Regional Anesthesia in Children: How Do We Know It Works? A Review of a Novel Tool for Assessing the Impact of Regional Anesthesia for Pediatric Surgical Patients
Abstract
Highlights
- Over the night of surgery (NOS), the regional anesthesia (RA) group consumed a significantly lower amount of opioids compared with that in the non-RA group (median morphine equivalency rate (MER) = 4.06 mcg/kg/h versus 16.16 mcg/kg/h; p < 0.001).
- A proportion of >25% (Lower Quartile: IQR) of our patient’s MERs were zero (needing no IV opioids) for the NOS, POD#1, and POD#2 in the regional and epidural cohorts, despite all having reasonable access to IV opioids.
- Many patients did not need IV opioids for satisfactory pain relief, indicating a successful block.
- Despite particularly rigid pain protocols, the variation in pain scores and IV opioids demonstrates that despite patients being treated the same, there is individual variation at play in postoperative pain control.
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NOS | Night of Surgery |
RA | Regional Anesthesia |
MER | Morphine Equivalency Rate |
IQR | Interquartile Range |
IV | Intravenous |
mcg | Microgram |
kg | Kilogram |
h | Hour |
POD | Postoperative Day |
PONV | Postoperative Nausea and Vomiting |
EMR | Electronic Medical Record |
APS | Acute Pain Service |
IRB | Institutional Review Board |
PCA | Patient-Controlled Analgesia |
PACU | Post-Anesthesia Care Unit |
mg | Milligram |
SSTAP | Single-Shot Transversus Abdominis Plane |
CPT | Current Procedural Terminology |
References
- Moore, D.; Clay, S.; Ding, L.; Eastwood, C.; Sadhasivam, S. Changing Methods of Assessment of Pediatric Anesthesia Fellows’ Clinical UGRA Performance based on Discordance Between Preclinical and Clinical Evaluations. In Proceedings of the ASRA 38th Annual Regional Anesthesia and Acute Pain Medicine Meeting, Boston, MA, USA, 2–5 May 2013. [Google Scholar]
- Eastwood, C.B.; Moore, D.L. A simple, inexpensive model for the practice of ultrasound-guided regional anesthesia techniques. Reg. Anesth. Pain Med. 2010, 35, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.L.; Ding, L.; Sadhasivam, S. Novel real-time feedback and integrated simulation model for teaching and evaluating ultrasound-guided regional anesthesia skills in pediatric anesthesia trainees. Pediatr. Anesth. 2012, 22, 847–853. [Google Scholar] [CrossRef]
- Norcini, J.J. Work based assessment. BMJ 2003, 326, 753–755. [Google Scholar] [CrossRef]
- Johnston, D.; Turbitt, L. Defining Success in Regional Anesthesia. Anaesthesia 2021, 76 (Suppl. S1), 40–52. [Google Scholar] [CrossRef]
- Vicchio, N.; Mossetti, V.; Bajocco, C.; Caccavale, L.G.; Stella, M.; Conio, A.; Ivani, G. Regional anesthesia: Not only pain control. Paediatr. Anaesth. 2012, 22, 725–726. [Google Scholar] [CrossRef]
- Bosenberg, A. Benefits of regional anesthesia in children. Paediatr. Anaesth. 2012, 22, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Kehlet, H. Postoperative opioid sparing to hasten recovery: What are the issues? Anesthesiology 2005, 102, 1083–1085. [Google Scholar] [CrossRef]
