Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders
Abstract
:1. Introduction
2. Methods
3. Antidepressants
3.1. Selective Serotonin Reuptake Inhibitors
3.2. Tricyclic Antidepressants
3.3. Serotonin and Norepinephrine Reuptake Inhibitors
3.3.1. Duloxetine
3.3.2. Venlafaxine
3.3.3. Milnacipran
3.4. Other Anti-Depressants
3.4.1. Bupropion
3.4.2. Mirtazapine
4. Alpha 2 Delta Ligands
5. Mood Stabilizers
5.1. Oxcarbazepine and Carbamazepine
5.2. Lamotrigine
5.3. Topiramate
5.4. Lithium Carbonate
5.5. Sodium Valproate
6. Antipsychotics
7. Anti-Sympathetic Agents
7.1. Beta-Blockers
7.2. Alpha-2 Agonists
8. Stimulants
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schechter, N.L. Functional pain: Time for a new name. JAMA Pediatr. 2014, 168, 693–694. [Google Scholar] [CrossRef]
- Treede, R.D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic pain as a symptom or a disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Vinall, J.; Pavlova, M.; Asmundson, G.J.; Rasic, N.; Noel, M. Mental Health Comorbidities in Pediatric Chronic Pain: A Narrative Review of Epidemiology, Models, Neurobiological Mechanisms and Treatment. Children 2016, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Cooper, T.E.; Heathcote, L.C.; Clinch, J.; Gold, J.I.; Howard, R.; Lord, S.M.; Schechter, N.; Wood, C.; Wiffen, P.J. Antidepressants for chronic non-cancer pain in children and adolescents. Cochrane Database Syst. Rev. 2017, 8, CD012535. [Google Scholar] [CrossRef]
- Li, Y.; Huang, J.; He, Y.; Yang, J.; Lv, Y.; Liu, H.; Liang, L.; Zheng, Q.; Li, L. The Impact of Placebo Response Rates on Clinical Trial Outcome: A Systematic Review and Meta-Analysis of Antidepressants in Children and Adolescents with Major Depressive Disorder. J. Child Adolesc. Psychopharmacol. 2019, 29, 712–720. [Google Scholar] [CrossRef]
- Hoekman, D.R.; Zeevenhooven, J.; van Etten-Jamaludin, F.S.; Douwes Dekker, I.; Benninga, M.A.; Tabbers, M.M.; Vlieger, A.M. The Placebo Response in Pediatric Abdominal Pain-Related Functional Gastrointestinal Disorders: A Systematic Review and Meta-Analysis. J Pediatr. 2017, 182, 155–163.e157. [Google Scholar] [CrossRef]
- Low Kapalu, C.M.; Hall, J.J.; Wallace, D.P. Neuropsychological Functioning of Youth Receiving Intensive Interdisciplinary Pain Treatment. J. Pediatr. Psychol. 2018, 43, 870–881. [Google Scholar] [CrossRef] [Green Version]
- Minen, M.T.; Begasse De Dhaem, O.; Kroon Van Diest, A.; Powers, S.; Schwedt, T.J.; Lipton, R.; Silbersweig, D. Migraine and its psychiatric comorbidities. J. Neurol. Neurosurg. Psychiatry 2016, 87, 741–749. [Google Scholar] [CrossRef]
- Ji, R.R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Walker, A.K.; Kavelaars, A.; Heijnen, C.J.; Dantzer, R.; Daws, L.C. Neuroinflammation and Comorbidity of Pain and Depression. Pharmacol. Rev. 2013, 66, 80–101. [Google Scholar] [CrossRef] [Green Version]
- Sansone, R.A.; Sansone, L.A. Pain, Pain Go Away: Antidepressants and Pain Management. Psychiatry 2008, 5, 16–19. [Google Scholar]
- Baller, E.B.; Ross, D.A. Your System Has Been Hijacked: The Neurobiology of Chronic Pain. Biol. Psychiatry 2017, 82, e61–e63. [Google Scholar] [CrossRef] [Green Version]
- Khouzam, H.R. Psychopharmacology of chronic pain: A focus on antidepressants and atypical antipsychotics. Postgrad. Med. 2016, 128, 323–330. [Google Scholar] [CrossRef]
- Moore, R.A.; Derry, S.; Aldington, D.; Cole, P.; Wiffen, P.J. Amitriptyline for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef]
- Van den Beuken-van Everdingen, M.H.; de Graeff, A.; Jongen, J.L.; Dijkstra, D.; Mostovaya, I.; Vissers, K.C. National Guideline Working Group. “Diagnosis treatment of cancer, pain.” Pharmacological treatment of pain in cancer patients: The role of adjuvant analgesics, a systematic review. Pain Pract. 2017, 17, 409–419. [Google Scholar] [CrossRef]
- Dharmshaktu, P.; Tayal, V.; Kalra, B.S. Efficacy of antidepressants as analgesics: A review. J. Clin. Pharmacol. 2012, 52, 6–17. [Google Scholar] [CrossRef]
- Bonilla, S.; Nurko, S. Focus on the use of antidepressants to treat pediatric functional abdominal pain: Current perspectives. Clin. Exp. Gastroenterol. 2018, 11, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Antidepressant Medications: U.S. Food and Drug Administration-Approved Indications and Dosages for Use in Pediatric Patients. U.S Center for Medicare & Medicaid Services Website. Available online: https://www.cms.gov/Medicare-Medicaid-Coordination/Fraud-Prevention/Medicaid-Integrity-Education/Pharmacy-Education-Materials/Downloads/ad-pediatric-dosingchart11-14.pdf (accessed on 14 September 2020).
