Triage for Malnutrition Risk among Pediatric and Adolescent Outpatients with Cystic Fibrosis, Using a Disease-Specific Tool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Recruitment
2.2. Anthropometric Measures
2.3. Patients’ Medical History, Physical and Clinical Parameters and CF-Related Comorbidities
2.4. Malnutrition Risk
2.5. Statistical Analyses
3. Results
3.1. Assessment of Malnutrition Risk
3.2. Factors Associated with Malnutrition Risk
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Culhane, S.; George, C.; Pearo, B.; Spoede, E. Malnutrition in cystic fibrosis: A review. Nutr. Clin. Pract. 2013, 28, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Pencharz, P.B.; Durie, P.R. Pathogenesis of malnutrition in cystic fibrosis, and its treatment. Clin. Nutr. 2000, 19, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Solomon, M.; Bozic, M.; Mascarenhas, M.R. Nutritional Issues in Cystic Fibrosis. Clin. Chest Med. 2016, 37, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Poulimeneas, D.; Grammatikopoulou, M.G.; Devetzi, P.; Petrocheilou, A.; Kaditis, A.G.; Papamitsou, T.; Doudounakis, S.E.; Vassilakou, T. Adherence to dietary recommendations, nutrient intake adequacy and diet quality among pediatric cystic fibrosis patients: Results from the greecf study. Nutrients 2020, 12, 3126. [Google Scholar] [CrossRef]
- Brownell, J.N.; Bashaw, H.; Stallings, V.A. Growth and Nutrition in Cystic Fibrosis. Semin. Respir. Crit. Care Med. 2019, 40, 775–791. [Google Scholar] [CrossRef]
- Dray, X.; Kanaan, R.; Bienvenu, T.; Desmazes-Dufeu, N.; Dusser, D.; Marteau, P.; Hubert, D. Malnutrition in adults with cystic fibrosis. Eur. J. Clin. Nutr. 2005, 59, 152–154. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, M.; Nathan, N.; Sarouk, I.; Aluma, B.E.B.; Dagan, A.; Bezalel, Y.; Keler, S.; Vilozni, D.; Efrati, O. Nutritional Status in Childhood as a Prognostic Factor in Patients with Cystic Fibrosis. Lung 2019, 197, 371–376. [Google Scholar] [CrossRef]
- Kumru, B.; Emiralioğlu, N.; Gökmen Ozel, H. Malnutrition in children with cystic fibrosis. Clin. Nutr. 2018, 37, S90–S91. [Google Scholar] [CrossRef]
- Reilly, J.J.; Edwards, C.A.; Weaver, L.T. Malnutrition in children with cystic fibrosis: The energy-balance equation. J. Pediatr. Gastroenterol. Nutr. 1997, 25, 127–136. [Google Scholar] [CrossRef]
- Poulimeneas, D.; Grammatikopoulou, M.G.; Petrocheilou, A.; Kaditis, A.G.; Troupi, E.; Doudounakis, S.E.; Laggas, D.; Vassilakou, T. Comparison of International Growth Standards for Assessing Nutritional Status in Cystic Fibrosis: The GreeCF Study. J. Pediatr. Gastroenterol. Nutr. 2020, 71, e35–e39. [Google Scholar] [CrossRef]
- Rocha, G.A.; Rocha, E.J.M.; Martins, C.V. The effects of hospitalization on the nutritional status of children. J. Pediatr. (Rio. J.) 2006, 82, 70–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaaban, S.; Nassar, M.; El-Gendy, Y.; El-Shaer, B. Nutritional risk screening of hospitalized children aged < 3 years. EMHJ 2019, 25, 18–23. [Google Scholar] [PubMed]
