Factors Associated with the Need for, and the Impact of, Extracorporeal Membrane Oxygenation in Children with Congenital Heart Disease during Admissions for Cardiac Surgery
Abstract
:1. Introduction
2. Methods
2.1. Patient Identification
2.2. Data Identification and Collection
2.3. Statistical Analysis
3. Results
3.1. Admission Characteristics in Those with and without ECMO (Univariate Analysis)
3.2. Cardiac Morphology and Surgery in Those with and without ECMO
3.3. Independent Risk Factors Associated with ECMO (Logistic Regression Analysis)
3.4. Effect of ECMO on Admission Characteristics (Regression Analysis)
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hoffman, J.I.E.; Kaplan, S.; San Francisco, F.; Angeles, L. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef]
- Marelli, A.J.; Ionescu-Ittu, R.; Mackie, A.S.; Guo, L.; Dendukuri, N.; Kaouache, M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 2014, 130, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Von Bahr, V.; Hultman, J.; Eksborg, S.; Gerleman, R.; Enstad, Ø.; Frenckner, B.; Kalzén, H. Long-term survival and causes of late death in children treated with extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 2017, 18, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Baffes, T.G.; Fridman, J.L.; Bicoff, J.P.; Whitehill, J.L. Extracorporeal circulation for support of palliative cardiac surgery in infants. Ann. Thorac. Surg. 1970, 10, 354–363. [Google Scholar] [CrossRef]
- STS Congenital Heart Surgery Data Summary. Neonates, Duke Clinical Research Institute. Fall 2016. Available online: www.sts.org/sites/default/files/documents/CHSDExecutiveSummary_Neonates_Fall2016.pdf (accessed on 20 November 2017).
- STS Congenital Heart Surgery Data Summary. Infants, Duke Clinical Research Institute, Fall 2016. Available online: https://www.sts.org/sites/default/files/documents/CHSDExecutiveSummary_Infants_Fall2016.pdf (accessed on 20 November 2017).
- Johnson, E.A.; Zubair, M.M.; Armsby, L.R.; Burch, G.H.; Good, M.K.; Lasarev, M.R.; Hohimer, A.R.; Muralidaran, A.; Langley, S.M. Surgical quality predicts length of stay in patients with congenital heart disease. Pediatr. Cardiol. 2016, 37, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Baslaim, G.; Bashore, J.; Al-Malki, F.; Jamjoom, A. Can the outcome of pediatric extracorporeal membrane oxygenation after cardiac surgery be predicted? Ann. Thorac. Cardiovasc. Surg. 2006, 12, 21–27. [Google Scholar] [PubMed]
- Cashen, K.; Hollis, T.K.; Delius, R.E.; Meert, K.L. Extracorporeal membrane oxygenation for pediatric cardiac failure: Review with a focus on unique subgroups. Prog. Pediatr. Cardiol. 2016, 43, 105–111. [Google Scholar] [CrossRef]
- Freeman, C.L.; Bennett, T.D.; Casper, T.C.; Larsen, G.Y.; Hubbard, A.; Wilkes, J.; Bratton, S.L. Pediatric and Neonatal Extracorporeal Membrane Oxygenation; Does Center Volume Impact Mortality? Crit. Care Med. 2014, 42, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Aharon, A.S.; Drinkwater, D.C., Jr.; Churchwell, K.B.; Quisling, S.V.; Reddy, V.S.; Taylor, M.; Hix, S.; Christian, K.G.; Pietsch, J.B.; Deshpande, J.K.; et al. Extracorporeal membrane oxygenation in children after repair of congenital cardiac lesions. Ann. Thorac. Surg. 2001, 72, 2101–2102. [Google Scholar] [CrossRef]
- Mori, M.; Mccracken, C.; Maher, K.; Kogon, B. Outcomes of neonates requiring prolonged stay in the intensive care unit after surgical repair of congenital heart disease. J. Thorac. Cardiovasc. Surg. 2016, 152, 720.e1–727.e1. [Google Scholar] [CrossRef] [PubMed]
