Associations between Child and Family Level Correlates and Behavioural Patterns in School-Aged Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Intake
2.2. Physical Activity
2.3. Sedentary Behaviour
2.4. Sleep
2.5. Correlates
2.6. Statistical Analyses
2.7. Associations between Correlates and Behavioural Patterns
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Department of Health. Guidelines for Healthy Growth and Development for Children and Young People (5 to 17 Years); Department of Health: Canberra, Australia, 2019.
- National Health and Medical Research Council. Australian Dietary Guidelines; Department of Health, Australian Government: Canberra, Australia, 2018.
- Zheng, M.; Hesketh, K.D.; McNaughton, S.A.; Salmon, J.; Crawford, D.; Cameron, A.J.; Lioret, S.; Campbell, K.J. Quantifying the overall impact of an early childhood multi-behavioural lifestyle intervention. Pediatr. Obes. 2021, e12861. [Google Scholar] [CrossRef]
- Ang, Y.N.; Wee, B.S.; Poh, B.K.; Ismail, M.N. Multifactorial Influences of Childhood Obesity. Curr. Obes. Rep. 2013, 2, 10–22. [Google Scholar] [CrossRef]
- Davison, K.K.; Birch, L.L. Childhood overweight: A contextual model and recommendations for future research. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2001, 2, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Bronfenbrenner, U. The Ecology of Human Development: Experiments by Nature and Design; Harvard University Press: Cambridge, MA, USA, 1979. [Google Scholar]
- Zarnowiecki, D.M.; Dollman, J.; Parletta, N. Associations between predictors of children’s dietary intake and socioeconomic position: A systematic review of the literature. Obes. Rev. 2014, 15, 375–391. [Google Scholar] [CrossRef] [PubMed]
- Cadogan, S.L.; Keane, E.; Kearney, P.M. The effects of individual, family and environmental factors on physical activity levels in children: A cross-sectional study. BMC Pediatr. 2014, 14, 107. [Google Scholar] [CrossRef] [Green Version]
- Ash, T.; Taveras, E.M. Associations of short sleep duration with childhood obesity and weight gain: Summary of a presentation to the National Academy of Science’s Roundtable on Obesity Solutions. Sleep Health 2017, 3, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Eisenmann, J.C.; Pfeiffer, K.A.; Welk, G.; Heelan, K.; Gentile, D.; Walsh, D. Influence of socio-economic status on habitual physical activity and sedentary behavior in 8- to 11-year old children. BMC Public Health 2010, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Rodrigo, C.; Gil, Á.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Aranceta-Bartrina, J. Clustering of dietary patterns, lifestyles, and overweight among Spanish children and adolescents in the ANIBES study. Nutrients 2016, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, N.J.; Kuswara, K.; Zheng, M.; Leech, R.; Downing, K.L.; Campbell, K.J.; Hesketh, K.D. A systematic review of lifestyle patterns and their association with adiposity in children aged 5–12 years. Obes. Rev. 2020, 21, e13029. [Google Scholar] [PubMed]
- Conner, M.; Norman, P. Health behaviour: Current issues and challenges. Psychol. Health 2017, 32, 895–906. [Google Scholar] [CrossRef] [Green Version]
