Risk Factors Associated with Early and Late Postoperative Complications in Neonatal Patients with Esophageal Atresia
Abstract
Highlights
- A risk factor for early postoperative complications in neonates that have undergone surgical intervention for esophageal atresia is complications during delivery.
- The risk factors for late postoperative complications in neonates that have undergone surgical intervention for esophageal atresia are preoperative mechanical ventilation, postoperative sepsis, and belonging to relatively high- and high-risk groups according to the Spitz classification.
- Neonates with esophageal atresia and complications during delivery should be monitored during the perioperative period to promptly recognize or prevent the onset of early postoperative complications.
- In the postsurgical period, neonates with esophageal atresia who have been on preoperative mechanical ventilation or diagnosed with postoperative sepsis or who belong to relatively high- and high-risk groups according to the Spitz classification should be continuously monitored to promptly prevent or recognize late postoperative complications.
Abstract
1. Introduction
2. Methods
2.1. Study Sample and Design
- Class 1 (low-risk group)—patients without major cardiac anomalies and birth weight > 2000 g.
- Class 2 (moderate-risk group)—patients without major cardiac abnormalities and birth weight < 2000 g.
- Class 3 (relatively high-risk group)—patients with major cardiac anomalies and birth weight > 2000 g.
- Class 4 (high-risk group)—patients with major cardiac anomalies and birth weight < 2000 g.
- Type A (isolated EA).
- Type B (EA with proximal TEF).
- Type C (EA with distal TEF).
- Type D (EA with proximal and distal fistulas).
- Type E (H-type fistula).
- Preterm—up to 37 weeks.
- Term—between 37–41 weeks.
- Post-term—42 weeks and above.
- Short gap—gap length < 2 cm.
- Long gap—gap length > 2 cm.
2.2. Study Variables
- Complications during delivery: present or absent. They included prelabor rupture of membranes (PROM), placenta previa, placental abruption, nuchal cord, polyhydramnios, RhD incompatibility, fetus breech position, chorioamnionitis.
- Perinatal asphyxia, which is defined according to the American Academy of Pediatrics (AAP) and American College of Obstetrics and Gynecology (ACOG) when all the following criteria are met: profound metabolic or mixed acidemia (pH < 7.00) in an umbilical arterial blood sample, Apgar score of 0–3 5 min after birth, neonatal encephalopathy (e.g., seizures, coma, hypotonia), and multiple organ involvement (kidneys, lungs, liver, heart, intestines) [17].
- Intracranial hemorrhage (ICH): present or absent. Cranial sonography that was performed by a Board-certified radiologist was used for diagnosis of intracranial hemorrhage.
- Respiratory distress: present or absent. It was defined as tachypnea (respiratory frequency (RF) > 60/min, nasal flaring, intercostal or subcostal retractions, audible grunting, and cyanosis) [18].
- Comorbidities of mother: present or absent. They included Hashimoto’s thyroiditis, hypertension, preeclampsia, gestational diabetes, diabetes mellitus, thrombophilia, anemia, arrhythmia, antiphospholipid syndrome, HELLP syndrome, and infection during pregnancy. Data of evaluated comorbidities were taken from the patient’s medical records.
- Applied medicamentous therapy during pregnancy—antiplatelet drugs: acetylsalicylic acid (ASA), nadroparin calcium, enoxaparin; antihypertensive drugs: methyldopa, verapamil, furosemide; antidiabetic drug: metformin; hormone drugs: progesterone, levothyroxine; antimicrobial drugs: ampicillin, gentamicin, trimethoprim/sulfamethoxazole, acyclovir; other: diazepam, ferrous supplement.
- Neonatal conditions: present or absent. They included cardiovascular: patent foramen ovale (PFO), patent ductus arteriosus (PDA), ventricular septal defect (VSD), atrial septal defect (ASD), mitral valve insufficiency (MR), persistent pulmonary hypertension in the neonate (PPHN), tetralogy of Fallot (TOF), total anomalous pulmonary venous connection (TAPVC), single umbilical artery (SUAS); respiratory: pneumonia, tracheomalacia, laryngotracheal cleft; urogenital: hypospadias, hydronephrosis, cryptorchidism, ectopic kidney, renal agenesis, horseshoe kidney, renal cyst, cloaca; musculoskeletal: clubfoot (talipes equinovarus), torticollis, scoliosis, polydactyly, syndactyly, finger aplasia, cleft lips and cleft palate, micrognathia; metabolic: icterus, hypothyroidism, glucose/galactose intolerance; neurological: spina bifida, convulsions, ventriculomegaly; syndromes: Down syndrome, Weaver syndrome, Townes–Brocks syndrome, Goldenhar syndrome. Diagnosis of neonatal conditions was made by a Board-certified pediatrician, pediatric surgeons, and physiatrist.
