetic Resonance Imaging. Int. J. Med. Res. Health Sci. 2019, 8, 182–189. [Google Scholar]
Characteristics of Groups | TM Patients | Controls | p-Value |
---|---|---|---|
Age (year) Median (Range) | 10 (2–18) | 8 (2–17) | 0.08 |
Sex | |||
Male | 62 (62.0%) | 56 (56.0%) | 0.39 |
Female | 38 (38.0%) | 44 (44.0%) | |
Hb (g/dL) Mean ± SD | 7.17 ± 0.77 | 12.11 ± 0.83 | <0.001 * |
HCT (%) Mean ± SD | 21.62 ± 2.42 | 36.32 ± 2.49 | <0.001 * |
MCV (fl) Mean ± SD | 64.95 ± 13.85 | 72.55 ± 15.94 | <0.001 * |
Body weight (kg) | 33.48 ± 13.28 | 36.3 ± 14.66 | 0.05 * |
Ferritin (ng/mL) Mean ± SD | 2820.55 ± 742.81 | 44.50 ± 13.14 | <0.001 * |
Parameters | TM Patients | Controls | p-Value |
---|---|---|---|
Serum Creatinine (mg/dL) Mean ± SD | 0.80 ± 0.13 | 0.55 ± 0.10 | <0.001 * |
Serum Urea (mg/dL) Mean ± SD | 22.64 ± 3.42 | 13.40 ± 3.12 | <0.001 * |
eGFR (mL/min/1.73 m2) Mean ± SD | 112.89 ± 17.33 | 118.50 ± 14.04 | 0.01 * |
Urinary protein/Cr Median (Range) | 0.29 (0.08–0.45) | 0.12 (0.02–0.20) | <0.001 * |
UCa/Cr Median (Range) | 0.28 (0.08–0.45) | 0.16 (0.05–0.22) | <0.001 * |
UNa/Cr Median (Range) | 2.55 (0.40–10.0) | 2.75 (0.20–5.0) | 0.18 |
UK/Cr Median (Range) | 2.2 (0.90–4.0) | 1.45 (0.50–3.0) | <0.001 * |
U uric acid/Cr Median (range) | 0.50 (0.2–1.43) | 0.33 (0.14–1.12) | 0.04 * |
Parameters | TM Patients | Controls | p-Value |
---|---|---|---|
Urine NAG (U/g/Creatinine) Mean ± SD | 29.84 ± 8.76 | 7.60 ± 1.81 | <0.001 * |
Urine KIM-1 (ng/g/Creatinine) Mean ± SD | 5.05 ± 0.65 | 3.50 ± 0.74 | <0.001 * |
Serum Cystatin C (mg/L) Mean ± SD | 1.23 ± 0.32 | 0.81 ± 0.06 | <0.001 * |
UNAG/Cr Median (range) | 2.0 (0.10–2.90) | 0.35 (0.05–0.70) | <0.001 * |
UKIM-1/Cr Median (range) | 0.16 (0.02–0.26) | 0.03 (0.01–0.07) | <0.001 * |
Parameters | Cystatin-C (mg/L) | UNAG (U/g/Creatinine) | UKIM-1 (ng/g/Creatinine) | |||
---|---|---|---|---|---|---|
r | Beta | r | Beta | r | Beta | |
Age (year) | −0.062 | 0.013 | −0.038 | 0.089 | −0.013 | 0.026 |
Body weight (kg) | −0.046 | 0.014 | −0.050 | 0.017 | −0.081 | 0.012 |
Ferritin (ng/mL) | 0.519 * | 0.001 * | 0.781 * | 0.009 * | 0.307 * | 0.001 * |
Serum Creatinine (mg/dL) | 0.659 * | 0.003 * | 0.474 * | −7.59 * | 0.332 * | 4.32 * |
Serum Urea (mg/dL) | 0.412 * | 0.013 | 0.457 * | 0.400 | 0.333 * | −0.034 |
eGFR (mL/min/73 m2) | −0.517 * | 0.001 | −0.351 * | 0.074 | −0.228 * | −0.002 |
Urinary protein/Cr | 0.151 | 0.012 | 0.613 * | 5.42 | 0.457 * | −0.456 |
UCa/Cr | 0.099 | 0.015 | 0.524 * | 5.26 | 0.332 * | −0.493 |
UNa/Cr | 0.117 | 0.021 | 0.562 * | −0.075 | 0.409 * | 0.013 |
UK/Cr | 0.105 | 0.025 | 0.451 * | −1.43 | 0.221 * | 0.183 |
Uuric acid/Cr | 0.316 | 0.039 | 0.422 * | 0.003 | 0.412 * | 0.001 |
Iron chelation | −0.523 | 0.001 | −0.062 | −0.005 | 0.583 * | 0.003 |
Transfusion index (mL/kg/year) | 0.307 * | 0.001 | 0.258 * | −0.009 * | 0.237 * | 0.003 |
