Predicting Future Respiratory Hospitalizations in Extremely Premature Neonates Using Transcriptomic Data and Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Processing
2.3. Outcome Measures
2.4. Feature Selection
2.5. Machine Learning Models and Analysis
2.6. Temporal Expression Analysis
3. Results
3.1. Participant Characteristics
3.2. Predictive Model Performance
- Day 5: AUC = 0.90, 95% CI: 0.73–1.00
- Day 14: AUC = 0.90, 95% CI: 0.78–1.00
- Day 28: AUC = 0.90, 95% CI: 0.54–1.00
3.3. Gene Expression and Pathway Analysis
3.3.1. Day 5
3.3.2. Day 14
3.3.3. Day 28
4. Discussion
4.1. Summary of Key Findings
4.2. Interpretation of Results
5. Biological Insights from Gene Expression Patterns
5.1. Immune Regulation and Inflammation
5.2. Lung Development and Structural Integrity
5.3. Metabolic and Oxidative Stress Responses
5.4. Limitations, Strengths, and Novel Contributions
5.5. Next Steps for Translational Research and External Validation
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Preterm Birth. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 7 April 2025).
- Patel, R.M. Short- and Long-Term Outcomes for Extremely Preterm Neonates. Am. J. Perinatol. 2016, 33, 318–328. [Google Scholar] [CrossRef]
- Crump, C. An overview of adult health outcomes after preterm birth. Early Hum. Dev. 2020, 150, 105187. [Google Scholar] [CrossRef]
- Urs, R.; Kotecha, S.; Hall, G.L.; Simpson, S.J. Persistent and progressive long-term lung disease in survivors of preterm birth. Paediatr. Respir. Rev. 2018, 28, 87–94. [Google Scholar] [CrossRef]
- Srinivasjois, R.; Slimings, C.; Einarsdóttir, K.; Burgner, D.; Leonard, H. Association of Gestational Age at Birth with Reasons for Subsequent Hospitalisation: 18 Years of Follow-Up in a Western Australian Population Study. PLoS ONE 2015, 10, e0130535. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.E.; Hammond, G.C.; Strunk, T.; Moore, H.C.; Leonard, H.; Carter, K.W.; Bhutta, Z.; Stanley, F.; De Klerk, N.; Burgner, D. Association of gestational age and growth measures at birth with infection-related admissions to hospital throughout childhood: A population-based, data-linkage study from Western Australia. Lancet Infect. Dis. 2016, 16, 952–961. [Google Scholar] [CrossRef]
- Feng, X.; Dong, H.; Li, B.; Yu, L.; Zhu, J.; Lou, C.; Zhang, J. Integrative analysis of the expression profiles of whole coding and non-coding RNA transcriptomes and construction of the competing endogenous RNA networks for chronic obstructive pulmonary disease. Front. Genet. 2023, 14, 1050783. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Talwar, A.; Chatterjee, S.; Aparasu, R.R. Application of machine learning in predicting hospital readmissions: A scoping review of the literature. BMC Med. Res. Methodol. 2021, 21, 96. [Google Scholar] [CrossRef] [PubMed]
- Pietrzyk, J.J.; Kwinta, P.; Wollen, E.J.; Bik-Multanowski, M.; Madetko-Talowska, A.; Günther, C.-C.; Jagła, M.; Tomasik, T.; Saugstad, O.D.; Krauss-Etschmann, S. Gene expression profiling in preterm neonates: New aspects of bronchopulmonary dysplasia development. PLoS ONE 2013, 8, e78585. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Davidson, L.; Berkelhamer, S. Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes. J. Clin. Med. 2017, 6, 4. [Google Scholar] [CrossRef]
- Doyle, L.W.; Anderson, P.J. Long-term outcomes of bronchopulmonary dysplasia. Semin. Fetal Neonatal Med. 2009, 14, 391–395. [Google Scholar] [CrossRef]