- Prenatal conditions: present or absent, including polyhydramnios and a small or absent stomach. These conditions were diagnosed using ultrasound performed by a certified radiologist; in cases with differential diagnostic dilemma, magnetic resonance imaging was performed.
- Preoperative mechanical ventilation (MV) (applied/not applied): The parameters for MV were Silverman score > 5; grades III and above of respiratory distress confirmed with chest radiography; failure of improvement with continuous positive airway pressure (cPAP) of 1 kPa at fraction of inspired oxygen (FiO2) 100%; periodical breathing with progressive decrease in base excess; progressive increase or irregular tachypnea with base excess decrease, partial fraction of oxygen (PaO2) > 6.6 kPa of FiO2 > 60%; hypoxemia from PaO2/FiO2 < 150 and score of acid/base balance grades III and above (PaO2 < 6.6 kPa, PaCO2 > 9.3 kPa, pH < 7.1) [19].
2.3. Postoperative Complications
- Early postoperative complications: those that appeared in the first month after surgery and included anastomotic dehiscence (“leak”), strictures, fistula, and short bowel syndrome [24].
- Late postoperative complications: those that appeared after the first month post surgery and included gastroesophageal reflux, ileus, tracheomalacia, respiratory infections, esophageal/intestinal peristaltic disorder, and chest deformities [24].
2.4. Statistical Analysis
- Model 1—included patients with Class 1 and Class 2 Spitz classification.
- Model 2—included patients with Class 3 and Class 4 Spitz classification.
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walk, R.M. Esophageal Atresia and Tracheoesophageal Fistula: Overview and Considerations for the General Surgeon. Surg. Clin. N. Am. 2022, 102, 759–778. [Google Scholar] [CrossRef] [PubMed]
- McGowan, N.A.; Grosel, J. An overview of esophageal atresia and tracheoesophageal fistula. J. Am. Acad. PAs 2022, 35, 34–37. [Google Scholar] [CrossRef] [PubMed]
- Holland, A.J.; Fitzgerald, D.A. Oesophageal atresia and tracheo-oesophageal fistula: Current management strategies and complications. Paediatr. Respir. Rev. 2010, 11, 100–106, quiz 106–107. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.X.; Hong, S.M.; Chen, Q.; Wang, Z.C.; Wu, D.M.; Hong, J.J.; Zhou, C. Risk factors for anastomotic complications after one-stage anastomosis for oesophageal atresia. J. Cardiothorac. Surg. 2021, 16, 176. [Google Scholar] [CrossRef]
- Kovačević, T.; Polić, B.; Markić, J.; Ardalić Čatipović, T.; Bucat, M.; Mikulić, S.; Žuvan, L.; Pogorelić, Z.; Despot, R.; Žitko, V.; et al. Epidemiology and Treatment Outcomes in Neonates with Esophageal Atresia: A 30-Year Population-Based Study. Healthcare 2025, 13, 418. [Google Scholar] [CrossRef]
- Roberts, K.; Karpelowsky, J.; Fitzgerald, D.A.; Soundappan, S.S. Outcomes of oesophageal atresia and tracheo-oesophageal fistula repair. J. Paediatr. Child Health 2016, 52, 694–698. [Google Scholar] [CrossRef]
- Pinheiro, P.F.; Simões e Silva, A.C.; Pereira, R.M. Current knowledge on esophageal atresia. World J. Gastroenterol. 2012, 18, 3662–3672. [Google Scholar] [CrossRef]