- Kehlet, H.; Holte, K. Effect of postoperative analgesia on surgical outcome. Br. J. Anaesth. 2001, 87, 62–72. [Google Scholar] [CrossRef]
- Kehlet, H.; Werner, M.; Perkins, F. Balanced analgesia: What is it and what are its advantages in postoperative pain? Drugs 1999, 58, 793–797. [Google Scholar] [CrossRef]
- Taenzer, A.H.; Clark, C. Efficacy of postoperative epidural analgesia in adolescent scoliosis surgery: A meta-analysis. Paediatr. Anaesth. 2010, 20, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Mätzl, J.; Rokitansky, A.; Klimscha, W.; Neumann, K.; Deusch, E.; Society, M.R. Superior postoperative pain relief with thoracic epidural analgesia versus intravenous patient-controlled analgesia after minimally invasive pectus excavatum repair. J. Thorac. Cardiovasc. Surg. 2007, 134, 865–870. [Google Scholar] [CrossRef]
- Raffa, R.B.; Pergolizzi, J.V., Jr. A modern analgesics pain ‘yramid’. J. Clin. Pharm. Ther. 2014, 39, 4–6. [Google Scholar] [CrossRef]
- Kumar, K.; Kirksey, M.A.; Duong, S.; Wu, C.L. A Review of Opioid-Sparing Modalities in Perioperative Pain Management: Methods to Decrease Opioid Use Postoperatively. Anesth. Analg. 2017, 125, 1749–1760. [Google Scholar] [CrossRef]
- Brown, E.N.; Pavone, K.J.; Naranjo, M. Multimodal General Anesthesia: Theory and Practice. Anesth. Analg. 2018, 127, 1246–1258. [Google Scholar] [CrossRef]
- Gustafsson, L.L.; Schildt, B.; Jacobsen, K. Adverse effects of extradural and intrathecal opiates: Report of a nationwide survey in Sweden. Br. J. Anaesth. 1982, 54, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Sites, B.D.; Chan, V.W.; Neal, J.M.; Weller, R.; Grau, T.; Koscielniak-Nielsen, Z.J.; Ivani, G. The American Society of Regional Anesthesia and Pain Medicine and the European Society of Regional Anaesthesia and Pain Therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia. Reg. Anesth. Pain Med. 2010, 35 (Suppl. 2), S74–S80. [Google Scholar] [CrossRef]
- Perkins, F.M.; Kehlet, H. Chronic pain as an outcome of surgery. Br. J. Anaesth. 2000, 93, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- McBride, W.J.; Dicker, R.; Abajian, J.C.; Vane, D.W. Continuous thoracic epidural infusions for postoperative analgesia after pectus deformity repair. J. Pediatr. Surg. 1996, 31, 105–108; discussion 7–8. [Google Scholar] [CrossRef]
- Gasior, A.C.; Weesner, K.A.; Knott, E.M.; Poola, A.; St Peter, S.D. Long-term patient perception of pain control experience after participating in a trial between patient-controlled analgesia and epidural after pectus excavatum repair with bar placement. J. Surg. Res. 2013, 185, 12–14. [Google Scholar] [CrossRef] [PubMed]
- St Peter, S.D.; Weesner, K.A.; Sharp, R.J.; Sharp, S.W.; Ostlie, D.J.; Holcomb, G.W., 3rd. Is epidural anesthesia truly the best pain management strategy after minimally invasive pectus excavatum repair? J. Pediatr. Surg. 2008, 43, 79–82. [Google Scholar] [CrossRef]