- Strawn, J.R.; Welge, J.A.; Wehry, A.M.; Keeshin, B.; Rynn, M.A. Efficacy and tolerability of antidepressants in pediatric anxiety disorders: A systematic review and meta-analysis. Depress. Anxiety 2015, 32, 149–157. [Google Scholar] [CrossRef]
- Cipriani, A.; Zhou, X.; Del Giovane, C.; Hetrick, S.E.; Qin, B.; Whittington, C.; Coghill, D.; Zhang, Y.; Hazell, P.; Leucht, S.; et al. Comparative efficacy and tolerability of antidepressants for major depressive disorder in children and adolescents: A network meta-analysis. Lancet 2016, 388, 881–890. [Google Scholar] [CrossRef]
- Walitt, B.; Urrútia, G.; Nishishinya, M.B.; Cantrell, S.E.; Häuser, W. Selective serotonin reuptake inhibitors for fibromyalgia syndrome. Cochrane Database Syst. Rev. 2015, 2015, Cd011735. [Google Scholar] [CrossRef]
- Moulin, D.; Boulanger, A.; Clark, A.J.; Clarke, H.; Dao, T.; Finley, G.A.; Furlan, A.; Gilron, I.; Gordon, A.; Morley-Forster, P.K.; et al. Pharmacological management of chronic neuropathic pain: Revised consensus statement from the Canadian Pain Society. Pain Res. Manag. 2014, 19, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Banzi, R.; Cusi, C.; Randazzo, C.; Sterzi, R.; Tedesco, D.; Moja, L. Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) for the prevention of migraine in adults. Cochrane Database Syst. Rev. 2015, 4, Cd002919. [Google Scholar] [CrossRef]
- Bendtsen, L.; Evers, S.; Linde, M.; Mitsikostas, D.D.; Sandrini, G.; Schoenen, J. EFNS guideline on the treatment of tension-type headache—Report of an EFNS task force. Eur. J. Neurol. 2010, 17, 1318–1325. [Google Scholar] [CrossRef]
- Tai, Y.H.; Wang, Y.H.; Wang, J.J.; Tao, P.L.; Tung, C.S.; Wong, C.S. Amitriptyline suppresses neuroinflammation and up-regulates glutamate transporters in morphine-tolerant rats. Pain 2006, 124, 77–86. [Google Scholar] [CrossRef]
- Sadeghi, H.; Hajhashemi, V.; Minaiyan, M.; Movahedian, A.; Talebi, A. A study on the mechanisms involving the anti-inflammatory effect of amitriptyline in carrageenan-induced paw edema in rats. Eur. J. Pharmacol. 2011, 667, 396–401. [Google Scholar] [CrossRef]
- Ashina, S.; Bendtsen, L.; Jensen, R. Analgesic effect of amitriptyline in chronic tension-type headache is not directly related to serotonin reuptake inhibition. Pain 2004, 108, 108–114. [Google Scholar] [CrossRef]
- Bendtsen, L.; Jensen, R. Amitriptyline reduces myofascial tenderness in patients with chronic tension-type headache. Cephalalgia Int. J. Headache 2000, 20, 603–610. [Google Scholar] [CrossRef]
- Uçeyler, N.; Häuser, W.; Sommer, C. A systematic review on the effectiveness of treatment with antidepressants in fibromyalgia syndrome. Arthritis Rheum. 2008, 59, 1279–1298. [Google Scholar] [CrossRef]
- Thorpe, J.; Shum, B.; Moore, R.A.; Wiffen, P.J.; Gilron, I. Combination pharmacotherapy for the treatment of fibromyalgia in adults. Cochrane Database Syst. Rev. 2018, 2, Cd010585. [Google Scholar] [CrossRef]
- Talley, N.J.; Locke, G.R.; Saito, Y.A.; Almazar, A.E.; Bouras, E.P.; Howden, C.W.; Lacy, B.E.; DiBaise, J.K.; Prather, C.M.; Abraham, B.P.; et al. Effect of Amitriptyline and Escitalopram on Functional Dyspepsia: A Multicenter, Randomized Controlled Study. Gastroenterology 2015, 149, 340–349.e342. [Google Scholar] [CrossRef] [Green Version]
- Trinkley, K.E.; Nahata, M.C. Medication management of irritable bowel syndrome. Digestion 2014, 89, 253–267. [Google Scholar] [CrossRef]
- Nishishinya, B.; Urrútia, G.; Walitt, B.; Rodriguez, A.; Bonfill, X.; Alegre, C.; Darko, G. Amitriptyline in the treatment of fibromyalgia: A systematic review of its efficacy. Rheumatology 2008, 47, 1741–1746. [Google Scholar] [CrossRef] [Green Version]
- Korterink, J.J.; Rutten, J.M.; Venmans, L.; Benninga, M.A.; Tabbers, M.M. Pharmacologic treatment in pediatric functional abdominal pain disorders: A systematic review. J. Pediatr. 2015, 166, 424–431.e426. [Google Scholar] [CrossRef]
- Powers, S.W.; Coffey, C.S.; Chamberlin, L.A.; Ecklund, D.J.; Klingner, E.A.; Yankey, J.W.; Korbee, L.L.; Porter, L.L.; Hershey, A.D. Trial of Amitriptyline, Topiramate, and Placebo for Pediatric Migraine. N. Engl. J. Med. 2017, 376, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Locher, C.; Kossowsky, J.; Koechlin, H.; Lam, T.L.; Barthel, J.; Berde, C.B.; Gaab, J.; Schwarzer, G.; Linde, K.; Meissner, K. Efficacy, Safety, and Acceptability of Pharmacologic Treatments for Pediatric Migraine Prophylaxis: A Systematic Review and Network Meta-analysis. JAMA Pediatr. 2020, 174, 341–349. [Google Scholar] [CrossRef]
- Oskoui, M.; Pringsheim, T.; Billinghurst, L.; Potrebic, S.; Gersz, E.M.; Gloss, D.; Holler-Managan, Y.; Leininger, E.; Licking, N.; Mack, K.; et al. Practice guideline update summary: Pharmacologic treatment for pediatric migraine prevention: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Headache Society. Neurology 2019, 93, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Mowla, A.; Dastgheib, S.A.; Razeghian Jahromi, L. Comparing the Effects of Sertraline with Duloxetine for Depression Severity and Symptoms: A Double-Blind, Randomized Controlled Trial. Clin. Drug Investig. 2016, 36, 539–543. [Google Scholar] [CrossRef]
- Cymbalta (Duloxetine Extended Release) [Package Insert]. U.S. Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/021427s049lbl.pdf (accessed on 14 September 2020).
