Glutamate–Serine–Glycine Index: A Novel Potential Biomarker in Pediatric Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Oral Glucose Tolerance Test
2.3. Magnetic Resonance Imaging
2.4. Biochemical Analysis
2.5. Calculations
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trico, D.; Caprio, S.; Umano, G.R.; Pierpont, B.; Nouws, J.; Galderisi, A.; Kim, G.; Mata, M.M.; Santoro, N. Metabolic Features of Nonalcoholic Fatty Liver (NAFL) in Obese Adolescents: Findings From a Multiethnic Cohort. Hepatology 2018, 68, 1376–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trico, D.; Biancalana, E.; Solini, A. Protein and amino acids in nonalcoholic fatty liver disease. Curr. Opin. Clin. Nutr. Metab. Care 2020. [Google Scholar] [CrossRef] [PubMed]
- Gaggini, M.; Carli, F.; Rosso, C.; Buzzigoli, E.; Marietti, M.; Della Latta, V.; Ciociaro, D.; Abate, M.L.; Gambino, R.; Cassader, M.; et al. Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology 2018, 67, 145–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gastaldelli, A.; Tripathy, D.; Gaggini, M.; Musi, N.; DeFron, O.R.A. Abstracts of 51st EASD Annual Meeting. Diabetologia 2015, 58 (Suppl. S1), 1–607. [Google Scholar]
- Khoo, J.; Koo, S.H.; Ching, J.; Soon, G.H.; Kovalik, J.P. Weight loss through lifestyle modification or liraglutide is associated with improvement of NAFLD severity and changes in amino acid concentrations. Endocr. Abstr. 2020, 70. [Google Scholar] [CrossRef]
- Trico, D.; Koo, S.H.; Ching, J.; Soon, G.H.; Kovalik, J.P. Intestinal Glucose Absorption Is a Key Determinant of 1-Hour Postload Plasma Glucose Levels in Nondiabetic Subjects. J. Clin. Endocrinol. Metab. 2019, 104, 2131–2139. [Google Scholar] [CrossRef]
- Goffredo, M.; Santoro, N.; Tricò, D.; Giannini, C.; D’Adamo, E.; Zhao, H.; Peng, G.; Yu, X.; Lam, T.T.; Pierpont, B.; et al. A Branched-Chain Amino Acid-Related Metabolic Signature Characterizes Obese Adolescents with Non-Alcoholic Fatty Liver Disease. Nutrients 2017, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.H.; Gardner, K.G.; Potter, C.J.; Schmalbrock, P.; Smith, M.A. Introduction of fast MR imaging in the assessment of hepatic steatosis. Magn. Reson. Imaging 1997, 15, 287–293. [Google Scholar] [CrossRef]
- Cali, A.M.; De Oliveira, A.M.; Kim, H.; Chen, S.; Reyes-Mugica, M.; Escalera, S.; Dziura, J.; Taksali, S.E.; Kursawe, R.; Shaw, M.; et al. Glucose dysregulation and hepatic steatosis in obese adolescents: Is there a link? Hepatology 2009, 49, 1896–1903. [Google Scholar] [CrossRef] [Green Version]
- Umano, G.R.; Shabanova, V.; Pierpont, B.; Mata, M.; Nouws, J.; Tricò, D.; Galderisi, A.; Santoro, N.; Caprio, S. A low visceral fat proportion, independent of total body fat mass, protects obese adolescent girls against fatty liver and glucose dysregulation: A longitudinal study. Int. J. Obes. (Lond.) 2019, 43, 673–682. [Google Scholar] [CrossRef]