- Klanjsek, P.; Pajnkihar, M.; Marcun Varda, N.; Povalej Brzan, P. Screening and assessment tools for early detection of malnutrition in hospitalised children: A systematic review of validation studies. BMJ Open 2019, 9, e025444. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.M. Validation of a nutrition risk screening tool for children and adolescents with cystic fibrosis ages 2-20 years. J. Pediatr. Gastroenterol. Nutr. 2008, 46, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Souza Dos Santos Simon, M.I.; Forte, G.C.; da Silva Pereira, J.; da Fonseca Andrade Procianoy, E.; Drehmer, M. Validation of a Nutrition Screening Tool for Pediatric Patients with Cystic Fibrosis. J. Acad. Nutr. Diet. 2016, 116, 813–818. [Google Scholar] [CrossRef]
- Poulimeneas, D.; Petrocheilou, A.; Grammatikopoulou, M.G.; Kaditis, A.G.; Loukou, I.; Doudounakis, S.E.; Laggas, D.; Vassilakou, T. High attainment of optimal nutritional and growth status observed among Greek pediatric cystic fibrosis patients: Results from the GreeCF study. J. Pediatr. Endocrinol. Metab. 2017, 30, 1169–1176. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC growth charts for the United States: Methods and development. Vital Heal. Stat. 2002, 11, 1–190. [Google Scholar]
- Frisancho, R.A. Anthropometric Standards for the Assessment of Growth and Nutritional Status, 1st ed.; University of Michigan Press: Ann Arbor, MI, USA, 2008. [Google Scholar]
- Wang, X.; Dockery, D.W.; Wypij, D.; Fay, M.E.; Ferris, B.G. Pulmonary function between 6 and 18 years of age. Pediatr. Pulmonol. 1993, 15, 75–88. [Google Scholar] [CrossRef]
- Hankinson, J.L.; Odencrantz, J.R.; Fedan, K.B. Spirometric reference values from a sample of the general U.S. population. Am. J. Respir. Crit. Care Med. 1999, 159, 179–187. [Google Scholar] [CrossRef]
- Phong, R.Y.; Taylor, S.L.; Robinson, B.A.; Jhawar, S.; Nandalike, K. Utility of Mid-Upper Arm Circumference in Diagnosing Malnutrition in Children With Cystic Fibrosis. Nutr. Clin. Pract. 2020, 35, 1094–1100. [Google Scholar] [CrossRef]
- Kilinc, A.A.; Beser, O.F.; Ugur, E.P.; Cokugras, F.C.; Cokugras, H. The Effects of Nutritional Status and Intervention on Pulmonary Functions in Pediatric Cystic Fibrosis Patients. Pediatr. Int. 2020. [Google Scholar] [CrossRef] [PubMed]
- Isa, H.M.; Al-Ali, L.F.; Mohamed, A.M. Growth assessment and risk factors of malnutrition in children with cystic fibrosis. Saudi Med. J. 2016, 37, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Barni, G.C.; Forte, G.C.; Forgiarini, L.F.; Abrahão, C.L.D.O.; Dalcin, P.D.T.R. Factors associated with malnutrition in adolescent and adult patients with cystic fibrosis. J. Bras. Pneumol. 2017, 43, 337–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagopoulou, P.; Fotoulaki, M.; Nikolaou, A.; Nousia-Arvanitakis, S. Prevalence of malnutrition and obesity among cystic fibrosis patients. Pediatr. Int. 2014, 56, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Chaves, C.R.M.D.M.; Britto, J.A.A.D.; Oliveira, C.Q.D.; Gomes, M.M.; Cunha, A.L.P.D. Association between nutritional status measurements and pulmonary function in children and adolescents with cystic fibrosis. J. Bras. Pneumol. 2009, 35, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Wiedemann, B.; Paul, K.D.; Stern, M.; Wagner, T.O.; Hirche, T.O.; German CFQA Group. Evaluation of body mass index percentiles for assessment of malnutrition in children with cystic fibrosis. Eur. J. Clin. Nutr. 2007, 61, 759–768. [Google Scholar] [CrossRef] [Green Version]