- Meng, J.; Zhang, Q.; Yang, C.; Xiao, L.; Xue, Z.; Zhu, J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef]
- Farshchian, N.; Alavi, A.; Heydarheydari, S.; Moradian, N. Comparative study of the effects of venlafaxine and duloxetine on chemotherapy-induced peripheral neuropathy. Cancer Chemother. Pharmacol. 2018, 82, 787–793. [Google Scholar] [CrossRef]
- Tesfaye, S.; Wilhelm, S.; Lledo, A.; Schacht, A.; Tolle, T.; Bouhassira, D.; Cruccu, G.; Skljarevski, V.; Freynhagen, R. Duloxetine and pregabalin: High-dose monotherapy or their combination? The “COMBO-DN study”—A multinational, randomized, double-blind, parallel-group study in patients with diabetic peripheral neuropathic pain. Pain 2013, 154, 2616–2625. [Google Scholar] [CrossRef] [Green Version]
- Emslie, G.J.; Wells, T.G.; Prakash, A.; Zhang, Q.; Pangallo, B.A.; Bangs, M.E.; March, J.S. Acute and longer-term safety results from a pooled analysis of duloxetine studies for the treatment of children and adolescents with major depressive disorder. J. Child Adolesc. Psychopharmacol. 2015, 25, 293–305. [Google Scholar] [CrossRef]
- Jasiak, N.M.; Bostwick, J.R. Risk of QT/QTc prolongation among newer non-SSRI antidepressants. Ann. Pharmacol. 2014, 48, 1620–1628. [Google Scholar] [CrossRef]
- Upadhyaya, H.P.; Arnold, L.M.; Alaka, K.; Qiao, M.; Williams, D.; Mehta, R. Efficacy and safety of duloxetine versus placebo in adolescents with juvenile fibromyalgia: Results from a randomized controlled trial. Pediatr. Rheumatol. Online J. 2019, 17, 27. [Google Scholar] [CrossRef] [Green Version]
- Ozyalcin, S.N.; Talu, G.K.; Kiziltan, E.; Yucel, B.; Ertas, M.; Disci, R. The efficacy and safety of venlafaxine in the prophylaxis of migraine. Headache 2005, 45, 144–152. [Google Scholar] [CrossRef]
- Effexor XR (Venlafaxine Extended-Release) [Package Insert]. U.S. Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020699s107lbl.pdf (accessed on 14 September 2020).
- Trouvin, A.P.; Perrot, S.; Lloret-Linares, C. Efficacy of Venlafaxine in Neuropathic Pain: A Narrative Review of Optimized Treatment. Clin. Ther. 2017, 39, 1104–1122. [Google Scholar] [CrossRef] [Green Version]
- Hosenbocus, S.; Chahal, R. SSRIs and SNRIs: A review of the Discontinuation Syndrome in Children and Adolescents. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 60–67. [Google Scholar]
- Cunningham, L.A. Once-daily venlafaxine extended release (XR) and venlafaxine immediate release (IR) in outpatients with major depression. Venlafaxine XR 208 Study Group. Ann. Clin. Psychiatry 1997, 9, 157–164. [Google Scholar] [CrossRef]
- Ghanizadeh, A.; Freeman, R.D.; Berk, M. Efficacy and adverse effects of venlafaxine in children and adolescents with ADHD: A systematic review of non-controlled and controlled trials. Rev. Recent Clin. Trials 2013, 8, 2–8. [Google Scholar] [CrossRef]
- March, J.S.; Entusah, A.R.; Rynn, M.; Albano, A.M.; Tourian, K.A. A Randomized controlled trial of venlafaxine ER versus placebo in pediatric social anxiety disorder. Biol. Psychiatry 2007, 62, 1149–1154. [Google Scholar] [CrossRef]
- Rynn, M.A.; Riddle, M.A.; Yeung, P.P.; Kunz, N.R. Efficacy and safety of extended-release venlafaxine in the treatment of generalized anxiety disorder in children and adolescents: Two placebo-controlled trials. Am. J. Psychiatry 2007, 164, 290–300. [Google Scholar] [CrossRef]
- Savella (Milncaipran) [Package Insert] US Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022256s011lbl.pdf (accessed on 14 September 2020).
- Lee, Y.H.; Song, G.G. Comparative efficacy and tolerability of duloxetine, pregabalin, and milnacipran for the treatment of fibromyalgia: A Bayesian network meta-analysis of randomized controlled trials. Rheumatol. Int. 2016, 36, 663–672. [Google Scholar] [CrossRef]
- Gmuca, S.; Sherry, D.D. Fibromyalgia: Treating Pain in the Juvenile Patient. Paediatr. Drugs 2017, 19, 325–338. [Google Scholar] [CrossRef]
- Arnold, L.M.; Bateman, L.; Palmer, R.H.; Lin, Y. Preliminary experience using milnacipran in patients with juvenile fibromyalgia: Lessons from a clinical trial program. Pediatr. Rheumatol. Online J. 2015, 13, 27. [Google Scholar] [CrossRef] [Green Version]
- Wellbutrin (Bupropion Hcl) [Package Insesrt] U.S. Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018644s052lbl.pdf (accessed on 14 September 2020).
- Cortese, S.; Adamo, N.; Del Giovane, C.; Mohr-Jensen, C.; Hayes, A.J.; Carucci, S.; Atkinson, L.Z.; Tessari, L.; Banaschewski, T.; Coghill, D.; et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: A systematic review and network meta-analysis. Lancet. Psychiatry 2018, 5, 727–738. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.H.; Moradimehr, A. Bupropion for the treatment of neuropathic pain. Am. J. Hosp. Palliat. Care 2010, 27, 333–336. [Google Scholar] [CrossRef]
- Hamdy, M.M.; Elbadr, M.M.; Barakat, A. Bupropion attenuates morphine tolerance and dependence: Possible role of glutamate, norepinephrine, inflammation, and oxidative stress. Pharmacol. Rep. 2018, 70, 955–962. [Google Scholar] [CrossRef]
- Leitl, M.D.; Negus, S.S. Pharmacological modulation of neuropathic pain-related depression of behavior: Effects of morphine, ketoprofen, bupropion and [INCREMENT]9-tetrahydrocannabinol on formalin-induced depression of intracranial self-stimulation in rats. Behav. Pharmacol. 2016, 27, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Bendtsen, L.; Jensen, R. Mirtazapine is effective in the prophylactic treatment of chronic tension-type headache. Neurology 2004, 62, 1706–1711. [Google Scholar] [CrossRef]
- Tack, J.; Ly, H.G.; Carbone, F.; Vanheel, H.; Vanuytsel, T.; Holvoet, L.; Boeckxstaens, G.; Caenepeel, P.; Arts, J.; Van Oudenhove, L. Efficacy of Mirtazapine in Patients With Functional Dyspepsia and Weight Loss. Clin. Gastroenterol. Hepatol. 2016, 14, 385–392.e384. [Google Scholar] [CrossRef] [Green Version]
- Malemud, C.J. Focus on pain mechanisms and pharmacotherapy in the treatment of fibromyalgia syndrome. Clin. Exp. Rheumatol. 2009, 27, S86–S91. [Google Scholar]