- Ohri-Vachaspati, P.; DeLia, D.; DeWeese, R.S.; Crespo, N.C.; Todd, M.; Yedidia, M.J. The relative contribution of layers of the Social Ecological Model to childhood obesity. Public Health Nutr. 2015, 18, 2055–2066. [Google Scholar] [CrossRef] [Green Version]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The clustering of diet, physical activity and sedentary behavior in children and adolescents: A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubbels, J.S.; van Assema, P.; Kremers, S.P. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children. Curr. Nutr. Rep. 2013, 2, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.Y.; Wong, S.H. Time use clusters in children and their associations with sociodemographic factors. J. Public Health 2016, 38, e106–e113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubbels, J.S.; Kremers, S.P.; Goldbohm, R.A.; Stafleu, A.; Thijs, C. Energy balance-related behavioural patterns in 5-year-old children and the longitudinal association with weight status development in early childhood. Public Health Nutr. 2012, 15, 1402–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumuid, D.; Olds, T.; Lewis, L.K.; Martin-Fernández, J.A.; Barreira, T.; Broyles, S.; Chaput, J.; Fogelholm, M.; Hu, G.; Kuriyan, R.; et al. The adiposity of children is associated with their lifestyle behaviours: A cluster analysis of school-aged children from 12 nations. Pediatr. Obes. 2018, 13, 111–119. [Google Scholar] [CrossRef]
- Fernández-Alvira, J.M.; De Bourdeaudhuij, I.; Singh, A.S.; Vik, F.N.; Manios, Y.; Kovacs, E.; Jan, N.; Brug, J.; Moreno, L. Clustering of energy balance-related behaviors and parental education in European children: The ENERGY-project. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Magee, C.A.; Caputi, P.; Iverson, D.C. Patterns of health behaviours predict obesity in Australian children. J. Paediatr. Child Health 2013, 49, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Moschonis, G.; Kalliora, A.C.; Costarelli, V.; Papandreou, C.; Koutoukidis, D.; Lionis, C.; Chrousos, G.; Manios, Y. Identification of lifestyle patterns associated with obesity and fat mass in children: The Healthy Growth Study. Public Health Nutr. 2014, 17, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Katzmarzyk, P.T.; Gomes, T.N.; Borges, A.; Santos, D.; Souza, M.; dos Santos, F.; Chaves, R.; Champagne, C.; Barreira, T.; et al. Profiling physical activity, diet, screen and sleep habits in Portuguese children. Nutrients 2015, 7, 4345–4362. [Google Scholar] [CrossRef] [Green Version]
- Michaelson, V.; Pilato, K.A.; Davison, C.M. Family as a health promotion setting: A scoping review of conceptual models of the health-promoting family. PLoS ONE 2021, 16, e0249707. [Google Scholar] [CrossRef]
- Hinkley, T.; Timperio, A.; Salmon, J.; Hesketh, K. Does Preschool Physical Activity and Electronic Media Use Predict Later Social and Emotional Skills at 6 to 8 Years? A Cohort Study. J. Phys. Act. Health 2017, 14, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Magarey, A.; Golley, R.; Spurrier, N.; Goodwin, E.; Ong, F. Reliability and validity of the Children’s Dietary Questionnaire; A new tool to measure children’s dietary patterns. Int. J. Pediatr. Obes. 2009, 4, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Hinkley, T.; Salmon, J.; Okely, A.D.; Crawford, D.; Hesketh, K. The HAPPY Study: Development and reliability of a parent survey to assess correlates of preschool children’s physical activity. J. Sci. Med. Sport 2012, 15, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2006, 24, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of Accelerometer Cut Points for Predicting Activity Intensity in Youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Nylund, K.L.; Asparouhov, T.; Muthén, B.O. Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study. Struct. Equ. Modeling Multidiscip. J. 2007, 14, 535–569. [Google Scholar] [CrossRef]