- Tuğba, R.G.; Tuğba, Ş.E.; Ayşe, T.A.; Zeynep, R.O.; Pelin, A.; Cem, K.; Ramazan, K. Review of Complications of Operated Esophageal Atresia and Tracheoesophageal Fistula Patients. Turk. Arch. Pediatr. 2021, 56, 380–385. [Google Scholar] [CrossRef]
- Lefèvre, N.C.; Le Gouez, M.; Lesage, F.; Rousseau, V.; Giuseppi, A.; Abadie, V.; Lapillonne, A.; Kermorvant-Duchemin, E. Peri- and neonatal factors influencing mortality and morbidity 2 years after esophageal atresia primary repair: A single center retrospective study. Eur. J. Pediatr. 2023, 182, 889–897. [Google Scholar] [CrossRef]
- Cho, J.Y.; Chang, M.Y.; Gang, M.H.; Lee, Y.W.; Park, J.B.; Kim, J.Y.; Kim, H.J. Postoperative Complications of Esophageal Atresia and Role of Endoscopic Balloon Dilatation in Anastomotic Strictures. Pediatr. Gastroenterol. Hepatol. Nutr. 2022, 25, 453–460. [Google Scholar] [CrossRef]
- Rayyan, M.; Embrechts, M.; Van Veer, H.; Aerts, R.; Hoffman, I.; Proesmans, M.; Allegaert, K.; Naulaers, G.; Rommel, N. Neonatal factors predictive for respiratory and gastro-intestinal morbidity after esophageal atresia repair. Pediatr. Neonatol. 2019, 60, 261–269. [Google Scholar] [CrossRef]
- Castilloux, J.; Noble, A.J.; Faure, C. Risk factors for short- and long-term morbidity in children with esophageal atresia. J. Pediatr. 2010, 156, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Takamizawa, S.; Arai, H.; Bitoh, Y.; Nakao, M.; Yokoi, A.; Nishijima, E. Esophageal atresia: Prognostic classification revisited. Surgery 2009, 145, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, E.; Haliloglu, M. Radiologic diagnosis of tracheoesophageal fistula in children. Curr. Chall. Thorac. Surg. 2022, 4, 25. [Google Scholar] [CrossRef]
- Quinn, J.A.; Munoz, F.M.; Gonik, B.; Frau, L.; Cutland, C.; Mallett-Moore, T.; Kissou, A.; Wittke, F.; Das, M.; Nunes, T.; et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine 2016, 34, 6047–6056. [Google Scholar] [CrossRef]
- Sharma, S.S.; Lahoti, B.K.; Paraste, M.K.; Mathur, R.K.; Laddha, A.; More, S. A prospective study of gap length in esophageal atresia with tracheoesophageal fistula, and comparison of outcome of patients in long gap and short gap lengths. Int. J. Surg. Sci. 2020, 4, 19–21. [Google Scholar] [CrossRef]
- Bhat, M.A.; Bhat, J.I. Perinatal Asphyxia. In Encyclopedia of Molecular Mechanisms of Disease; Lang, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Hermansen, C.L.; Mahajan, A. Newborn Respiratory Distress. Am. Fam. Physician 2015, 92, 994–1002. [Google Scholar]
- Gomella, T.L.; Eyal, F.G.; Bany-Mohammed, F. (Eds.) Gomella’s Neonatology: Management, Procedures, On-Call Problems, Diseases, and Drugs, 8th ed.; McGraw-Hill LANGE: Columbus, OH, USA, 2020. [Google Scholar]
- Lee, J.I.; Jung, P.M. Total Parenteral Nutrition (TPN) via Peripheral Veins in Neonatal Surgical Patients. J. Korean Assoc. Pediatr. Surg. 1998, 4, 16–26. [Google Scholar] [CrossRef]