- Miki, K.; Murakami, M.; Oka, H.; Onozawa, K.; Yoshida, S.; Osada, K. Efficacy of mirtazapine for the treatment of fibromyalgia without concomitant depression: A randomized, double-blind, placebo-controlled phase IIa study in Japan. Pain 2016, 157, 2089–2096. [Google Scholar] [CrossRef] [Green Version]
- Ottman, A.A.; Warner, C.B.; Brown, J.N. The role of mirtazapine in patients with fibromyalgia: A systematic review. Rheumatol. Int. 2018, 38, 2217–2224. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Z.; Zhang, X.; Li, L. Comparative efficacy, acceptability, and safety of medicinal, cognitive-behavioral therapy, and placebo treatments for acute major depressive disorder in children and adolescents: A multiple-treatments meta-analysis. Curr. Med. Res. Opin. 2014, 30, 971–995. [Google Scholar] [CrossRef]
- Coskun, M.; Alyanak, B. Psychiatric Co-morbidity and Efficacy of Mirtazapine Treatment in Young Subjects With Chronic or Cyclic Vomiting Syndromes: A Case Series. J. Neurogastroenterol. Motil. 2011, 17, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Gray, E.; Chen, T.; Menzel, J.; Schwartz, T.; Kaye, W.H. Mirtazapine and Weight Gain in Avoidant and Restrictive Food Intake Disorder. J. Am. Acad. Child Adolesc. Psychiatry 2018, 57, 288–289. [Google Scholar] [CrossRef]
- Calandre, E.P.; Rico-Villademoros, F.; Slim, M. Alpha2delta ligands, gabapentin, pregabalin and mirogabalin: A review of their clinical pharmacology and therapeutic use. Expert Rev. Neurother. 2016, 16, 1263–1277. [Google Scholar] [CrossRef]
- Eroglu, C.; Allen, N.J.; Susman, M.W.; O’Rourke, N.A.; Park, C.Y.; Ozkan, E.; Chakraborty, C.; Mulinyawe, S.B.; Annis, D.S.; Huberman, A.D.; et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 2009, 139, 380–392. [Google Scholar] [CrossRef] [Green Version]
- Chincholkar, M. Analgesic mechanisms of gabapentinoids and effects in experimental pain models: A narrative review. Br. J. Anaesth. 2018, 120, 1315–1334. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.Y.; Lee, W.I.; Shin, W.K.; Kim, C.H.; Baik, S.W.; Kim, K.H. Administration of four different doses of gabapentin reduces awakening from breakthrough pain and adverse effects in outpatients with neuropathic pain during the initial titration. Korean J. Anesth. 2013, 65, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Bockbrader, H.N.; Radulovic, L.L.; Posvar, E.L.; Strand, J.C.; Alvey, C.W.; Busch, J.A.; Randinitis, E.J.; Corrigan, B.W.; Haig, G.M.; Boyd, R.A.; et al. Clinical pharmacokinetics of pregabalin in healthy volunteers. J. Clin. Pharmacol. 2010, 50, 941–950. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Wiffen, P.J.; Derry, S.; Bell, R.F.; Rice, A.S.; Tolle, T.R.; Phillips, T.; Moore, R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 6, CD007938. [Google Scholar] [CrossRef] [Green Version]
- Cooper, T.E.; Derry, S.; Wiffen, P.J.; Moore, R.A. Gabapentin for fibromyalgia pain in adults. Cochrane Database Syst. Rev. 2017, 1, CD012188. [Google Scholar] [CrossRef]
- Lee, K.J.; Kim, J.H.; Cho, S.W. Gabapentin reduces rectal mechanosensitivity and increases rectal compliance in patients with diarrhoea-predominant irritable bowel syndrome. Aliment Pharmacol. 2005, 22, 981–988. [Google Scholar] [CrossRef]
- Derry, S.; Bell, R.F.; Straube, S.; Wiffen, P.J.; Aldington, D.; Moore, R.A. Pregabalin for neuropathic pain in adults. Cochrane Database Syst. Rev. 2019, 1, CD007076. [Google Scholar] [CrossRef]
- Derry, S.; Cording, M.; Wiffen, P.J.; Law, S.; Phillips, T.; Moore, R.A. Pregabalin for pain in fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, 9, CD011790. [Google Scholar] [CrossRef]
- Gilron, I.; Chaparro, L.E.; Tu, D.; Holden, R.R.; Milev, R.; Towheed, T.; DuMerton-Shore, D.; Walker, S. Combination of pregabalin with duloxetine for fibromyalgia: A randomized controlled trial. Pain 2016, 157, 1532–1540. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.A.; Almazar, A.E.; Tilkes, K.E.; Choung, R.S.; Van Norstrand, M.D.; Schleck, C.D.; Zinsmeister, A.R.; Talley, N.J. Randomised clinical trial: Pregabalin vs placebo for irritable bowel syndrome. Aliment Pharmacol. 2019, 49, 389–397. [Google Scholar] [CrossRef]
- Houghton, L.A.; Fell, C.; Whorwell, P.J.; Jones, I.; Sudworth, D.P.; Gale, J.D. Effect of a second-generation alpha2delta ligand (pregabalin) on visceral sensation in hypersensitive patients with irritable bowel syndrome. Gut 2007, 56, 1218–1225. [Google Scholar] [CrossRef] [Green Version]
- Verret, M.; Lauzier, F.; Zarychanski, R.; Perron, C.; Savard, X.; Pinard, A.M.; Leblanc, G.; Cossi, M.J.; Neveu, X.; Turgeon, A.F.; et al. Perioperative Use of Gabapentinoids for the Management of Postoperative Acute Pain: A Systematic Review and Meta-analysis. Anesthesiology 2020, 133, 265–279. [Google Scholar] [CrossRef]
- Shanthanna, H.; Gilron, I.; Rajarathinam, M.; AlAmri, R.; Kamath, S.; Thabane, L.; Devereaux, P.J.; Bhandari, M. Benefits and safety of gabapentinoids in chronic low back pain: A systematic review and meta-analysis of randomized controlled trials. PLoS Med. 2017, 14, e1002369. [Google Scholar] [CrossRef]
- Gurusamy, K.S.; Lusuku, C.; Davidson, B.R. Pregabalin for decreasing pancreatic pain in chronic pancreatitis. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Linde, M.; Mulleners, W.M.; Chronicle, E.P.; McCrory, D.C. Gabapentin or pregabalin for the prophylaxis of episodic migraine in adults. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Baldwin, D.S.; Ajel, K.; Masdrakis, V.G.; Nowak, M.; Rafiq, R. Pregabalin for the treatment of generalized anxiety disorder: An update. Neuropsychiatr. Dis. Treat. 2013, 9, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Berlin, R.K.; Butler, P.M.; Perloff, M.D. Gabapentin Therapy in Psychiatric Disorders: A Systematic Review. Prim. Care Companion CNS Disord. 2015, 17. [Google Scholar] [CrossRef]
- Arnold, L.M.; Schikler, K.N.; Bateman, L.; Khan, T.; Pauer, L.; Bhadra-Brown, P.; Clair, A.; Chew, M.L.; Scavone, J. Safety and efficacy of pregabalin in adolescents with fibromyalgia: A randomized, double-blind, placebo-controlled trial and a 6-month open-label extension study. Pediatr. Rheumatol. Online J. 2016, 14, 46. [Google Scholar] [CrossRef] [Green Version]