- Jago, R.; Fox, K.R.; Page, A.S.; Brockman, R.; Thompson, J.L. Physical activity and sedentary behaviour typologies of 10–11 year olds. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 59. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.; Salway, R.; Lawlor, D.A.; Emm-Collison, L.; Heron, J.; Thompson, J.L.; Sebire, S. Profiles of children’s physical activity and sedentary behaviour between age 6 and 9: A latent profile and transition analysis. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbe, D.; De Bourdeaudhuij, I.; Legiest, E.; Maes, L. A cluster-analytical approach towards physical activity and eating habits among 10-year-old children. Health Educ. Res. 2008, 23, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Oliva, D.; Grao-Cruces, A.; Carbonell-Baeza, A.; Cabanas-Sánchez, V.; Veiga, O.L.; Castro-Piñero, J. Lifestyle Clusters in School-Aged Youth and Longitudinal Associations with Fatness: The UP&DOWN Study. J. Pediatr. 2018, 203, 317–324.e1. [Google Scholar] [PubMed]
- Rasmussen, M.; Krølner, R.; Klepp, K.I.; Lytle, L.; Brug, J.; Bere, E.; Due, P. Determinants of fruit and vegetable consumption among children and adolescents: A review of the literature. Part I: Quantitative studies. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, A.J.; Crawford, D.A.; Salmon, J.; Campbell, K.; McNaughton, S.A.; Mishra, G.D.; Ball, K. Clustering of Obesity-Related Risk Behaviors in Children and Their Mothers. Ann. Epidemiol. 2011, 21, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Santaliestra-Pasias, A.M.; Mouratidou, T.; Reisch, L.; Pigeot, I.; Ahrens, W.; Mårild, S.; Molnar, D.; Sieri, S.; Tornatiris, M.; Veidebaum, T.; et al. Clustering of lifestyle behaviours and relation to body composition in European children. the IDEFICS study. Eur. J. Clin. Nutr. 2015, 69, 811–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jago, R.; Solomon-Moore, E.; Macdonald-Wallis, C.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Change in children’s physical activity and sedentary time between Year 1 and Year 4 of primary school in the B-PROACT1V cohort. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 33. [Google Scholar] [CrossRef] [Green Version]
- Taverno Ross, S.E.; Dowda, M.; Dishman, R.K.; Pate, R.R. Classes of physical activity and sedentary behavior in 5th grade children. Am. J. Health Behav. 2016, 40, 352–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. Clustering of children’s obesity-related behaviours: Associations with sociodemographic indicators. Eur. J. Clin. Nutr. 2014, 68, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. 2071.0—Census of Population and Housing: Reflecting Australia—Stories from the Census; Australian Bureau of Statistics: Canberra, Australia, 2016.
Variable | 6–8 y (n = 335) | 9–11 y (n = 339) |
---|---|---|
Child Age (Years) [Mean ± SD (Range)] | 7.5 ± 0.7 (6.0–9.1) | 10.6 ± 0.7 (9.0–12.2) |
Sex [n (%)] | ||
Male | 191 (57.0) | 190 (56.1) |
Female | 144 (43.0) | 149 (43.9) |
Parent Education [n (%)] | ||
Below university level | 109 (32.5) | 105 (31.0) |
University and above | 226 (67.5) | 234 (69.0) |
Marital status [n (%)] | ||
Married/de facto | 306 (91.3) | 301 (88.8) |
Other | 29 (8.7) | 38 (11.2) |
Number of working hours [Mean ± SD (range)] | 4.7 ± 3.9 (0–19.2) | 5.3 ± 3.6 (0–16) |
Pension or Health care card | ||
Yes | 35 (10.4) | 37 (10.9) |
No | 300 (89.6) | 302 (89.1) |
Sibling type [n (%)] | ||
Only child | 43 (12.8) | 41 (12.1) |
Oldest child | 134 (40.0) | 140 (41.3) |
Youngest child | 113 (33.7) | 109 (32.2) |
Middle child | 45 (13.5) | 49 (14.4) |
Correlates | Bivariate Model ^ | Multivariate Model ^ | ||||||
---|---|---|---|---|---|---|---|---|