- Maudarm, K.K. Total parenteral nutrition. Med. J. Armed Forces India 1995, 51, 122–126. [Google Scholar] [CrossRef]
- Chen, P.Y.; Luo, C.W.; Chen, M.H.; Yang, M.L.; Kuan, Y.H. Epidemiological Characteristics of Postoperative Sepsis. Open Med. (Wars) 2019, 14, 928–938. [Google Scholar] [CrossRef]
- Źródłowski, T.; Sobońska, J.; Salamon, D.; McFarlane, I.M.; Ziętkiewicz, M.; Gosiewski, T. Classical Microbiological Diagnostics of Bacteremia: Are the Negative Results Really Negative? What is the Laboratory Result Telling Us About the “Gold Standard”? Microorganisms 2020, 8, 346. [Google Scholar] [CrossRef]
- O’Neill, J.; Grosfeld, J.; Fonkalsrudm, E. Principles of Pediatric Surgery, 2nd ed.; Mosby: Maryland Heights, MO, USA, 2003. [Google Scholar]
- Global PaedSurg Research Collaboration. Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: A multicentre, international, prospective cohort study. Lancet 2021, 398, 325–339. [Google Scholar] [CrossRef]
- Lal, D.R.; Gadepalli, S.K.; Downard, C.D.; Ostlie, D.J.; Minneci, P.C.; Swedler, R.M.; Chelius, T.H.; Cassidy, L.; Rapp, C.T.; Billmire, D.; et al. Challenging surgical dogma in the management of proximal esophageal atresia with distal tracheoesophageal fistula: Outcomes from the Midwest Pediatric Surgery Consortium. J. Pediatr. Surg. 2018, 53, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Zouari, M.; Ameur, H.B.; Krichen, E.; Saad, N.B.; Dhaou, M.B.; Mhiri, R. Risk factors for adverse outcomes following surgical repair of esophageal atresia. A retrospective cohort study. Dis. Esophagus 2023, 36, doac070. [Google Scholar] [CrossRef]
- Moshiro, R.; Mdoe, P.; Perlman, J.M. A Global View of Neonatal Asphyxia and Resuscitation. Front. Pediatr. 2019, 7, 489. [Google Scholar] [CrossRef]
- Thammanna, P.S.; Sridhar, P.V.; Sandeep, M. Morbidity pattern and hospital outcome of neonates admitted in a tertiary care teaching hospital, Mandya. Int. J. Sci. Study 2015, 3, 126–129. [Google Scholar]
- Odera, A.; Peer, N.; Balakrishna, Y.; Sheik Gafoor, M.H. Management and Outcomes of Esophageal Atresia With or Without Tracheo-Esophageal Fistula Over 15 Years in South Africa. J. Surg. Res. 2023, 291, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Addissouky, T.A.; El Tantawy El Sayed, I.; Ali, M.M.A.; Wang, Y.; El Baz, A.; Khalil, A.A.; Elarabany, N. Molecular Pathways in Sepsis Pathogenesis: Recent Advances and Therapeutic Avenues. J. Cell. Immunol. 2023, 5, 174–183. [Google Scholar] [CrossRef]
- Ershad, M.; Mostafa, A.; Dela Cruz, M.; Vearrier, D. Neonatal Sepsis. Curr. Emerg. Hosp. Med. Rep. 2019, 7, 83–90. [Google Scholar] [CrossRef]
- Dey, S.; Jain, V.; Anand, S.; Agarwala, S.; Dhua, A.; Srinivas, M.; Bhatnagar, V. First-Year follow-up of Newborns Operated for Esophageal Atresia in a Developing Country: Just Operating is not Enough! J. Indian Assoc. Pediatr. Surg. 2020, 25, 206–212. [Google Scholar] [CrossRef]
- Ritz, L.A.; Widenmann-Grolig, A.; Jechalke, S.; Bergmann, S.; von Schweinitz, D.; Lurz, E.; Hubertus, J. Outcome of Patients With Esophageal Atresia and Very Low Birth Weight (≤1500 g). Front. Pediatr. 2020, 8, 587285. [Google Scholar] [CrossRef] [PubMed]