- Lucidi, V.; Bizzarri, C.; Alghisi, F.; Bella, S.; Russo, B.; Ubertini, G.; Cappa, M. Bone and body composition analyzed by Dual-energy X-ray Absorptiometry (DXA) in clinical and nutritional evaluation of young patients with Cystic Fibrosis: A cross-sectional study. BMC Pediatr. 2009, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lai, H.J. Comparison of the use of body mass index percentiles and percentage of ideal body weight to screen for malnutrition in children with cystic fibrosis. Am. J. Clin. Nutr. 2004, 80, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Wiedemann, B.; Steinkamp, G.; Sens, B.; Stern, M.; German Cystic Fibrosis Quality Assurance Group. The German cystic fibrosis quality assurance project: Clinical features in children and adults. Eur. Respir. J. 2001, 17, 1187–1194. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, D.; Kerr, D.; Gurrin, L.; Sherriff, J.; Sly, P. Height and weight fail to detect early signs of malnutrition in children with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2001, 33, 319–325. [Google Scholar] [CrossRef]
- Mauch, R.M.; Kmit, A.H.P.; de Marson, F.A.L.; Levy, C.E.; de Barros-Filho, A.A.; Ribeiro, J.D. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: A literature review. Rev. Paul. Pediatr. 2016, 34, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Barr, H.L.; Britton, J.; Smyth, A.R.; Fogarty, A.W. Association between socioeconomic status, sex, and age at death from cystic fibrosis in England and Wales (1959 to 2008): Cross sectional study. BMJ 2011, 343, d4662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, A.D.; Daly, L.; Jackson, A.L.; Kelleher, C.; Marshall, B.C.; Quinton, H.B.; Fletcher, G.; Harrington, M.; Zhou, S.; McKone, E.F.; et al. Validation and use of a parametric model for projecting cystic fibrosis survivorship beyond observed data: A birth cohort analysis. Thorax 2011, 66, 674–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umławska, W.; Sands, D.; Zielińska, A. Age of menarche in girls with cystic fibrosis. Folia Histochem. Cytobiol. 2010, 48, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lindstrom, M.J.; Farrell, P.M.; Lai, H.J.; Wisconsin Cystic Fibrosis Neonatal Screening Group. Pubertal Height Growth and Adult Height in Cystic Fibrosis After Newborn Screening. Pediatrics 2016, 137, e20152907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sermet-Gaudelus, I.; Castanet, M.; Retsch-Bogart, G.; Aris, R.M. Update on cystic fibrosis-related bone disease: A special focus on children. Paediatr. Respir. Rev. 2009, 10, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Putman, M.S.; Anabtawi, A.; Le, T.; Tangpricha, V.; Sermet-Gaudelus, I. Cystic fibrosis bone disease treatment: Current knowledge and future directions. J. Cyst. Fibros. 2019, 18 (Suppl. 2), S56–S65. [Google Scholar] [CrossRef] [Green Version]