- Jain, D.; Feldman, A.; Sangam, S. Predicting Long-Term Respiratory Outcomes in Premature Neonates: Is It Time to Move beyond Bronchopulmonary Dysplasia? Children 2020, 7, 283. [Google Scholar] [CrossRef] [PubMed]
- Collaco, J.M.; McGrath-Morrow, S.A. Bronchopulmonary dysplasia as a determinant of respiratory outcomes in adult life. Pediatr. Pulmonol. 2021, 56, 3464–3471. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, H.; Bao, Y.; Li, W.; Wu, J.; He, Y.; Zhu, J. Long-Term Outcomes of Bronchopulmonary Dysplasia Under Two Different Diagnostic Criteria: A Retrospective Cohort Study at a Chinese Tertiary Center. Front. Pediatr. 2021, 9, 648972. [Google Scholar] [CrossRef] [PubMed]
- Acuña-Cordero, R.; Sossa-Briceño, M.P.; Rodríguez-Martínez, C.E. Predictors of hospitalization for acute lower respiratory infections during the first two years of life in a population of preterm neonates with bronchopulmonary dysplasia. Early Hum. Dev. 2018, 127, 53–57. [Google Scholar] [CrossRef]
- Chen, D.; Chen, J.; Cui, N.; Cui, M.; Chen, X.; Zhu, X.; Zhu, X. Respiratory Morbidity and Lung Function Analysis During the First 36 Months of Life in Neonates with Bronchopulmonary Dysplasia (BPD). Front. Pediatr. 2020, 7, 540. [Google Scholar] [CrossRef]
- Holzfurtner, L.; Shahzad, T.; Dong, Y.; Rekers, L.; Selting, A.; Staude, B.; Lauer, T.; Schmidt, A.; Rivetti, S.; Zimmer, K.-P.; et al. When inflammation meets lung development-an update on the pathogenesis of bronchopulmonary dysplasia. Mol. Cell. Pediatr. 2022, 9, 7. [Google Scholar] [CrossRef]
- Collins, S.L.; Black, K.E.; Chan-Li, Y.; Ahn, Y.-H.; Cole, P.A.; Powell, J.D.; Horton, M.R. Mitochondrial dysfunction contributes to alveolar developmental arrest in a mouse model of bronchopulmonary dysplasia. Am. J. Respir. Cell Mol. Biol. 2011, 45, 700–707. [Google Scholar] [CrossRef]
- Ten, V.S. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature neonates. Pediatr. Res. 2017, 81, 286–292. [Google Scholar] [CrossRef]
- Cui, T.X.; Brady, A.E.; Zhang, Y.-J.; Anderson, C.; Popova, A.P. IL-17a-producing γδT cells and NKG2D signaling mediate bacterial endotoxin-induced neonatal lung injury. Front. Immunol. 2023, 14, 1156842. [Google Scholar] [CrossRef]
- Pagel, J.; Twisselmann, N.; Rausch, T.K.; Waschina, S.; Hartz, A.; Steinbeis, M.; Olbertz, J.; Nagel, K.; Steinmetz, A.; Faust, K.; et al. Increased Regulatory T Cells Precede the Development of Bronchopulmonary Dysplasia in Preterm Neonates. Front. Immunol. 2020, 11, 565257. [Google Scholar] [CrossRef]
- Barnes, P.J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Investig. 2008, 118, 3546–3556. [Google Scholar] [CrossRef]
- Kraik, K.; Tota, M.; Laska, J.; Łacwik, J.; Paździerz, Ł.; Sędek, Ł.; Gomułka, K. The Role of Transforming Growth Factor-β (TGF-β) in Asthma and Chronic Obstructive Pulmonary Disease (COPD). Cells 2024, 13, 1271. [Google Scholar] [CrossRef] [PubMed]
- Calthorpe, R.J.; Poulter, C.; Smyth, A.R.; Sharkey, D.; Bhatt, J.; Jenkins, G.; Tatler, A.L. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023, 324, L285–L296. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.V.; Acarregui, M.J.; Snyder, J.M.; Klein, J.M.; Sliwkowski, M.X.; Kern, J.A. Neuregulin-1 and human epidermal growth factor receptors 2 and 3 play a role in human lung development in vitro. Am. J. Respir. Cell Mol. Biol. 2000, 22, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Surate Solaligue, D.E.; Rodríguez-Castillo, J.A.; Ahlbrecht, K.; Morty, R.E. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017, 313, L1101–L1153. [Google Scholar] [CrossRef]