- Vondracek, P.; Oslejskova, H.; Kepak, T.; Mazanek, P.; Sterba, J.; Rysava, M.; Gal, P. Efficacy of pregabalin in neuropathic pain in paediatric oncological patients. Eur. J. Paediatr. Neurol. 2009, 13, 332–336. [Google Scholar] [CrossRef]
- Grégoire, M.-C.; Finley, G.A. Drugs for chronic pain in children: A commentary on clinical practice and the absence of evidence. Pain Res. Manag. 2013, 18, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.V.; Havens, J.R.; Walsh, S.L. Gabapentin misuse, abuse and diversion: A systematic review. Addiction 2016, 111, 1160–1174. [Google Scholar] [CrossRef]
- Knezevic, N.N.; Tverdohleb, T.; Knezevic, I.; Candido, K.D. The Role of Genetic Polymorphisms in Chronic Pain Patients. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [Green Version]
- Meents, J.E.; Bressan, E.; Sontag, S.; Foerster, A.; Hautvast, P.; Rösseler, C.; Hampl, M.; Schüler, H.; Goetzke, R.; Le, T.K.C.; et al. The role of Nav1.7 in human nociceptors: Insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients. Pain 2019, 160, 1327–1341. [Google Scholar] [CrossRef]
- Dib-Hajj, S.D.; Waxman, S.G. Sodium Channels in Human Pain Disorders: Genetics and Pharmacogenomics. Annu. Rev. Neurosci. 2019, 42, 87–106. [Google Scholar] [CrossRef]
- Thomas, A.M.; Atkinson, T.J. Old Friends With New Faces: Are Sodium Channel Blockers the Future of Adjunct Pain Medication Management? J. Pain. 2018, 19, 1–9. [Google Scholar] [CrossRef]
- Demant, D.T.; Lund, K.; Vollert, J.; Maier, C.; Segerdahl, M.; Finnerup, N.B.; Jensen, T.S.; Sindrup, S.H. The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: A randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 2014, 155, 2263–2273. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, N.; He, L.; Yang, M.; Zhu, C.; Wu, F. Oxcarbazepine for neuropathic pain. Cochrane Database Syst. Rev. 2017, 12, Cd007963. [Google Scholar] [CrossRef]
- Woolston, J.L. Case study: Carbamazepine treatment of juvenile-onset bipolar disorder. J. Am. Acad. Child Adolesc. Psychiatry 1999, 38, 335–338. [Google Scholar] [CrossRef]
- Silva, R.R.; Munoz, D.M.; Alpert, M. Carbamazepine use in children and adolescents with features of attention-deficit hyperactivity disorder: A meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 1996, 35, 352–358. [Google Scholar] [CrossRef]
- Hirschfeld, R.M.; Kasper, S. A review of the evidence for carbamazepine and oxcarbazepine in the treatment of bipolar disorder. Int. J. Neuropsychopharmacol. 2004, 7, 507–522. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.M.; Fan, H.C.; Chao, T.Y.; Chu, D.M.; Lai, C.C.; Wang, C.C.; Chen, S.J. Potential effects of valproate and oxcarbazepine on growth velocity and bone metabolism in epileptic children- a medical center experience. BMC Pediatr. 2016, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Veroniki, A.A.; Rios, P.; Cogo, E.; Straus, S.E.; Finkelstein, Y.; Kealey, R.; Reynen, E.; Soobiah, C.; Thavorn, K.; Hutton, B.; et al. Comparative safety of antiepileptic drugs for neurological development in children exposed during pregnancy and breast feeding: A systematic review and network meta-analysis. BMJ Open 2017, 7, e017248. [Google Scholar] [CrossRef]
- Findling, R.L.; Chang, K.; Robb, A.; Foster, V.J.; Horrigan, J.; Krishen, A.; Wamil, A.; Kraus, J.E.; DelBello, M. Adjunctive Maintenance Lamotrigine for Pediatric Bipolar I Disorder: A Placebo-Controlled, Randomized Withdrawal Study. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 1020–1031.e1023. [Google Scholar] [CrossRef]
- Nakamura-Craig, M.; Follenfant, R.L. Effect of lamotrigine in the acute and chronic hyperalgesia induced by PGE2 and in the chronic hyperalgesia in rats with streptozotocin-induced diabetes. Pain 1995, 63, 33–37. [Google Scholar] [CrossRef]
- Klamt, J.G. Effects of intrathecally administered lamotrigine, a glutamate release inhibitor, on short- and long-term models of hyperalgesia in rats. Anesthesiology 1998, 88, 487–494. [Google Scholar] [CrossRef]
- Bhosale, U.A.; Yegnanarayan, R.; Gupta, A.; Shah, P.; Sardesai, S. Comparative pre-emptive analgesic efficacy study of novel antiepileptic agents gabapentin, lamotrigine and topiramate in patients undergoing major surgeries at a tertiary care hospital: A randomized double blind clinical trial. J. Basic Clin. Physiol. Pharmcol. 2017, 28, 59–66. [Google Scholar] [CrossRef]
- Silver, M.; Blum, D.; Grainger, J.; Hammer, A.E.; Quessy, S. Double-blind, placebo-controlled trial of lamotrigine in combination with other medications for neuropathic pain. J. Pain Symptom Manag. 2007, 34, 446–454. [Google Scholar] [CrossRef]
- Al-Quliti, K.W. Update on neuropathic pain treatment for trigeminal neuralgia. The pharmacological and surgical options. Neurosciences 2015, 20, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Buch, D.; Chabriat, H. Lamotrigine in the Prevention of Migraine With Aura: A Narrative Review. Headache 2019, 59, 1187–1197. [Google Scholar] [CrossRef]
- Rustagi, A.; Roychoudhury, A.; Bhutia, O.; Trikha, A.; Srivastava, M.V. Lamotrigine Versus Pregabalin in the Management of Refractory Trigeminal Neuralgia: A Randomized Open Label Crossover Trial. J. Maxillofac. Oral Surg. 2014, 13, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Egunsola, O.; Choonara, I.; Sammons, H.M. Safety of lamotrigine in paediatrics: A systematic review. BMJ Open 2015, 5, e007711. [Google Scholar] [CrossRef] [Green Version]
- Pigott, K.; Galizia, I.; Vasudev, K.; Watson, S.; Geddes, J.; Young, A.H. Topiramate for acute affective episodes in bipolar disorder in adults. Cochrane Database Syst. Rev. 2016, 9, Cd003384. [Google Scholar] [CrossRef]
- Lee, D.J.; Schnitzlein, C.W.; Wolf, J.P.; Vythilingam, M.; Rasmusson, A.M.; Hoge, C.W. Psychotherapy versus pharmacotherapy for posttraumatic stress disorder: Systemic review and meta-analyses to determine first-line treatments. Depress. Anxiety 2016, 33, 792–806. [Google Scholar] [CrossRef] [Green Version]
- Topamax (Topiramate) [Package Insert] U.S. Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020844s041lbl.pdf (accessed on 14 September 2020).