Unhealthy (n = 69) | Active Unhealthy Eaters (n = 74) | Unhealthy (n = 69) | Active Unhealthy Eaters (n = 74) | |||||
RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | |
Child sex (ref: male) | ||||||||
Female | 1.34 (0.75, 2.39) | 0.324 | 0.37 (0.22, 0.63) | 0.000 | 1.56 (0.83, 2.93) | 0.170 | 0.34 (0.19, 0.59) | 0.000 |
Child age (years) | 1.89 (1.18, 3.02) | 0.008 | 0.51 (0.33, 0.77) | 0.002 | 2.00 (1.22, 3.27) | 0.006 | 0.47 (0.30, 0.74) | 0.001 |
Below university parent education (ref) | - | - | - | - | ||||
University and above | 0.68 (0.36, 1.30) | 0.243 | 0.72 (0.39, 1.31) | 0.280 | ||||
Married/de facto (ref) | ||||||||
Other | 2.16 (0.76, 6.17) | 0.151 | 2.58 (0.88, 7.51) | 0.084 | 2.14 (0.58, 7.91) | 0.253 | 1.11 (0.28, 4.44) | 0.885 |
Working hours | 1.01 (0.94, 1.09) | 0.756 | 1.01 (0.95, 1.08) | 0.778 | - | - | - | |
Health care or Pension card (ref: no) | ||||||||
Yes | 1.91 (0.75, 4.87) | 0.177 | 2.46 (0.97, 6.27) | 0.059 | 1.20 (0.37, 3.91) | 0.758 | 2.41 (0.71, 8.17) | 0.157 |
Sibling type (ref: only child) | 0.320 | 0.102 | - | - | - | - | ||
Oldest child | 0.67 (0.28, 1.59) | 0.55 (0.22, 1.38) | ||||||
Youngest child | 1.08 (0.47, 2.47) | 1.17 (0.41, 3.35) | ||||||
Middle child | 1.38 (0.54, 3.56) | 0.70 (0.21, 2.28) |
Correlates | Bivariate Model ^ | Multivariate Model ^ | ||||||
---|---|---|---|---|---|---|---|---|
Unhealthy (n = 63) | Intermediate (n = 218) | Unhealthy (n = 63) | Intermediate (n = 218) | |||||
RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | RRR (95% CI) | p-Value | |
Child sex (ref: male) | ||||||||
Female | 11.07 (4.62, 26.53) | 0.000 | 6.65 (2.93, 15.06) | 0.000 | 11.63 (4.71, 28.72) | 0.000 | 6.57 (2.84, 15.24) | 0.000 |
Child age (years) | 1.87 (1.17, 2.99) | 0.009 | 1.09 (0.76, 1.55) | 0.652 | 2.07 (1.26, 3.39) | 0.004 | 1.16 (0.80, 1.70) | 0.434 |
Below university parent education (ref) | ||||||||
University and above | 0.74 (0.30, 1.79) | 0.500 | 0.65 (0.32, 1.28) | 0.211 | - | - | - | - |
Married/defacto (ref) | ||||||||
Other | 0.78 (0.25, 2.44) | 0.670 | 0.74 (0.28, 1.92) | 0.532 | - | - | - | - |
Working hours | 0.91 (0.81, 1.01) | 0.084 | 0.90 (0.83, 0.98) | 0.013 | 0.92 (0.82, 1.03) | 0.159 | 0.91 (0.83, 0.99) | 0.027 |
Health care card/Pension(ref: no) | ||||||||
Yes | 1.08 (0.32, 3.72) | 0.899 | 1.07 (0.38, 3.01) | 0.895 | - | - | - | - |
Sibling type(ref: only child) | - | - | - | - | ||||
Oldest child | 0.81 (0.30, 2.19) | 0.363 | 0.83 (0.31, 2.26) | 0.490 | ||||
Youngest child | 0.59 (0.21, 1.67) | 0.66 (0.25, 1.72) | ||||||
Middle child | 1.65 (0.42, 6.42) | 1.47 (0.38, 5.64) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Souza, N.J.; Zheng, M.; Abbott, G.; Lioret, S.; Hesketh, K.D. Associations between Child and Family Level Correlates and Behavioural Patterns in School-Aged Children. Children 2021, 8, 1023. https://doi.org/10.3390/children8111023
D’Souza NJ, Zheng M, Abbott G, Lioret S, Hesketh KD. Associations between Child and Family Level Correlates and Behavioural Patterns in School-Aged Children. Children. 2021; 8(11):1023. https://doi.org/10.3390/children8111023
Chicago/Turabian StyleD’Souza, Ninoshka J., Miaobing Zheng, Gavin Abbott, Sandrine Lioret, and Kylie D. Hesketh. 2021. "Associations between Child and Family Level Correlates and Behavioural Patterns in School-Aged Children" Children 8, no. 11: 1023. https://doi.org/10.3390/children8111023
APA StyleD’Souza, N. J., Zheng, M., Abbott, G., Lioret, S., & Hesketh, K. D. (2021). Associations between Child and Family Level Correlates and Behavioural Patterns in School-Aged Children. Children, 8(11), 1023. https://doi.org/10.3390/children8111023