- Trico, D.; Galderisi, A.; Mari, A.; Polidori, D.; Galuppo, B.; Pierpont, B.; Samuels, S.; Santoro, N.; Caprio, S. Intrahepatic fat, irrespective of ethnicity, is associated with reduced endogenous insulin clearance and hepatic insulin resistance in obese youths: A cross-sectional and longitudinal study from the Yale Pediatric NAFLD cohort. Diabetes Obes. Metab. 2020, 22, 1628–1638. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Yeckel, C.W.; Weiss, R.; Dziura, J.; Taksali, S.E.; Dufour, S.; Burgert, T.S.; Tamborlane, W.V.; Caprio, S. Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescents. J. Clin. Endocrinol. Metab. 2004, 89, 1096–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, R.; Banton, S.; Tran, V.T.; Konomi, J.V.; Li, S.; Jones, D.P.; Vos, M.B. Amino Acid Metabolism is Altered in Adolescents with Nonalcoholic Fatty Liver Disease-An Untargeted, High Resolution Metabolomics Study. J. Pediatr. 2016, 172, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sunny, N.E.; Parks, E.J.; Browning, J.D.; Burgess, S.C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011, 14, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Pirola, C.J.; Gianotti, T.F.; Burgueño, A.L.; Rey-Funes, M.; Loidl, C.F.; Mallardi, P.; San Martino, J.; Castaño, G.O.; Sookoian, S. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 2013, 62, 1356–1363. [Google Scholar] [CrossRef]
- Sookoian, S.; Flichman, D.; Scian, R.; Rohr, C.; Dopazo, H.; Gianotti, T.F.; Martino, J.S.; Castaño, G.O.; Pirola, C.J. Mitochondrial genome architecture in non-alcoholic fatty liver disease. J. Pathol. 2016, 240, 437–449. [Google Scholar] [CrossRef]
- Sookoian, S.; Castaño, G.O.; Scian, R.; Fernández Gianotti, T.; Dopazo, H.; Rohr, C.; Gaj, G.; San Martino, J.; Sevic, I.; Flichman, D.; et al. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am. J. Clin. Nutr. 2016, 103, 422–434. [Google Scholar] [CrossRef] [Green Version]
- Sookoian, S.; Pirola, C.J. Alanine and aspartate aminotransferase and glutamine-cycling pathway: Their roles in pathogenesis of metabolic syndrome. World J. Gastroenterol. 2012, 18, 3775–3781. [Google Scholar] [CrossRef]
- Hasegawa, T.; Iino, C.; Endo, T.; Mikami, K.; Kimura, M.; Sawada, N.; Nakaji, S.; Fukuda, S. Changed Amino Acids in NAFLD and Liver Fibrosis: A Large Cross-Sectional Study without Influence of Insulin Resistance. Nutrients 2020, 12, 1450. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Nagana Gowda, G.A.; Djukovic, D.; Raftery, D. Distinguishing NASH Histological Severity Using a Multiplatform Metabolomics Approach. Metabolites 2020, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Lynch, C.J.; Adams, S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014, 10, 723–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trico, D.; Prinsen, H.; Giannini, C.; de Graaf, R.; Juchem, C.; Li, F.; Caprio, S.; Santoro, N.; Herzog, R.I. Elevated alpha-Hydroxybutyrate and Branched-Chain Amino Acid Levels Predict Deterioration of Glycemic Control in Adolescents. J. Clin. Endocrinol. Metab. 2017, 102, 2473–2481. [Google Scholar] [CrossRef] [Green Version]
- Kalhan, S.C.; Guo, L.; Edmison, J.; Dasarathy, S.; McCullough, A.J.; Hanson, R.W.; Milburn, M. Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism 2011, 60, 404–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GSG High (n = 26) | GSG Low (n = 52) | p | |
---|---|---|---|
CLINICAL FEATURES | |||