- Paden, M.L.; Rycus, P.T.; Thiagarajan, R.R.; ELSO Registry. Update and outcomes in extracorporeal life support. Semin. Perinatol. 2014, 38, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Pagowska-Klimek, I.; Pychynska-Pokorska, M.; Krajewski, W.; Moll, J.J. Predictors of long intensive care unit stay following cardiac surgery in children. Eur. J. Cardiothorac. Surg. 2011, 40, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.L.; Ridout, D.A.; Goldman, A.P.; Hoskote, A.; Penny, D.J. Risk factors for long intensive care unit stay after cardiopulmonary bypass in children. Crit. Care Med. 2003, 31, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; McDonald, R.; Chipman, C.W.; Stroud, M.; Gossett, J.M.; Imamura, M.; Bhutta, A.T. 20-Year experience of prolonged extracorporeal membrane oxygenation in critically ill children with cardiac or pulmonary failure. Ann. Thorac. Surg. 2012, 93, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Fudulu, D.P.; Dorobantu, D.M.; Sharabiani, M.T.A.; Angelini, G.D.; Caputo, M.; Parry, A.J.; Stoica, S.C. Outcomes following repair of anomalous coronary artery from the pulmonary artery in infants: Results from a procedure-based national database. Open Heart 2015, 2, e000277. [Google Scholar] [CrossRef] [PubMed]
- Prodhan, P.; Gossett, J.; Rycus, P.; Gupta, P. Extracorporeal membrane oxygenation in children with heart disease and del22q11 syndrome: A review of the Extracorporeal Life Support Organization registry. Perfusion 2015, 30, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Platzmann, A.M.; Schmiady, M.; Rudiger, A.; Huebler, M.; Greutmann, M.; Bettex, D.A. First description of successful weaning from ECMO in a patient with Eisenmenger syndrome after repair of pulmonary artery dissection. Int. J. Cardiol. 2015, 187, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Botha, P.; Deshpande, S.R.; Wolf, M.; Heard, M.; Alsoufi, B.; Kogon, B.; Kanter, K. Extracorporeal membrane oxygenator support in infants with systemic-pulmonary shunts. J. Thorac. Cardiovasc. Surg. 2016, 152, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.; Duffy, V.; Hersey, D.; Backes, C.; Rycus, P.; McConnell, P.; Voss, J.; Galantowicz, M.; Cua, C.L. Extracorporeal membrane oxygenation outcomes after the comprehensive stage ii procedure in patients with single ventricles. Artif. Organs 2017, 41, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Langley, S.M.; Sheppard, S.V.; Tsang, V.T.; Monro, J.L.; Lamb, R.K. When is extracorporeal life support worthwhile following repair of congenital heart disease in children? Eur. J. Cardiothorac. Surg. 1998, 13, 520–525. [Google Scholar] [CrossRef]
- Ettema, R.G.A.; Peelen, L.M.; Schuurmans, M.J.; Nierich, A.P.; Kalkman, C.J.; Moons, K.G. Prediction models for prolonged intensive care unit stay after cardiac surgery. Circulation 2010, 122, 682–689. [Google Scholar]
- Jacobs, J.P. The science of assessing the outcomes and improving the quality of the congenital and paediatric cardiac care. Curr. Opin. Cardiol. 2015, 30, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Burrell, A.; Roberts, L.; Bailey, M.; Sheldrake, J.; Rycus, P.T.; Hodgson, C.; Scheinkestel, C.; Cooper, D.J.; Thiagarajan, R.R.; et al. Predicting survival after ECMO for refractory cardiogenic shock: The survival after veno-arterial-ECMO (SAVE)-score. Eur. Heart J. 2015, 36, 2246–2256. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, D.; Nasr, V.G.; DiNardo, J.A. Overall hospital cost estimates in children with congenital heart disease: analysis of the 2012 kid’s inpatient database. Pediatr. Cardiol. 2016, 37, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Robertson, M.J.; Beam, B.; Gossett, J.M.; Schmitz, M.L.; Carroll, C.L.; Edwards, J.D.; Fortenberry, J.D.; Butt, W. Relationship of ECMO duration with outcomes after pediatric cardiac surgery: A multi-institutional analysis. Minerva Anestesiol. 2015, 81, 619–627. [Google Scholar] [PubMed]