Time from diagnosis (year) | −0.144 | 0.013 | −0.114 | −0.741 | −0.005 | 0.021 |
Parameters | UNAG/Cr | UKIM-1/Cr | ||
---|---|---|---|---|
r | Beta | r | Beta | |
Age (year) | 0.037 | −0.021 | −0.042 | 0.001 |
Ferritin (ng/mL) | 0.723 * | 0.001 * | 0.850 * | −0.005 * |
Serum Creatinine (mg/dL) | 0.286 * | −1.35 * | 0.498 * | 0.026 * |
Serum Urea (mg/dL) | 0.260 * | 0.025 | 0.502 * | 0.003 |
eGFR (mL/min/73 m2) | −0.255 * | 0.003 | −0.376 * | 0.001 |
Urinary protein/Cr | 0.622 * | 0.241 | 0.685 * | 0.080 |
UCa/Cr | 0.503 * | 0.646 | 0.580 * | 0.058 |
UNa/Cr | 0.601 * | −0.008 | 0.580 * | −0.005 |
UK/Cr | 0.476 * | 0.001 | 0.571 * | 0.009 |
Uuric acid/Cr | 0.432 * | 0.008 | 0.409 * | 0.003 |
Iron chelation | 0.043 | 0.001 | −0.044 | −0.005 |
Transfusion index (mL/kg/year) | 0.289 * | 0.003 | 0.289 * | −0.005 |
Time from diagnosis (year) | 0.041 | 0.001 | −0.056 | 0.001 |
Parameters | Studied Thalassemia Major Patients | p-Value | |
---|---|---|---|
With Splenectomy (No. = 23) | Without Splenectomy (No. = 77) | ||
Urine NAG (U/g/Creatinine) Mean ± SD | 42.04 ± 3.87 | 26.19 ± 6.09 | <0.001 * |
Urine KIM-1 (ng/g/Creatinine) Mean ± SD | 5.24 ± 0.78 | 5.0 ± 0.60 | 0.19 |
UNAG/Cr Mean ± SD | 2.37 ± 0.47 | 1.83 ± 0.49 | <0.001 * |
UKIM1/Cr Mean ± SD | 0.20 ± 0.04 | 0.14 ± 0.04 | <0.001 * |
eGFR (mL/min/1.73 m2) Mean ± SD | 103.7 ± 16.8 | 115.6 ± 16.6 | 0.003 * |
Urinary protein/Cr Median (Range) | 0.34 (0.18–0.45) | 0.20 (0.08–0.42) | <0.001 * |
UCa/Cr Median (Range) | 0.32 (0.16–0.45) | 0.19 (0.08–0.38) | <0.001 * |
Serum Creatinine (mg/dL) Mean ± SD | 0.89 ± 0.11 | 0.78 ± 0.12 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, A.A.; Elian, D.M.; Abd El Hady, N.M.; Abdallah, H.M.; Abdelsattar, S.; Khalil, F.O.; Abd El Naby, S.A. Assessment of Subclinical Renal Glomerular and Tubular Dysfunction in Children with Beta Thalassemia Major. Children 2021, 8, 100. https://doi.org/10.3390/children8020100
Mahmoud AA, Elian DM, Abd El Hady NM, Abdallah HM, Abdelsattar S, Khalil FO, Abd El Naby SA. Assessment of Subclinical Renal Glomerular and Tubular Dysfunction in Children with Beta Thalassemia Major. Children. 2021; 8(2):100. https://doi.org/10.3390/children8020100
Chicago/Turabian StyleMahmoud, Asmaa A., Doaa M. Elian, Nahla MS. Abd El Hady, Heba M. Abdallah, Shimaa Abdelsattar, Fatma O. Khalil, and Sameh A. Abd El Naby. 2021. "Assessment of Subclinical Renal Glomerular and Tubular Dysfunction in Children with Beta Thalassemia Major" Children 8, no. 2: 100. https://doi.org/10.3390/children8020100
APA StyleMahmoud, A. A., Elian, D. M., Abd El Hady, N. M., Abdallah, H. M., Abdelsattar, S., Khalil, F. O., & Abd El Naby, S. A. (2021). Assessment of Subclinical Renal Glomerular and Tubular Dysfunction in Children with Beta Thalassemia Major. Children, 8(2), 100. https://doi.org/10.3390/children8020100