- Angehagen, M.; Ben-Menachem, E.; Rönnbäck, L.; Hansson, E. Novel mechanisms of action of three antiepileptic drugs, vigabatrin, tiagabine, and topiramate. Neurochem. Res. 2003, 28, 333–340. [Google Scholar] [CrossRef]
- Wiffen, P.J.; Derry, S.; Lunn, M.P.T.; Moore, R.A.; Derry, S. Topiramate for neuropathic pain and fibromyalgia in adults. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- McCormick, Z.; Chang-Chien, G.; Marshall, B.; Huang, M.; Harden, R.N. Phantom limb pain: A systematic neuroanatomical-based review of pharmacologic treatment. Pain Med. 2014, 15, 292–305. [Google Scholar] [CrossRef]
- Aurora, S.K.; Brin, M.F. Chronic Migraine: An Update on Physiology, Imaging, and the Mechanism of Action of Two Available Pharmacologic Therapies. Headache 2017, 57, 109–125. [Google Scholar] [CrossRef]
- Silberstein, S.D. Topiramate in Migraine Prevention: A 2016 Perspective. Headache 2017, 57, 165–178. [Google Scholar] [CrossRef]
- Celebisoy, N.; Gökçay, F.; Sirin, H.; Akyürekli, O. Treatment of idiopathic intracranial hypertension: Topiramate vs acetazolamide, an open-label study. Acta Neurol. Scand. 2007, 116, 322–327. [Google Scholar] [CrossRef]
- Scotton, W.J.; Botfield, H.F.; Westgate, C.S.; Mitchell, J.L.; Yiangou, A.; Uldall, M.S.; Jensen, R.H.; Sinclair, A.J. Topiramate is more effective than acetazolamide at lowering intracranial pressure. Cephalalgia Int. J. Headache 2019, 39, 209–218. [Google Scholar] [CrossRef]
- Pareja, J.A.; Álvarez, M. The usual treatment of trigeminal autonomic cephalalgias. Headache 2013, 53, 1401–1414. [Google Scholar] [CrossRef]
- Hunt, S.; Russell, A.; Smithson, W.H.; Parsons, L.; Robertson, I.; Waddell, R.; Irwin, B.; Morrison, P.J.; Morrow, J.; Craig, J. Topiramate in pregnancy: Preliminary experience from the UK Epilepsy and Pregnancy Register. Neurology 2008, 71, 272–276. [Google Scholar] [CrossRef]
- Lithum Carbonate [Package Insert] U.S. Food and Drug Administration Website. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/017812s033,018421s032,018558s027lbl.pdf (accessed on 14 September 2020).
- Sani, G.; Perugi, G.; Tondo, L. Treatment of Bipolar Disorder in a Lifetime Perspective: Is Lithium Still the Best Choice? Clin. Drug Investig. 2017, 37, 713–727. [Google Scholar] [CrossRef]
- Robbins, M.S.; Starling, A.J.; Pringsheim, T.M.; Becker, W.J.; Schwedt, T.J. Treatment of Cluster Headache: The American Headache Society Evidence-Based Guidelines. Headache 2016, 56, 1093–1106. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.L.; Li, J.J.; So, K.F.; Chen, J.Y.; Cheng, W.S.; Wu, J.; Wang, Z.M.; Gao, F.; Young, W. Efficacy and safety of lithium carbonate treatment of chronic spinal cord injuries: A double-blind, randomized, placebo-controlled clinical trial. Spinal Cord 2012, 50, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Wang, F.; Zhai, X.; Li, X.H.; He, X.J. Lithium promotes recovery of neurological function after spinal cord injury by inducing autophagy. Neural Regen. Res. 2018, 13, 2191–2199. [Google Scholar] [CrossRef]
- Pourmohammadi, N.; Alimoradi, H.; Mehr, S.E.; Hassanzadeh, G.; Hadian, M.R.; Sharifzadeh, M.; Bakhtiarian, A.; Dehpour, A.R. Lithium attenuates peripheral neuropathy induced by paclitaxel in rats. Basic Clin. Pharmacol. Toxicol. 2012, 110, 231–237. [Google Scholar] [CrossRef]
- Dosenovic, S.; Jelicic Kadic, A.; Miljanovic, M.; Biocic, M.; Boric, K.; Cavar, M.; Markovina, N.; Vucic, K.; Puljak, L. Interventions for Neuropathic Pain. Anesth. Analg. 2017, 125, 643–652. [Google Scholar] [CrossRef]
- Sheridan, D.; Sun, B.; O’Brien, P.; Hansen, M. Intravenous Sodium Valproate for Acute Pediatric Headache. J. Emerg. Med. 2015, 49, 541–545. [Google Scholar] [CrossRef]
- Zafar, M.S.; Stewart, A.M.; Toupin, D.N.; Cook, A.M.; Baumann, R.J. Continuous Intravenous Valproate as Abortive Therapy for Pediatric Status Migrainosus. Neurologist 2018, 23, 43–46. [Google Scholar] [CrossRef]
- Wagner, K.D.; Redden, L.; Kowatch, R.A.; Wilens, T.E.; Segal, S.; Chang, K.; Wozniak, P.; Vigna, N.V.; Abi-Saab, W.; Saltarelli, M. A double-blind, randomized, placebo-controlled trial of divalproex extended-release in the treatment of bipolar disorder in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Geller, B.; Luby, J.L.; Joshi, P.; Wagner, K.D.; Emslie, G.; Walkup, J.T.; Axelson, D.A.; Bolhofner, K.; Robb, A.; Wolf, D.V.; et al. A randomized controlled trial of risperidone, lithium, or divalproex sodium for initial treatment of bipolar I disorder, manic or mixed phase, in children and adolescents. Arch. Gen. Psychiatry 2012, 69, 515–528. [Google Scholar] [CrossRef]
- Shin, S.W.; Lee, J.S.; Abdi, S.; Lee, S.J.; Kim, K.H. Antipsychotics for patients with pain. Korean J. Pain 2019, 32, 3–11. [Google Scholar] [CrossRef]
- Jimenez, X.F.; Sundararajan, T.; Covington, E.C. A Systematic Review of Atypical Antipsychotics in Chronic Pain Management: Olanzapine Demonstrates Potential in Central Sensitization, Fibromyalgia, and Headache/Migraine. Clin. J. Pain. 2018, 34, 585–591. [Google Scholar] [CrossRef]
- Kim, Y.H. The role and position of antipsychotics in managing chronic pain. Korean J. Pain 2019, 32, 1–2. [Google Scholar] [CrossRef]