- Boscamp, N.S.; Turner, M.E.; Crystal, M.; Anderson, B.; Vincent, J.A.; Torres, A.J. Cardiac catheterization in pediatric patients supported by extracorporeal membrane oxygenation: A 15-year experience. Pediatr. Cardiol. 2017, 38, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Abraham, B.P.; Gilliam, E.; Kim, D.W.; Wolf, M.J.; Vincent, R.N.; Petit, C.J. Early catheterization after initiation of extracorporeal membrane oxygenation support in children is associated with improved survival. Catheter. Cardiovasc. Interv. 2016, 88, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, S.K.; He, X.; Jacobs, M.L.; Shah, S.S.; Peterson, E.D.; Gaies, M.G.; Hall, M.; Gaynor, J.W.; Hill, K.D.; Mayer, J.E. Excess costs associated with complications and prolonged length of stay after congenital heart surgery. Ann. Thorac. Surg. 2014, 98, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Gilboa, S.M.; Salemi, J.L.; Nembhard, W.N.; Fixler, D.E.; Correa, A. Mortality resulting from congenital heart disease among children and adults in the United States, 1999 to 2006. Circulation 2010, 122, 2254–2263. [Google Scholar] [CrossRef] [PubMed]
No ECMO (n = 45,378) | ECMO (n = 798) | Odds Ratio (95%CI) | p-Value | |
---|---|---|---|---|
Age (years) | 3.3 (0–17) | -- | <0.01 | |
Race | 0.357 | |||
White | 19,544 (53.4) | 343 (54.4) | ||
Black | 4410 (12.0) | 81 (12.9) | ||
Hispanic | 8198 (22.4) | 128 (20.3) | ||
Asian or Pacific Islander | 1510 (4.1) | 22 (3.5) | ||
Native American | 296 (0.8) | *** (***) | ||
Other | 2671 (7.3) | 54 (8.6) | ||
Heart failure | 8476 (18.7) | 274 (34.3) | 2.2 (1.9 to 2.6) | <0.01 |
Acute kidney injury | 876 (1.9) | 227 (28.4) | 20.1 (17.0 to 23.8) | <0.01 |
Arrhythmia (not including atrioventricular block) | 1070 (2.4) | 76 (9.5) | 4.3 (3.4 to 5.5) | <0.01 |
Atrioventricular block | 894 (2.0) | 14 (1.8) | 0.8 (0.5 to 1.5) | 0.66 |
Cardiac lesion | ||||
Double outlet right ventricle | 2428 (5.4) | 69 (8.6) | 1.6 (1.3 to 2.1) | <0.01 |
Atrioventricular septal defect | 4679 (10.3) | 100 (12.5) | 1.2 (1.1 to 1.5) | 0.04 |
Partial anomalous pulmonary venous connection | 833 (1.8) | *** (***) | 0.5 (0.2 to 1.1) | 0.08 |
Total anomalous pulmonary venous connection | 1063 (2.3) | 83 (10.4) | 4.8 (3.8 to 6.1) | <0.01 |
Coronary artery anomaly | 695 (1.5) | 29 (3.6) | 2.4 (1.6 to 3.5) | <0.01 |
Atrial septal defect | 18,560 (40.9) | 204 (25.6) | 0.4 (0.4 to 0.5) | <0.01 |
Tetralogy of Fallot | 4721 (10.4) | 83 (10.4) | 1.0 (0.7 to 1.3) | 0.99 |
Ventricular septal defect | 13,367 (29.5) | 177 (22.2) | 0.6 (0.5 to 0.8) | <0.01 |
Pulmonary atresia | 1140 (2.5) | 31 (3.9) | 1.5 (1.1 to 2.2) | 0.01 |
Tricuspid atresia | 1627 (3.6) | 20 (2.5) | 0.6 (0.4 to 1.1) | 0.10 |
Ebstein anomaly | 340 (0.7) | 14 (1.8) | 2.3 (1.3 to 4.0) | <0.01 |
Hypoplastic left heart syndrome | 3337 (7.4) | 139 (17.4) | 2.6 (2.2 to 3.2) | <0.01 |
Transposition | 1499 (3.3) | 67 (8.4) | 2.6 (2.0 to 3.4) | <0.01 |
Congenitally corrected transposition | 323 (0.7) | *** (***) | 1.2 (0.5 to 2.6) | 0.58 |
Common arterial trunk | 729 (1.6) | 38 (4.8) | 3.1 (2.1 to 4.2) | <0.01 |
Cardiac surgery | ||||
Valvuloplasty, no valve replacement | 3277 (7.2) | 76 (9.5) | 1.3 (1.1 to 1.7) | 0.01 |