- Mižíková, I.; Morty, R.E. The Extracellular Matrix in Bronchopulmonary Dysplasia: Target and Source. Front. Med. 2015, 2, 91. [Google Scholar] [CrossRef]
- Wu, T.-J.; Jing, X.; Teng, M.; Pritchard, K.A.; Day, B.W.; Naylor, S.; Teng, R.-J. Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia. Antioxidants 2024, 13, 889. [Google Scholar] [CrossRef]
- Yue, L.; Lu, X.; Dennery, P.A.; Yao, H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol. 2021, 48, 102104. [Google Scholar] [CrossRef]
- Shrestha, A.K.; Gopal, V.Y.N.; Menon, R.T.; Hagan, J.L.; Huang, S.; Shivanna, B. Lung omics signatures in a bronchopulmonary dysplasia and pulmonary hypertension-like murine model. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 315, L734–L741. [Google Scholar] [CrossRef]
- Debray, T.P.A.; Collins, G.S.; Riley, R.D.; Snell, K.I.E.; Van Calster, B.; Reitsma, J.B.; Moons, K.G.M. Transparent reporting of multivariable prediction models developed or validated using clustered data: TRIPOD-Cluster checklist. BMJ 2023, 380, e071018. [Google Scholar] [CrossRef]
- Collins, G.S.; Moons, K.G.M.; Dhiman, P.; Riley, R.D.; Beam, A.L.; Van Calster, B.; Ghassemi, M.; Liu, X.; Reitsma, J.B.; van Smeden, M.; et al. TRIPOD+AI statement: Updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 2024, 385, e078378. [Google Scholar] [CrossRef]
Characteristic | Overall N = 58 | No Hospitalization N = 35 | Yes Hospitalization N = 23 | p-Value2 |
---|---|---|---|---|
Gestational age (weeks) | 27.7 (2.4) | 27.7 (2.6) | 27.9 (2.0) | 0.8 |
Birth weight (g) | 1010.6 (279.7) | 999.1 (303.4) | 1028.0 (244.8) | 0.7 |
Sex: | 0.6 | |||
Male | 30 (52%) | 17 (49%) | 13 (57%) | |
Female | 28 (48%) | 18 (51%) | 10 (43%) | |
Delivery mode: | 0.5 | |||
Vaginal | 20 (34%) | 11 (31%) | 9 (39%) | |
Cesarean | 38 (66%) | 24 (69%) | 14 (61%) | |
Received surfactant | 35 (60%) | 20 (57%) | 15 (65%) | 0.5 |
SGA | 10 (17%) | 5 (14%) | 5 (22%) | 0.5 |
BPD status: | 0.7 | |||
no BPD | 22 (38%) | 14 (40%) | 8 (35%) | |
BPD | 36 (62%) | 21 (60%) | 15 (65%) | |
Days on oxygen | 46.0 (35.3) | 39.3 (29.8) | 56.2 (40.9) | 0.14 |
Gene | Full Name | Function | p Value |
---|---|---|---|
IL2RA | Interleukin 2 Receptor Subunit Alpha | T-cell activation; immune regulation (inflammatory pathways implicated in BPD) | 0.023152 |
OR8K1 | Olfactory Receptor Family 8 Subfamily K Member 1 | Olfaction | 0.026595 |
ERBB3 | Receptor Tyrosine-Protein Kinase erbB-3 | Epithelial cell growth, lung development, and signaling | 0.047818 |
RHOJ | Rho-related GTP-binding protein RhoJ | Endothelial cell migration, cytoskeletal organization; may relate to angiogenesis in BPD | 0.024168 |
PLEKHH1 | Pleckstrin Homology, MyTH4 and FERM Domain Containing H1 | Poorly characterized; may have cytoskeletal roles | 0.023152 |
PKD1 | Polycystin 1 | Cell-cell adhesion, mechanosensing | 0.029837 |
CPO | Carboxypeptidase O | Proteolysis; potential involvement in epithelial turnover or lung matrix processing | 0.035191 |
WFDC6 | WAP-type four-disulfidr core (WFDC) domain family | Protease inhibition | 0.00085 |
MEGF10 | Multiple EFG Domains 10 | Clearance of apoptotic cells; may influence alveolar macrophage function in lung injury resolution | 0.031096 |
LRRC17 | Leucine Rich Rpeat Containing 17 | Bone marrow development | 0.008806 |
MIR183 | mir-183; microRNA | Post-transcriptional regulation | 0.018601 |