- Calella, P.; Valerio, G.; Brodlie, M.; Taylor, J.; Donini, L.M.; Siervo, M. Tools and Methods Used for the Assessment of Body Composition in Patients With Cystic Fibrosis: A Systematic Review. Nutr. Clin. Pract. 2019, 34, 701–714. [Google Scholar] [CrossRef]
- Declercq, D.; Van Meerhaeghe, S.; Marchand, S.; Van Braeckel, E.; van Daele, S.; De Baets, F.; Van Biervliet, S. The nutritional status in CF: Being certain about the uncertainties. Clin. Nutr. ESPEN 2018, 29, 15–21. [Google Scholar] [CrossRef]
- Bellissimo, M.P.; Zhang, I.; Ivie, E.A.; Tran, P.H.; Tangpricha, V.; Hunt, W.R.; Stecenko, A.A.; Ziegler, T.R.; Alvarez, J.A. Visceral adipose tissue is associated with poor diet quality and higher fasting glucose in adults with cystic fibrosis. J. Cyst. Fibros. 2019, 18, 430–435. [Google Scholar] [CrossRef]
- Gomes, A.; Hutcheon, D.; Ziegler, J. Association Between Fat-Free Mass and Pulmonary Function in Patients With Cystic Fibrosis: A Narrative Review. Nutr. Clin. Pract. 2019, 34, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Calella, P.; Valerio, G.; Thomas, M.; McCabe, H.; Taylor, J.; Brodlie, M.; Siervo, M. Association between body composition and pulmonary function in children and young people with cystic fibrosis. Nutrition 2018, 48, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Alicandro, G.; Bisogno, A.; Battezzati, A.; Bianchi, M.L.; Corti, F.; Colombo, C. Recurrent pulmonary exacerbations are associated with low fat free mass and low bone mineral density in young adults with cystic fibrosis. J. Cyst. Fibros. 2014, 13, 328–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, D.B.; Zhang, Z.; Farrell, P.M.; Lai, H.J.; Wisconsin CF Neonatal Screening Group. Early life growth patterns persist for 12 years and impact pulmonary outcomes in cystic fibrosis. J. Cyst. Fibros. 2018, 17, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Loukou, I.; Moustaki, M.; Plyta, M.; Douros, K. Longitudinal changes in lung function following initiation of lumacaftor/ivacaftor combination. J. Cyst. Fibros. 2020, 19, 534–539. [Google Scholar] [CrossRef]
- Bailey, J.; Rozga, M.; McDonald, C.M.; Bowser, E.K.; Farnham, K.; Mangus, M.; Padula, L.; Porco, K.; Alvarez, J.A. Effect of CFTR Modulators on Anthropometric Parameters in Individuals with Cystic Fibrosis: An Evidence Analysis Center Systematic Review. J. Acad. Nutr. Diet. 2020. online ahead of print. [Google Scholar] [CrossRef]
Risk Factor | n (%) * | |
---|---|---|
1 | BMI < 50th percentile | 31 (40.8) |
BMI < 10th percentile | 10 (13.2) | |
2 | Pancreatic Insufficiency | 66 (86.8) |
3 | Pseudomonas, Burkholderia cepacia or MRSA colonization | 29 (38.2) |
4 | Dietary Intake < 100% RDA | 22 (28.9) |
5 | Weight gain less than minimum, zero weight gain or weight loss | 6 (7.9) |
6 | Height gain less than minimum, or zero height gain | 4 (5.3) |
7 | Enteral feeding | 0 (0.0) |
8 | CFRD | 4 (5.3) |
9 | FEV1% (< 80% predicted) | 13 (17.1) |
10 | Serum albumin < 3.5 mg/dL | 0 (0.0) |
Mean total Malnutrition Score | 2.43 ± 1.52 | |
Patients at low risk for malnutrition (n, %) | 60 (78.9) | |
Patients at average risk for malnutrition (n, %) | 16 (21.1) | |
Patients at high risk for malnutrition (n, %) | 0 (0.0) |
Variable | Malnutrition Risk | p-Value | |
---|---|---|---|