- Butkovic, D.; Kralik, S.; Matolic, M.; Kralik, M.; Toljan, S.; Radesic, L. Postoperative analgesia with intravenous fentanyl PCA vs epidural block after thoracoscopic pectus excavatum repair in children. Br. J. Anaesth. 2007, 98, 677–681. [Google Scholar] [CrossRef]
- Pereira, J.; Lawlor, P.; Vigano, A.; Dorgan, M.; Bruera, E. Equianalgesic dose ratios for opioids. A critical review and proposals for long-term dosing. J. Pain Symptom Manag. 2001, 22, 672–687. [Google Scholar] [CrossRef]
- Catro-Alves, L.J.S.; De Azevedo, V.L.F.; Braga, T.F.D.F.; Goncalves, A.C.; De Oliveira, G.S., Jr. The effect of neuraxial versus general anesthesia techniques on postoperative quality of recovery and analgesia after abdominal hysterectomy: A prospective, randomized, controlled trial. Anesth. Analg. 2011, 113, 1480–1486. [Google Scholar] [CrossRef]
- American Medical Association. CPT 2023 Professional Edition; JAMA Nertwork: Chicago, IL, USA, 2022. [Google Scholar]
- Miller, G.E. The assessment of clinical skills/competence/performance. Acad. Med. 1990, 65 (Suppl. 9), S63–S67. [Google Scholar] [CrossRef]
- Block, B.M.; Liu, S.S.; Rowlingson, A.J.; Cowan, A.R.; Cowan, J.A.; Wu, C.L. Efficacy of postoperative epidural analgesia: A meta-analysis. JAMA 2003, 290, 2455–2463. [Google Scholar] [CrossRef] [PubMed]
- Gerbershagen, H.J.; Aduckathil, S.; van Wijck, A.J.; Peelen, L.M.; Kalkman, C.J.; Meissner, W. Pain intensity on the first day after surgery: A prospective cohort study comparing 179 surgical procedures. Anesthesiology 2013, 118, 934–944. [Google Scholar] [CrossRef]
- Liu, S.S. Evidence Basis for Ultrasound-Guided Block Characteristics Onset, Quality, and Duration. Reg. Anesth. Pain Med. 2016, 41, 205–220. [Google Scholar] [CrossRef]
- Moore, D.L. Opioid Omission Is Not Opioid Sparing. Response to “Surgery-Induced Opioid Dependence: Adding Fuel to the Fire?”. Anesth. Analg. 2018, 126, 1789–1790. [Google Scholar] [CrossRef] [PubMed]
- McQuay, H.J.; Derry, S.; Eccleston, C.; Wiffen, P.J.; Moore, A.R. Evidence for analgesic effect in acute pain—50 years on. Pain 2012, 153, 1364–1367. [Google Scholar] [CrossRef] [PubMed]
- McQuay, H.; Derry, S.; Wiffen, P.; Moore, A.; Eccleston, C. Postoperative pain management: Number-needed-to-treat approach versus procedure-specific pain management approach. Pain 2013, 154, 180. [Google Scholar] [CrossRef]
- Blumenthal, S.; Min, K.; Nadig, M.; Borgeat, A. Double epidural catheter with ropivacaine versus intravenous morphine: A comparison for postoperative analgesia after scoliosis correction surgery. Anesthesiology 2005, 102, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, S.; Borgeat, A.; Nadig, M.; Min, K. Postoperative analgesia after anterior correction of thoracic scoliosis: A prospective randomized study comparing continuous double epidural catheter technique with intravenous morphine. Spine 2006, 31, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.; Kim, D.; Peng, D.; Schisler, T.; Cook, R. Regional Anesthesia with Paravertebral Blockade