- van Helsdingen, C.P.M.; Bontekoning, N.; Ten Kate, C.A.; Vlot, J.; Wijnen, R.M.H.; van Hoorn, C.E.; de Graaff, J.C.; Visschers, R.G.J.; Theeuws, O.P.F.; Dirix, M.; et al. Mortality and surgery-related complications in very low and extreme low birth weight infants treated for esophageal atresia: A multi-center cohort study. J. Pediatr. Surg. 2025, 162507. [Google Scholar] [CrossRef] [PubMed]
- Horiike, M.; Mimura, H.; Yokoi, A. Prognosis and clinical issues of esophageal atresia in extremely low birth weight neonates: A case series. BMC Pediatr. 2023, 23, 401. [Google Scholar] [CrossRef]
- de Bruin, R.; van Dalen, S.L.; Franx, S.J.; Ramaswamy, V.V.; Simons, S.H.P.; Flint, R.B.; van den Bosch, G.E. The Risk for Neonatal Hypoglycemia and Bradycardia after Beta-Blocker Use during Pregnancy or Lactation: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 9616. [Google Scholar] [CrossRef]
- Moges, N.; Ahmed, K.; Birhanu, D.; Belege, F.; Dimtse, A.; Kerebeh, G.; Kassa, B.D.; Geta, K.; Oumer, K.E.; Zewde, E.A.; et al. Surgical outcome and predictors of neonates with esophageal atresia admitted at Tikur Anbesa Specialized Hospital. PLoS ONE 2023, 18, e0285669. [Google Scholar] [CrossRef] [PubMed]
Variables | N (%) | Response Rate, % | |
---|---|---|---|
Gender | Male | 66 (60.6) | 100% |
Female | 43 (39.4) | ||
Complications during delivery | None | 47 (43.9) | 98.17% |
Yes | 60 (56.1) | ||
Perinatal asphyxia | No | 76 (69.7) | 100% |
Yes | 33 (30.3) | ||
Intracranial hemorrhage | No | 91 (84.3) | 99.08% |
Yes | 17 (15.7) | ||
Respiratory distress | No | 54 (49.5) | 100% |
Yes | 55 (50.5) | ||
Comorbidities of mother | No | 65 (59.6) | 100% |
Yes | 44 (40.4) | ||
Applied medicamentous therapy | No | 70 (64.8) | 99.08% |
Yes | 38 (35.2) | ||
Neonatal conditions | No | 16 (14.8) | 99.08% |
Yes | 92 (85.2) | ||
Prenatal diagnostics | No | 72 (66.1) | 100% |
Yes | 37 (33.9) | ||
Preoperative mechanical ventilation | No | 73 (67.6) | 99.08% |
Yes | 35 (32.4) | ||
Total parenteral nutrition | No | 8 (7.4) | 99.08% |
Yes | 100 (92.6) | ||
Early postoperative complications | No | 46 (42.2) | 100% |
Yes | 63 (57.8) | ||
Late postoperative complications | No | 46 (42.2) | 100% |
Yes | 63 (57.8) | ||
Postoperative sepsis | No | 49 (45.4) | 99.08% |
Yes | 59 (54.6) | ||
Gestational age | Preterm | 52 (47.7) | 100% |
Term | 57 (52.3) | ||
Post-term | 0 (0) | ||
Gap | Short | 86 (78.9) | 100% |
Long | 23 (21.1) | ||
Spitz classification | Class 1 | 69 (63.9) | 99.08% |
Class 2 | 11 (10.2) | ||
Class 3 | 14 (13.0) | ||
Class 4 | 14 (13.0) | ||
EA type | A | 14 (12.8) | 100% |
B | 0 (0) | ||
C | 90 (82.6) | ||
D | 5 (4.6) | ||
E | 0 (0) |
Variables | Early Postoperative Complications | p | ||
---|---|---|---|---|
No | Yes | |||
Gender | Male | 28 (60.9) | 38 (60.3) | 0.954 * |
Female | 18 (39.1) | 25 (39.7) | ||
Complications during delivery | None | 27 (61.4) | 20 (31.7) | 0.002 * |
Yes | 17 (38.6) | 43 (68.3) | ||
Perinatal asphyxia | No | 37 (80.4) | 39 (61.9) | 0.038 * |