Age (years) | 12.7 ± 3.0 | 13.6 ± 3.0 | 0.30 |
Sex (M/F) | 16 (62%)/10 (38%) | 22 (42%)/30 (58%) | 0.11 |
Race (Caucasian/African American/ Hispanic/Asian) | 8 (31%)/4 (15%)/14 (54%)/0 (0%) | 18 (35%)/18 (35%)/15 (29%)/1 (1%) | 0.12 |
Body Mass Index (kg/m2) | 32.5 ± 6.9 | 34.69 ± 6.25 | 0.18 |
Body Mass Index z-score | 2.29 ± 0.28 | 2.32 ± 0.37 | 0.73 |
Systolic blood pressure (mmHg) | 115 ± 12 | 116 ± 9 | 0.66 |
Diastolic blood pressure (mmHg) | 67 ± 8 | 68 ± 8 | 0.59 |
GLUCOSE METABOLISM | |||
Fasting glucose (mg/dL) | 93 ± 7 | 92 ± 7 | 0.84 |
Fasting insulin (µU/mL) | 27 [1.8–45] | 27 [2.0–41] | 0.71 |
2 h glucose (mg/dL) | 120 ± 27 | 119 ± 24 | 0.86 |
Hemoglobin A1C (%) | 5.52 ± 0.31 | 5.46 ± 0.30 | 0.41 |
HOMA-IR | 6.23 [4.20–11.16] | 6.51 [4.38–9.26] | 0.66 |
Whole-Body Insulin Sensitivity Index | 1.70 [0.74–2.46] | 1.73 [1.11–2.39] | 0.67 |
Hepatic Insulin Resistance Index | 1611 [905–2403] | 1499 [946–2018] | 0.35 |
Insulinogenic Index | 4.06 [2.43–6.50] | 3.67 [2.85–5.08] | 0.79 |
Disposition Index | 5.05 [3.85–7.01] | 5.88 [4.49–9.51] | 0.34 |
LIPID PROFILE | |||
Total Cholesterol (mg/dL) | 159 [140–179] | 142 [131–169] | 0.14 |
HDL Cholesterol (mg/dL) | 40 [33–49] | 46 [39–51] | 0.07 |
LDL Cholesterol (mg/dL) | 92 [76–119] | 86 [72–102] | 0.29 |
Triglycerides (mg/dL) | 119 [85–140] | 68 [50–106] | <0.0001 |
AMINO ACID PROFILE | |||
Glutamate (μmol/L) | 147 [121–177] | 73 [57–86] | <0.0001 |
Serine (μmol/L) | 100 [88–106] | 102 [87–117] | 0.28 |
Glycine (μmol/L) | 175 [149–203] | 199 [180–239] | 0.04 |
GSG index | 0.50 [0.47–0.58] | 0.25 [0.17–0.31] | <0.0001 |
BCAA (μmol/L) | 413 [363–491] | 423 [361–475] | 0.70 |
ABDOMINAL FAT COMPOSITION | |||
Visceral (cm2) | 70.9 [48.5–90.6] | 59.4 [39.6–81] | 0.24 |
Subcutaneous (cm2) | 470.2 [356.2–680.2] | 540.1 [398.8–734.1] | 0.27 |
Visceral/Subcutaneous (%) | 10.3 [8.7–14.9] | 11.0 [8.2–16.7] | 0.58 |
Visceral/Total (%) | 9.4 [8.1–13.5] | 10.0 [7.8–14.3] | 0.67 |
LIVER ENZYMES | |||
Alanine transaminase (U/L) | 24 [18–40] | 17 [12–22] | 0.001 |
Aspartate transaminase (U/L) | 23 [20–32] | 20 [17–25] | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonetti, S.; Herzog, R.I.; Caprio, S.; Santoro, N.; Tricò, D. Glutamate–Serine–Glycine Index: A Novel Potential Biomarker in Pediatric Non-Alcoholic Fatty Liver Disease. Children 2020, 7, 270. https://doi.org/10.3390/children7120270
Leonetti S, Herzog RI, Caprio S, Santoro N, Tricò D. Glutamate–Serine–Glycine Index: A Novel Potential Biomarker in Pediatric Non-Alcoholic Fatty Liver Disease. Children. 2020; 7(12):270. https://doi.org/10.3390/children7120270
Chicago/Turabian StyleLeonetti, Simone, Raimund I. Herzog, Sonia Caprio, Nicola Santoro, and Domenico Tricò. 2020. "Glutamate–Serine–Glycine Index: A Novel Potential Biomarker in Pediatric Non-Alcoholic Fatty Liver Disease" Children 7, no. 12: 270. https://doi.org/10.3390/children7120270
APA StyleLeonetti, S., Herzog, R. I., Caprio, S., Santoro, N., & Tricò, D. (2020). Glutamate–Serine–Glycine Index: A Novel Potential Biomarker in Pediatric Non-Alcoholic Fatty Liver Disease. Children, 7(12), 270. https://doi.org/10.3390/children7120270