Low (n = 60) | Medium (n = 16) | ||
Sex (% girls) | 58.3 | 56.3 | 0.881 |
Age (years) | 11.2 ± 3.8 | 14.4 ± 3.4 | 0.004 |
Adolescence (%) | 33.3 | 62.5 | 0.034 |
BAZ | 0.41 ± 0.92 | −1.28 ± 0.78 | <0.001 |
Underweight (%) | 3.3 | 18.8 | 0.027 |
Nutritional Failure (%) | 8.3 | 56.3 | <0.001 |
Ideal Body Weight (%) | 75.0 | 0.0 | <0.001 |
HAZ | −0.10 ± 1.04 | −0.93 ± 1.03 | 0.009 |
Stunting (%) | 3.3 | 12.5 | 0.145 |
MUACz | −0.41 ± 0.96 | −0.46 ± 1.05 | 0.885 |
TSFz | 1.56 ± 0.80 | 1.82 ± 1.07 | 0.371 |
MUAMAz | 0.16 ± 2.77 | −0.29 ± 2.54 | 0.562 |
MUAFAz | 1.24 ± 1.45 | 0.23 ± 0.90 | 0.011 |
FEV1% | 103.4 ± 15.4 | 77.7 ± 21.8 | <0.001 |
Dietary Intake (% RDA) | 137 ± 49 | 125 ± 42 | 0.384 |
FEV1 > 90% (%) | 80.4 | 37.5 | 0.001 |
Homozygote F508del (%) | 43.3 | 31.3 | 0.382 |
Age at diagnosis (months) | 3.5 (1.0, 8.8) | 5.0 (1.0, 9.5) | 0.627 |
Meconium Ileus (%) | 16.7 | 25.0 | 0.445 |
Diagnosis by NBS (%) | 13.3 | 6.3 | 0.436 |
First Author | Country | Population | Cut-off Used for Malnutrition Diagnosis | Prevalence of Malnutrition (%) | |
---|---|---|---|---|---|
N (% Girls) | Age (Years) | ||||
Barni [24] | Brasil | 73 (55%) | 25.6 ± 7.3 | BMI < 10th percentile | 24.7 |
Chaves [26] | Brasil | 48 (NR) | 10.8 ± 3.3 | BMI < 10th percentile | 29 |
Isa [23] | Bahrain | 47 (43%) | <18 | BMI < 10th percentile | 22.1 |
Kilinc [22] | Turkey | 143 (47%) | 0–18 | BMI < 10th percentile | 74 |
Lucidi [28] | Italy | 82 (49%) | 13 (5–30) | BMI < 15th percentile | 20.9 |
Panagopoulou [25] | Greece | 68 (49%) | 19.81 ± 8.98 | BMI < 10th percentile | 45.5 |
Phong [21] | USA | 49 (27%) | 9.4 ± 5.2 | BMI < 10th percentile | 12 |
MUACz < −1.0 | 49 | ||||
Poulimeneas [16] | Greece | 84 (58%) | 11.8 ± 3.9 | BMI < 15th percentile | 17.9 |
Wiedemann [27] | Germany | 4557 (NR) | 0–18 | BMI < 15th percentile | 30.4 |
Wiedemann [30] | Germany | 2688 (NR) | 0–18 | BMI < 15th percentile | 28.6 |
Zhang [29] | USA | 13,021 (NR) | 2–18 | BMI < 15th percentile | 10–30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poulimeneas, D.; Grammatikopoulou, M.G.; Petrocheilou, A.; Kaditis, A.G.; Vassilakou, T. Triage for Malnutrition Risk among Pediatric and Adolescent Outpatients with Cystic Fibrosis, Using a Disease-Specific Tool. Children 2020, 7, 269. https://doi.org/10.3390/children7120269
Poulimeneas D, Grammatikopoulou MG, Petrocheilou A, Kaditis AG, Vassilakou T. Triage for Malnutrition Risk among Pediatric and Adolescent Outpatients with Cystic Fibrosis, Using a Disease-Specific Tool. Children. 2020; 7(12):269. https://doi.org/10.3390/children7120269
Chicago/Turabian StylePoulimeneas, Dimitrios, Maria G. Grammatikopoulou, Argyri Petrocheilou, Athanasios G. Kaditis, and Tonia Vassilakou. 2020. "Triage for Malnutrition Risk among Pediatric and Adolescent Outpatients with Cystic Fibrosis, Using a Disease-Specific Tool" Children 7, no. 12: 269. https://doi.org/10.3390/children7120269
APA StylePoulimeneas, D., Grammatikopoulou, M. G., Petrocheilou, A., Kaditis, A. G., & Vassilakou, T. (2020). Triage for Malnutrition Risk among Pediatric and Adolescent Outpatients with Cystic Fibrosis, Using a Disease-Specific Tool. Children, 7(12), 269. https://doi.org/10.3390/children7120269