is Associated with Improved Outcomes in patients undergoing Minithoracotomy Cardiac Surgery. Innovations 2023, 18, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Reysner, T.; Kowalski, G.; Reysner, M.; Mularski, A.; Daroszewski, P.; Wieczorowska-Tobis, K. Functional Recovery and Pain Control following Pericapsular Nerve Group (PENG) block following hip surgeries: A systematic review and meta-analysis of randomized controlled trials. Arch. Orthop. Trauma Surg. 2025, 145, 198. [Google Scholar] [CrossRef]
Regional Blocks a | ||||||||
---|---|---|---|---|---|---|---|---|
No | 411 (55.24%) | |||||||
Yes | 333 (44.76%) | |||||||
Gender a | ||||||||
Female | 371 (49.87%) | |||||||
Male | 373 (50.13%) | |||||||
N | Mean | Std. Dev | Min | Maximum | ||||
Age b (yr) | 743 | 11.46 | 7.64 | 0.17 | 47 | |||
Weight b (kg) | 744 | 44.71 | 29.96 | 4.47 | 202.2 | |||
N | Min | Q1 | Median | Q3 | Maximum | |||
OR Time c (h) | 743 | 0.72 | 3.13 | 4.35 | 6.22 | 19.15 | ||
MER Interop c | 741 | 0 | 18.52 | 32.54 | 49.89 | 461.17 | ||
MER NOS c | 741 | 0 | 2.1 | 10.3 | 24.92 | 264.15 | ||
MER POD#1 c | 742 | 0 | 0 | 2.84 | 17.13 | 191.2 | ||
MER POD#2 c | 742 | 0 | 0 | 0 | 5.52 | 191.74 |
Number | MER (OR) a | MER NOS b | MER = 0 on NOS c (% of pts) | |
---|---|---|---|---|
# | Median (IQR) | Median (IQR) | ||
Non-Regional | 411 | 39.5 (21.9–61.8) | 16.2 (6.2–29.2) | 8.1 |
All Regional | 333 | 26.2 (13.9–38.2) | 4.1 (0–15.6) | 32.3 |
Non-Regional Thoracic | 42 | 68.0 (37.6–94.2) | 18.7 (6.8–38.5) | 11.9 |
Regional Thoracic | 40 | 22.6 (14.8–35.6) | 6.6 (3.2–16.46) | 7.5 |
Non-Regional Abdominal | 176 | 47.0 (33.6–70.3) | 14.3 (6.2–28.6) | 7.4 |
Regional Abdominal | 147 | 27.2 (14.9–38.3) | 5.2 (0–16.2) | 30.3 |
Abdominal Epidural | 69 | 18.5 (12.0–26.6) | 0.8 (0–4.5) | 47.8 |
Abdominal Single-Shot TAP | 33 | 40.0 (33.9–53.5) | 16.0 (8.5–26.7) | 6.1 |
Abdominal TAP Catheter | 31 | 35.8 (30.0–42.9) | 15.4 (8.9–37.8) | 0 |
Non-Regional Laparoscopy | 52 | 44.4 (38.7–61.6) | 12.7 (4.6–29.6) | 5.8 |
Non-Regional Laparotomy | 124 | 47.7 (33.0–74.4) | 15.3 (6.2–28.1) | 8.1 |
All Epidurals | 156 | 19.2 (10.4–28.4) | 2.5 (0–7.6) | 35.9 |
Caudal ± Duramorph | 16 | 12.8 (8.3–27.0) | 0 (0–0) | 81.3 |
Surgical Codes | Cases | MER (NOS) | Regional % |
---|---|---|---|
59514-59897 (C-Section) | 5 | 0 | 100% Epidural |
54312-54333 (Hypospadius Repair) | 2 | 0 | 100% Caudal% |
50780-50830 (Ureteral Reimplant) | 40 | 0 | 85% Caudal/Epidural; 2.5% TAP |
29805-29807 (Shoulder) | 14 | 0.34 | 100% Intrascalene Block |
26992-27172 (Hip Shelf Proc/Osteotomy) | 13 | 0.65 | 77% Epidural |
27422-27430 (MPFL) | 29 | 0.74 | 100% Femoral; 96.6% Sciatic |
22849-22899 (Growing Rod Adjustment/VEPTR) | 6 | 1.82 | 0% |
24344-26615 (ORIF Lower Arm) | 9 | 2.41 | 44% Infraclav; 22% Supraclav |
44310-44345 (Neocontinent Appendicostomy) | 5 | 2.77 | 20% Epidural; 20% TAP |
29882-29889 (ACL) | 24 | 2.96 | 100% Femoral; 87.5% Sciatic |
27146-27165 (VDRO/Pelvic Osteotomy) | 34 | 3.33 | 85% Epidural |