FRMD3 | FERM Domain Containing 3 | Actomyosin structure organization | 0.011754 |
FOXP3 | Forkhead box P3 | Regulatory T-cell differentiation; central to immune tolerance and inflammation | 0.011757 |
LINC00680 | Long non-coding RNA | Non-coding RNA | 0.016033 |
LEXM | Lymphocyte Expansion Molecule | Unknown | 0.00199 |
HYI | Hydroxypyruvate Isomerase | Glyoxyate metabolism | 0.036595 |
PDC | Phosducin | Vision | 0.006564 |
ARHGDIB | Rho GDP Dissociation Inhibitor Beta | Regulates Rho GTPase signaling; involved in cytoskeletal dynamics and immune cell trafficking | 0.032516 |
GRTP1 | Growth Hormone Regulated TBC Protein 1 | GTPase activation | 0.020734 |
DHRS2 | Dehydrogenase/reducatse 2 | Metabolism, detoxification, and protection from oxidative stress | 0.046926 |
TSSK4 | Testis-specific serine/threonine kinase family | Signal transduction | 0.049636 |
SLC7A5 | Solute carrier family 7 member 5 | Amino acid transporter; important for cell growth and metabolism | 0.024499 |
CBX1 | Chromobox 1 | Transcription regulation | 0.005818 |
TGFB1 | Transforming growth factor beta 1 | Key regulator of fibrosis, alveolarization, and immune modulation in BPD | 0.026595 |
CRIPT | CXXC Repeat Containing Interactor of PDZ3 Domain | Microtubule organization | 0.039546 |
GADL1 | Glutamate decarboxylase like 1 | Amino acid metabolism | 0.021173 |
TRIM40 | Tripartite motif containing 40 | Innate immunity and NF-κB suppression; may modulate inflammation | 0.047818 |
LAMA4 | Laminin subunit alpha 4 | Component of basement membrane; implicated in vascular development and tissue remodeling | 0.034501 |
ZBTB2 | Zinc finger and BTB domain containing 2 | Transcription regulation | 0.00554 |
PTN | Pleiotrophin | Mitogen involved in angiogenesis and tissue repair; relevant to lung development | 0.022548 |
NEFL | Neurofilament light chain | Neurofilament bundle assembly | 0.045189 |
Metric | Day 5 | Day 14 | Day 28 |
---|---|---|---|
AUC | 0.90 | 0.90 | 0.90 |
Confidence Interval | 0.73–1.00 | 0.78–1.00 | 0.54–1.00 |
Sensitivity | 0.88 | 0.88 | 0.88 |
Specificity | 0.60 | 0.80 | 0.40 |
PPV | 0.77 | 0.88 | 0.70 |
NPV | 0.75 | 0.80 | 0.66 |
Balanced Accuracy | 0.74 | 0.84 | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McOmber, B.G.; Randolph, L.; Lang, P., II; Kwinta, P.; Kuiper, J.; Makker, K.; Aziz, K.B.; Moreira, A. Predicting Future Respiratory Hospitalizations in Extremely Premature Neonates Using Transcriptomic Data and Machine Learning. Children 2025, 12, 996. https://doi.org/10.3390/children12080996
McOmber BG, Randolph L, Lang P II, Kwinta P, Kuiper J, Makker K, Aziz KB, Moreira A. Predicting Future Respiratory Hospitalizations in Extremely Premature Neonates Using Transcriptomic Data and Machine Learning. Children. 2025; 12(8):996. https://doi.org/10.3390/children12080996
Chicago/Turabian StyleMcOmber, Bryan G., Lois Randolph, Patrick Lang, II, Przemko Kwinta, Jordan Kuiper, Kartikeya Makker, Khyzer B. Aziz, and Alvaro Moreira. 2025. "Predicting Future Respiratory Hospitalizations in Extremely Premature Neonates Using Transcriptomic Data and Machine Learning" Children 12, no. 8: 996. https://doi.org/10.3390/children12080996
APA StyleMcOmber, B. G., Randolph, L., Lang, P., II, Kwinta, P., Kuiper, J., Makker, K., Aziz, K. B., & Moreira, A. (2025). Predicting Future Respiratory Hospitalizations in Extremely Premature Neonates Using Transcriptomic Data and Machine Learning. Children, 12(8), 996. https://doi.org/10.3390/children12080996