- Walitt, B.; Klose, P.; Uceyler, N.; Phillips, T.; Hauser, W. Antipsychotics for fibromyalgia in adults. Cochrane Database Syst. Rev. 2016, CD011804. [Google Scholar] [CrossRef]
- Seidel, S.; Aigner, M.; Ossege, M.; Pernicka, E.; Wildner, B.; Sycha, T. Antipsychotics for acute and chronic pain in adults. Cochrane Database Syst. Rev. 2013, CD004844. [Google Scholar] [CrossRef]
- Calandre, E.P.; Rico-Villademoros, F.; Galán, J.; Molina-Barea, R.; Vilchez, J.S.; Rodriguez-Lopez, C.M.; Hidalgo-Tallon, J.; Morillas-Arques, P. Quetiapine extended-release (Seroquel-XR) versus amitriptyline monotherapy for treating patients with fibromyalgia: A 16-week, randomized, flexible-dose, open-label trial. Psychopharmacology 2014, 231, 2525–2531. [Google Scholar] [CrossRef]
- Cole, J.B.; Klein, L.R.; Strobel, A.M.; Blanchard, S.R.; Nahum, R.; Martel, M.L. The Use, Safety, and Efficacy of Olanzapine in a Level I Pediatric Trauma Center Emergency Department Over a 10-Year Period. Pediatric Emerg. Care 2020, 36, 70–76. [Google Scholar] [CrossRef]
- Naguy, A. Clonidine Use in Psychiatry: Panacea or Panache. Pharmacology 2016, 98, 87–92. [Google Scholar] [CrossRef]
- Steenen, S.A.; van Wijk, A.J.; van der Heijden, G.J.M.G.; van Westrhenen, R.; de Lange, J.; de Jongh, A. Propranolol for the treatment of anxiety disorders: Systematic review and meta-analysis. J. Psychopharmacol. 2016, 30, 128–139. [Google Scholar] [CrossRef] [Green Version]
- Kremer, M.; Yalcin, I.; Goumon, Y.; Wurtz, X.; Nexon, L.; Daniel, D.; Megat, S.; Ceredig, R.A.; Ernst, C.; Turecki, G.; et al. A Dual Noradrenergic Mechanism for the Relief of Neuropathic Allodynia by the Antidepressant Drugs Duloxetine and Amitriptyline. J. Neurosci. 2018, 38, 9934–9954. [Google Scholar] [CrossRef] [Green Version]
- Choucair-Jaafar, N.; Yalcin, I.; Rodeau, J.L.; Waltisperger, E.; Freund-Mercier, M.J.; Barrot, M. Beta2-adrenoceptor agonists alleviate neuropathic allodynia in mice after chronic treatment. Br. J. Pharmacol. 2009, 158, 1683–1694. [Google Scholar] [CrossRef] [Green Version]
- Ciszek, B.P.; O’Buckley, S.C.; Nackley, A.G. Persistent Catechol-O-methyltransferase-dependent Pain Is Initiated by Peripheral beta-Adrenergic Receptors. Anesthesiology 2016, 124, 1122–1135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hartung, J.E.; Bortsov, A.V.; Kim, S.; O’Buckley, S.C.; Kozlowski, J.; Nackley, A.G. Sustained stimulation of beta2- and beta3-adrenergic receptors leads to persistent functional pain and neuroinflammation. Brain Behav. Immun. 2018, 73, 520–532. [Google Scholar] [CrossRef]
- Kline, R.H.; Exposto, F.G.; O’Buckley, S.C.; Westlund, K.N.; Nackley, A.G. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat. Neuroscience 2015, 290, 561–569. [Google Scholar] [CrossRef] [Green Version]
- Friedrichsdorf, S.J.; Nugent, A.P. Management of neuropathic pain in children with cancer. Curr. Opin. Support. Palliat. Care 2013, 7, 131–138. [Google Scholar] [CrossRef]
- Giovannitti, J.A., Jr.; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth. Prog. 2015, 62, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Windsor, R.B.; Tham, S.W.; Adams, T.L.; Anderson, A. The Use of Opioids for Treatment of Pediatric Neuropathic Pain: A Literature Review. Clin. J. Pain 2019, 35, 509–514. [Google Scholar] [CrossRef]
- Burns, J.; Jackson, K.; Sheehy, K.A.; Finkel, J.C.; Quezado, Z.M. The Use of Dexmedetomidine in Pediatric Palliative Care: A Preliminary Study. J. Palliat. Med. 2017, 20, 779–783. [Google Scholar] [CrossRef]
- Lipsker, C.W.; Bölte, S.; Hirvikoski, T.; Lekander, M.; Holmström, L.; Wicksell, R.K. Prevalence of autism traits and attention-deficit hyperactivity disorder symptoms in a clinical sample of children and adolescents with chronic pain. J. Pain Res. 2018, 11, 2827–2836. [Google Scholar] [CrossRef] [Green Version]
- Genizi, J.; Gordon, S.; Kerem, N.C.; Srugo, I.; Shahar, E.; Ravid, S. Primary headaches, attention deficit disorder and learning disabilities in children and adolescents. J. Headache Pain 2013, 14, 54. [Google Scholar] [CrossRef] [Green Version]
- Danielson, M.L.; Bitsko, R.H.; Ghandour, R.M.; Holbrook, J.R.; Kogan, M.D.; Blumberg, S.J. Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment Among U.S. Children and Adolescents, 2016. J. Clin. Child Adolesc. Psychol. 2018, 47, 199–212. [Google Scholar] [CrossRef]
- Pud, D.; Broitman, E.; Hameed, O.; Suzan, E.; Aviram, J.; Haddad, M.; Hadad, S.; Shemesh, R.; Eisenberg, E. Methylphenidate attenuates the response to cold pain but not to aversive auditory stimuli in healthy human: A double-blind randomized controlled study. Pain Rep. 2017, 2, e593. [Google Scholar] [CrossRef]
- You, Z.; Ding, W.; Doheny, J.T.; Shen, S.; Yang, J.; Yang, L.; Chen, L.; Zhu, S.; Mao, J. Methylphenidate and Morphine Combination Therapy in a Rat Model of Chronic Pain. Anesth. Analg. 2020, 130, 518–524. [Google Scholar] [CrossRef]
Medication | Anxiety/Depression | ADHD | Bipolar Disorder | Insomnia | Anorexia | Schizophrenia | Migraine | Neuropathic Pain | Fibromyalgia | Comments |
---|---|---|---|---|---|---|---|---|---|---|