50400-50544 (Pyeloplasty) | 8 | 3.85 | 75% Epidural |
45112-45121 (Transanal Rectosigmoid Resection) | 6 | 5.01 | 67% Epidural |
21740-21743 (Pectus Repair) | 32 | 5.82 | 97% Epidural |
57010-58925 (Oopherectomy/Mass Excision) | 9 | 6.24 | 11% Epidural; 11% TAP |
49203-49205 (Adrenalectomy) | 10 | 6.92 | 70% Epidural; 30% TAP |
50845-53410 (Continent Reconstruction) | 9 | 7.15 | 33% Epidural/Caudal |
63045-63286 (Lumbar Laminectomy) | 13 | 8.46 | 0% |
45130-45397 (ProctoColectomy) | 8 | 9.9 | 50% TAP |
45550-46748 (PSARP) | 31 | 10.85 | 29% Epidural; 6.5% TAP |
33202-33945 (Median Sternotomy/Thracotomy) | 27 | 11.53 | 0% |
32110-32505 (Thoracotomy) | 11 | 12.01 | 91% Epidural |
43644-43775 (Gastric Sleeve) | 16 | 12.13 | 0% |
50200-50240 (Nephrectomy) | 7 | 12.3 | 28.5% Epidural; 14.2% TAP |
61557-62143 (Cranioplasty) | 9 | 12.58 | 0% |
44620-44626 (Osteomy Closure) | 25 | 12.76 | 8% Epidural; 60% TAP |
47120-47999 (Liver Transplant/Hepatic Resection) | 13 | 13.14 | 7.7% Epidural; 7.7% TAP |
61500-61543 (Craniotomy) | 15 | 13.15 | 0% |
44141-44188 (Continent Appendicostomy) | 20 | 14.02 | 25% TAP |
43108-43327 (Fundoplication) | 4 | 14.89 | 25% Epidural |
44602-44605 (Ex Lap SBO) | 7 | 15.41 | 29% TAP |
61343 (Posterior Fossa Decompression) | 15 | 16.2 | 0% |
50547 (Kindey Donor) | 13 | 16.2 | 100% TAP |
44005-44140 (Ex Lap) | 19 | 16.83 | 10.5% Epidural; 10.5% TAP |
13160 (2nd stage Closure- Liver Tx)) | 8 | 19.27 | 0% |
44204-44211 (Parial Colectomy) | 22 | 20.53 | 45% TAP |
3260-7-32666 (Thoracoscopy) | 14 | 23.56 | 7% Epidural |
50260-50365 (Kidney Transplant) | 20 | 27.89 | 15% TAP |
21154-21199(Maxilla/Mandible Osteotomies) | 8 | 28.77 | 0% |
22212-22844 (Posterior Spinal Fusion) | 71 | 29.18 | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moore, D.L.; Ding, L.; Yang, F.; Lee, J.; Sadhasivam, S.; Kandil, A. Regional Anesthesia in Children: How Do We Know It Works? A Review of a Novel Tool for Assessing the Impact of Regional Anesthesia for Pediatric Surgical Patients. Children 2025, 12, 1117. https://doi.org/10.3390/children12091117
Moore DL, Ding L, Yang F, Lee J, Sadhasivam S, Kandil A. Regional Anesthesia in Children: How Do We Know It Works? A Review of a Novel Tool for Assessing the Impact of Regional Anesthesia for Pediatric Surgical Patients. Children. 2025; 12(9):1117. https://doi.org/10.3390/children12091117
Chicago/Turabian StyleMoore, David L., Lili Ding, Fang Yang, Jiwon Lee, Senthilkumar Sadhasivam, and Ali Kandil. 2025. "Regional Anesthesia in Children: How Do We Know It Works? A Review of a Novel Tool for Assessing the Impact of Regional Anesthesia for Pediatric Surgical Patients" Children 12, no. 9: 1117. https://doi.org/10.3390/children12091117
APA StyleMoore, D. L., Ding, L., Yang, F., Lee, J., Sadhasivam, S., & Kandil, A. (2025). Regional Anesthesia in Children: How Do We Know It Works? A Review of a Novel Tool for Assessing the Impact of Regional Anesthesia for Pediatric Surgical Patients. Children, 12(9), 1117. https://doi.org/10.3390/children12091117