Valvuloplasty with valve replacement | 3731 (8.2) | 48 (6.0) | 0.7 (0.5 to 0.9) | 0.02 |
Septal defect repair | 23,159 (51.0) | 198 (24.8) | 0.3 (0.2 to 0.4) | <0.01 |
Tetralogy of Fallot, complete repair | 3332 (7.3) | 51 (6.4) | 0.8 (0.6 to 1.1) | 0.30 |
Common arterial trunk, complete repair | 433 (1.0) | 29 (3.6) | 3.9 (2.6 to 5.7) | <0.01 |
Total anomalous pulmonary venous connection repair | 1145 (2.5) | 96 (12.0) | 5.2 (4.2 to 6.5) | <0.01 |
Transposition repair, arterial switch | 585 (1.3) | 38 (4.8) | 3.8 (2.7 to 5.3) | <0.01 |
Transposition, atrial switch | 223 (0.5) | *** (***) | 0.5 (0.1 to 2.0) | 0.33 |
Right ventricle to pulmonary artery conduit | 1491 (3.3) | 78 (9.8) | 3.1 (2.5 to 4.0) | <0.01 |
Blalock-Tausig shunt | 95 (0.2) | *** (***) | 1.7 (0.5 to 5.6) | 0.31 |
Heart transplant | 560 (1.2) | 87 (10.9) | 9.7 (7.7 to 12.4) | <0.01 |
Length of hospital stay (days) | 12.5 (1–22) | 49.2 (1 to 145) | -- | <0.01 |
Cost of hospitalization (USD) | 141,524 | 727,830 | -- | <0.01 |
Inpatient mortality | 817 (1.8) | 370 (46.4) | 47.1 (40.3 to 55.0) | <0.01 |
Factors Independently Associated with Need for ECMO | |
---|---|
Increase in ECMO | Decrease in ECMO |
➢ Heart failure (BC 0.4, OR 1.4, 95%CI 1.2–1.7) | ➢ Age (BC −0.2, OR 0.8, 95%CI 0.8–0.8) |
➢ Acute kidney injury (BC 2.3, OR 10.8, 95%CI 8.8–13.3) | ➢ Atrial septal defect (BC −0.3, OR 0.7, 95%CI 0.6–0.9) |
➢ Arrhythmia (BC 1.2, OR 3.4, 95%CI 2.5–4.6) | |
➢ DORV (BC 0.3, OR 1.3, 95%CI 1.1–1.9) | |
➢ AVSD (BC 0.3, OR 1.3, 95%CI 1.1–1.8) | |
➢ Coronary anomaly (BC 0.6, OR 1.8, 95%CI 1.1–2.9) | |
➢ Transposition (BC 0.7, OR 2.1, 95%CI 1.4–3.1) | |
➢ Ebstein (BC 0.7, OR 2.0, 95%CI 1.1–3.9) | |
➢ HLHS (BC 0.8, OR 2.2, 95%CI 1.6–2.9) | |
➢ Common arterial trunk (BC 1.0, OR 2.8, 95%CI 1.4–5.4) | |
➢ Tetralogy of Fallot (BC 0.4, OR 1.5, 95%CI 1.1–2.3) | |
➢ Valvuloplasty no replacement (BC 1.4, OR 4.1, 95%CI 2.8–6.1) | |
➢ Valvuloplasty w/replacement (BC 1.3, OR 3.6, 95%CI 2.3–5.6) | |
➢ TAPVC complete repair (BC 2.0, OR 7.1, 95%CI 3.8–13.2) | |
➢ Arterial switch (BC 1.2, OR 3.4, 95%CI 1.9–6.1) | |
➢ RV to PA conduit (BC 1.4, OR 4.1, 95%CI 2.7–5.9) | |
➢ Heart transplant (BC 2.6, OR 13.9, 95%CI 9.2–21.2) |
Effect of ECMO on Admission Characteristics | ||||
---|---|---|---|---|
Beta-Coefficient | Odds Ratio | 95%CI | p-Value | |
Length of Stay | 17.8 | -- | -- | <0.01 |
Cost of Stay | 415,917 | -- | -- | <0.01 |
Mortality | 3.1 | 22.4 | 18.1–27.7 | <0.01 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, S.; Loomba, R.S. Factors Associated with the Need for, and the Impact of, Extracorporeal Membrane Oxygenation in Children with Congenital Heart Disease during Admissions for Cardiac Surgery. Children 2017, 4, 101. https://doi.org/10.3390/children4110101
Aiello S, Loomba RS. Factors Associated with the Need for, and the Impact of, Extracorporeal Membrane Oxygenation in Children with Congenital Heart Disease during Admissions for Cardiac Surgery. Children. 2017; 4(11):101. https://doi.org/10.3390/children4110101
Chicago/Turabian StyleAiello, Salvatore, and Rohit S. Loomba. 2017. "Factors Associated with the Need for, and the Impact of, Extracorporeal Membrane Oxygenation in Children with Congenital Heart Disease during Admissions for Cardiac Surgery" Children 4, no. 11: 101. https://doi.org/10.3390/children4110101
APA StyleAiello, S., & Loomba, R. S. (2017). Factors Associated with the Need for, and the Impact of, Extracorporeal Membrane Oxygenation in Children with Congenital Heart Disease during Admissions for Cardiac Surgery. Children, 4(11), 101. https://doi.org/10.3390/children4110101