Yes | 9 (19.6) | 24 (38.1) | ||
Intracranial hemorrhage | No | 38 (82.6) | 53 (85.5) | 0.685 * |
Yes | 8 (17.4) | 9 (14.5) | ||
Respiratory distress | No | 25 (54.3) | 29 (46.0) | 0.391 * |
Yes | 21 (45.7) | 34 (54.0) | ||
Comorbidities of mother | No | 30 (65.2) | 35 (55.6) | 0.310 * |
Yes | 16 (34.8) | 28 (44.4) | ||
Applied medicamentous therapy | No | 35 (76.1) | 35 (56.5) | 0.035 * |
Yes | 11 (23.9) | 27 (43.5) | ||
Neonatal conditions | No | 8 (17.4) | 8 (12.9) | 0.516 * |
Yes | 38 (82.6) | 54 (87.1) | ||
Prenatal diagnostics | No | 32 (69.6) | 40 (63.5) | 0.508 * |
Yes | 14 (30.4) | 23 (36.5) | ||
Preoperative mechanical ventilation | No | 34 (73.9) | 39 (62.9) | 0.227 * |
Yes | 12 (26.1) | 23 (37.1) | ||
Total parenteral nutrition | No | 4 (8.7) | 4 (6.5) | 0.721 ** |
Yes | 42 (91.3) | 58 (93.5) | ||
Postoperative sepsis | No | 26 (56.5) | 23 (37.1) | 0.045 * |
Yes | 20 (43.5) | 39 (62.9) | ||
Gestational age | Preterm | 21 (45.7) | 31 (49.2) | 0.714 * |
Term | 25 (54.3) | 32 (50.8) | ||
Gap | Short | 38 (82.6) | 48 (76.2) | 0.417 * |
Long | 8 (17.4) | 15 (23.8) | ||
Spitz classification | Class 1 | 30 (65.2) | 39 (62.9) | 0.601 ** |
Class 2 | 6 (13.0) | 5 (8.1) | ||
Class 3 | 6 (13.0) | 8 (12.9) | ||
Class 4 | 4 (8.7) | 10 (16.1) | ||
EA type | A | 3 (6.5) | 11 (17.5) | 0.282 ** |
C | 41 (89.1) | 49 (77.8) | ||
D | 2 (4.3) | 3 (4.8) |
Variables | Late Postoperative Complications | p | ||
---|---|---|---|---|
No | Yes | |||
Gender | Male | 30 (65.2) | 36 (57.1) | 0.394 * |
Female | 16 (34.8) | 27 (42.9) | ||
Complications during delivery | None | 25 (56.8) | 22 (34.9) | 0.025 * |
Yes | 19 (43.2) | 41 (65.1) | ||
Perinatal asphyxia | No | 36 (78.3) | 40 (63.5) | 0.097 * |
Yes | 10 (21.7) | 23 (36.5) | ||
Intracranial hemorrhage | No | 40 (88.9) | 51 (81.0) | 0.264 * |
Yes | 5 (11.1) | 12 (19.0) | ||
Respiratory distress | No | 28 (60.9) | 26 (41.3) | 0.043 * |
Yes | 18 (39.1) | 37 (58.7) | ||
Comorbidities of mother | No | 31 (67.4) | 34 (54.0) | 0.158 * |
Yes | 15 (32.6) | 29 (46.0) | ||
Applied medicamentous therapy | No | 33 (73.3) | 37 (58.7) | 0.117 * |
Yes | 12 (26.7) | 26 (41.3) | ||
Neonatal conditions | No | 9 (19.6) | 7 (11.3) | 0.231 * |
Yes | 37 (80.4) | 55 (88.7) | ||
Prenatal diagnostics | No | 30 (65.2) | 42 (66.7) | 0.875 * |
Yes | 16 (34.8) | 21 (33.3) | ||
Preoperative mechanical ventilation | No | 37 (80.4) | 36 (58.1) | 0.014 * |
Yes | 9 (19.6) | 26 (41.9) | ||
Total parenteral nutrition | No | 6 (13.0) | 2 (3.2) | 0.070 ** |
Yes | 40 (87.0) | 60 (96.8) | ||
Postoperative sepsis | No | 27 (60.0) | 22 (34.9) | 0.010 * |
Yes | 18 (40.0) | 41 (65.1) | ||
Gestational age | Preterm | 22 (47.8) | 30 (47.6) | 0.983 * |
Term | 24 (52.2) | 33 (52.4) | ||
Gap | Short | 34 (73.9) | 52 (82.5) | 0.276 * |
Long | 12 (26.1) | 11 (17.5) | ||
Spitz classification | Class 1 | 30 (65.2) | 39 (62.9) | 0.008 ** |
Class 2 | 9 (19.6) | 2 (3.2) | ||
Class 3 | 2 (4.3) | 12 (19.4) | ||
Class 4 | 5 (10.9) | 9 (14.5) | ||
EA type | A | 4 (8.7) | 10 (15.9) | 0.574 ** |
C | 40 (87.0) | 50 (79.4) | ||