Antidepressants | ||||||||||
SSRIs | ✓✓ | ✓✓ | 1st line medication for pediatric depression and anxiety | |||||||
TCAs | ✓✓ | ✓✓ | ✓✓ | ✓ | ✓ | ✓ | Low doses used for pain often insufficient to improve mood | |||
SNRIs | ✓✓ | ✓✓ (limited) | ✓ (venlafaxine) | ✓ | ✓ | Can be considered 1st line for depression and anxiety with comorbid pain syndrome | ||||
Bupropion | ✓✓ | ✓✓ | ✓ | Not associated with weight gain. Can assist in smoking cessation | ||||||
Mirtazapine | ✓✓ | ✓ | ✓✓ | ✓ | Associated with sedation and appetite increase. | |||||
Mood stabilizers | ||||||||||
Lamotrigine | ✓ | ✓ (complex aura) | ✓ (limited) | |||||||
Topiramate | ✓ | ✓✓ | ||||||||
Lithium | ✓✓ | Renally excreted | ||||||||
Oxcarbazepine | ✓✓ (limited) | |||||||||
Carbamazepine | ✓✓ (limited) | Many drug–drug interactions | ||||||||
Valproic Acid | ✓✓ | ✓ | ✓ | Teratogenic | ||||||
Antipsychotics | ||||||||||
Olanzapine | ✓ | ✓✓ | ✓ | ✓ | ✓✓ | ✓ | Can be helpful for acute agitation | |||
Quetiapine | ✓ | ✓✓ | ✓ | ✓ | ✓✓ | ✓ | ||||
Others | ✓ | ✓✓ | ✓ | ✓ | ✓✓ | Risperidone or aripiprazole have evidence to support its use for irritability associated with autism | ||||
Anti-Sympathetics | ||||||||||
Alpha-2 agonists | ✓ | ✓✓ | ✓✓ | ✓✓ | ||||||
Beta-blockers | ✓ (somatic anxiety) | ✓✓ |
Medication | Restlessness/Activation | Insomnia | GI Distress | Headache | Weight Gain | Sedation | Hypotension | Suicidality | QTc Prolongation | Comments |
---|---|---|---|---|---|---|---|---|---|---|
Antidepressants | ||||||||||
SSRIs | + | + | ++ | + | + | + | + | + (citalopram most clinically significant) | Generally safe. GI and headache side effects usually transient. | |
TCAs | ++ (constipation) | ++ | + | + | + | + | Significant cardiac risk if used in an overdose. | |||
SNRIs | + | + | ++ | + | + | + | + (venlafaxine) | May be more difficult to reduce or discontinue due to discontinuation effects. | ||
Bupropion | ++ | ++ | + | + | Contraindicated in eating disorder and epileptic patients. | |||||
Mirtazapine | ++ | ++ | + | + | + | Weight and sedation effects can be used to the prescriber’s advantage in patients with insomnia and/or poor PO intake. | ||||
Mood stabilizers | ||||||||||
Lamotrigine | + | + | + | + | + | Risk of rash or Stevens–Johnson Syndrome (SJS). Slow titration required to avoid SJS. | ||||
Topiramate | + | + | + | Brain fog, paresthesias, renal stones, teratogenicity. | ||||||
Lithium | + | ++ | ++ | Low therapeutic index. Fetal risk. | ||||||
Carbamazepine | + | + | Risk of SJS and agranulocytosis. | |||||||
Oxcarbazepine | + | + | Better side effect profile and less drug–drug interactions when compared to carbamazepine. Clinically significant hyponatremia. | |||||||
Valproic Acid | ++ | ++ | Fetal risk, pancreatitis, and hepatotoxicity | |||||||
Antipsychotics | ||||||||||
Olanzapine | + | + | +++ | ++ | + | |||||
Quetiapine | + | + | ++ | ++ | ++ | + to ++ | ||||
Others | + | + | ++ | ++ | + or ++ | + to +++ | ||||
Anti-Sympathetics | ||||||||||
Alpha-2 agonists | + | + | + | ++ | ++ | |||||
Beta-blockers | + | + | ++ | Dose dependent effects on orthostatic dizziness |
Case Description | Medications to Consider | Target Symptoms |
---|---|---|
Hermione is a 14-year-old girl with a history of chronic abdominal pain and nausea related to functional dyspepsia leading to weight loss, tension-type, and associated amotivation, anhedonia, and sleep disruption | SSRI | Chronic abdominal pain, low mood, anorexia |
Mirtazapine | Weight loss, tension headaches, abdominal pain, insomnia, low mood | |
Olanzapine | Weight loss, nausea, insomnia, refractory depression | |
Harry is a 16-year-old male with neuropathic pain from incomplete spinal cord injury resulting from suicide attempt, injury-associated PTSD, nightmares, insomnia, generalized anxiety, depression, and migraines | SNRI | Anxiety, PTSD, neuropathic pain, migraine |
Gabapentinoids | Neuropathic pain, insomnia, generalized anxiety | |
Alpha-2 agonist | Insomnia, neuropathic pain, anxiety/PTSD | |
Oxcarbazepine | Neuropathic pain, mood stabilization | |
Lamotrigine | ||
Luna is a 15-year-old female with chronic migraine, panic disorder, ADHD, Postural Orthostatic Tachycardia Syndrome (POTS), and insomnia | SNRI (venlafaxine) | Migraine, anxiety, ADHD |
Alpha-2 agonist | Insomnia, ADHD, anxiety, POTS | |
Low dose beta blocker | Migraine, anxiety, POTS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Windsor, R.B.; Sierra, M.; Zappitelli, M.; McDaniel, M. Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders. Children 2020, 7, 268. https://doi.org/10.3390/children7120268
Windsor RB, Sierra M, Zappitelli M, McDaniel M. Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders. Children. 2020; 7(12):268. https://doi.org/10.3390/children7120268
Chicago/Turabian StyleWindsor, Robert Blake, Michael Sierra, Megan Zappitelli, and Maria McDaniel. 2020. "Beyond Amitriptyline: A Pediatric and Adolescent Oriented Narrative Review of the Analgesic Properties of Psychotropic Medications for the Treatment of Complex Pain and Headache Disorders" Children 7, no. 12: 268. https://doi.org/10.3390/children7120268