D | 2 (4.3) | 3 (4.8) |
Variables | Logistic Regression | |||
---|---|---|---|---|
Early Postoperative Complication | Late Postoperative Complications | |||
OR (95% CI) | p | OR (95% CI) | p | |
Univariate logistic regression | ||||
Gender | 1.02 (0.70–2.23) | 0.954 | 1.41 (0.64–3.09) | 0.395 |
Complications during delivery | 3.42 (1.53–7.65) | 0.003 | 2.45 (1.11–5.40) | 0.026 |
Perinatal asphyxia | 2.53 (1.04–6.15) | 0.041 | 2.07 (0.87–4.93) | 0.101 |
Intracranial hemorrhage | 0.81 (0.29–2.28) | 0.685 | 1.88 (0.61–5.78) | 0.269 |
Respiratory distress | 1.40 (0.65–2.99) | 0.392 | 2.21 (1.02–4.81) | 0.045 |
Comorbidities of mother | 1.50 (0.69–3.29) | 0.311 | 0.57 (0.26–1.25) | 0.160 |
Applied medicamentous therapy | 2.46 (1.06–5.70) | 0.037 | 1.93 (0.84–4.43) | 0.120 |
Neonatal conditions | 1.42 (0.49–4.12) | 0.518 | 1.91 (0.65–5.58) | 0.236 |
Prenatal diagnostics | 1.31 (0.58–2.96) | 0.509 | 0.94 (0.42–2.09) | 0.875 |
Preoperative mechanical ventilation | 1.67 (0.72–3.85) | 0.229 | 2.97 (1.22–7.20) | 0.016 |
Total parenteral nutrition | 1.38 (0.33–5.84) | 0.661 | 4.50 (0.87–23.42) | 0.074 |
Postoperative sepsis | 2.20 (1.01–4.80) | 0.046 | 2.80 (1.27–6.16) | 0.011 |
Gestational age | 0.87 (0.41–1.86) | 0.714 | 1.01 (0.47–2.16) | 0.983 |
Gap | 1.48 (0.57–3.87) | 0.419 | 0.60 (0.24–1.51) | 0.278 |
Spitz class | 0.90 (0.38–2.18) | 0.822 | 2.85 (1.09–7.46) | 0.033 |
Multivariate backward stepwise logistic regression | ||||
Complications during delivery | 3.09 (1.36–7.02) | 0.007 | - | - |
Applied medicamentous therapy | 2.19 (0.91–5.28) | 0.080 | - | - |
Preoperative mechanical ventilation | - | - | 2.77 (1.04–7.36) | 0.041 |
Postoperative sepsis | - | - | 2.60 (1.11–6.11) | 0.028 |
Spitz class | - | - | 3.50 (1.20–10.21) | 0.022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raus, M.; Zekovic, L.; Sindjic-Antunovic, S.; Rodic, P.; Medjo, B.; Bosiocic, I.; Dimitrijevic, A.; Nikolic, D. Risk Factors Associated with Early and Late Postoperative Complications in Neonatal Patients with Esophageal Atresia. Children 2025, 12, 1075. https://doi.org/10.3390/children12081075
Raus M, Zekovic L, Sindjic-Antunovic S, Rodic P, Medjo B, Bosiocic I, Dimitrijevic A, Nikolic D. Risk Factors Associated with Early and Late Postoperative Complications in Neonatal Patients with Esophageal Atresia. Children. 2025; 12(8):1075. https://doi.org/10.3390/children12081075
Chicago/Turabian StyleRaus, Misela, Luka Zekovic, Sanja Sindjic-Antunovic, Predrag Rodic, Biljana Medjo, Ivana Bosiocic, Aleksandar Dimitrijevic, and Dejan Nikolic. 2025. "Risk Factors Associated with Early and Late Postoperative Complications in Neonatal Patients with Esophageal Atresia" Children 12, no. 8: 1075. https://doi.org/10.3390/children12081075
APA StyleRaus, M., Zekovic, L., Sindjic-Antunovic, S., Rodic, P., Medjo, B., Bosiocic, I., Dimitrijevic, A., & Nikolic, D. (2025). Risk Factors Associated with Early and Late Postoperative Complications in Neonatal Patients with Esophageal Atresia. Children, 12(8), 1075. https://doi.org/10.3390/children12081075