Lung Function Assessment in Pediatric Asthma: Selecting the Optimal Tests for Clinical and Research Applications
Abstract
1. Introduction
2. Clinical Applications and Discussion
2.1. Lung Function Evaluation
2.2. Bronchomotor Responses in Asthma
2.3. Temporal Variability in Asthma
3. Potential of FOT in Research
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Beydon, N.; Davis, S.D.; Lombardi, E.; Allen, J.L.; Arets, H.G.M.; Aurora, P.; Bisgaard, H.; Davis, G.M.; Ducharme, F.M.; Eigen, H.; et al. An official American Thoracic Society/European Respiratory Society statement: Pulmonary function testing in preschool children. Am. J. Respir. Crit. Care Med. 2007, 175, 1304–1345. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, E.A.; Kuehni, C.E.; Turner, S.; Goutaki, M.; Holden, K.A.; de Jong, C.C.M.; Lex, C.; Lo, D.K.H.; Lucas, J.S.; Midulla, F.; et al. European Respiratory Society clinical practice guidelines for the diagnosis of asthma in children aged 5–16 years. Eur. Respir. J. 2021, 58, 2004173. [Google Scholar] [CrossRef] [PubMed]
- Elenius, V.; Chawes, B.; Malmberg, P.L.; Adamiec, A.; Ruszczyński, M.; Feleszko, W.; Jartti, T. Lung function testing and inflammation markers for wheezing preschool children: A systematic review for the EAACI Clinical Practice Recommendations on Diagnostics of Preschool Wheeze. EAACI Preschool Wheeze Task Force for Diagnostics of Preschool Wheeze. Pediatr. Allergy Immunol. 2021, 32, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Latzin, P.; Verbanck, S.; Hall, G.H.; Horsley, A.; Gappa, M.; Thamrin, C.; Arets, H.G.M.; Aurora, P.; Fuchs, S.I.; et al. Consensus statement for inert gas washout measurement using multiple- and singlebreath tests. Eur. Respir. J. 2013, 41, 507–522. [Google Scholar] [CrossRef]
- Hedlin, G.; Eber, E.; Aurora, P.; Lødrup Carlsen, K.C.L.; Ratjen, F.; Dankert-Roelsee, J.E.; Ross-Russell, R.I.; Turner, S.; Midulla, F.; Baraldi, E.; et al. Paediatric respiratory disease: Past, present and future. Paediatric Assembly contribution to the celebration of 20 years of the ERS. Eur. Respir. J. 2010, 36, 225–228. [Google Scholar] [CrossRef]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Merkus, P.J.F.M.; Stocks, J.; Beydon, N.; Lombardi, E.; Jones, M.; McKenzie, S.A.; Kivastik, J.; Arets, B.G.M.; Stanojevic, S. Reference ranges for interrupter resistance technique: The Asthma UK Initiative. Eur. Respir. J. 2010, 36, 157–163. [Google Scholar] [CrossRef]
- Calogero, C.; Simpson, S.J.; Lombardi, E.; Parri, N.; Cuomo, B.; Palumbo, M.; Maurizio de Martino, M.; Shackleton, C.; Verheggen, M.; Tania Gavidia, M.I.H.; et al. Respiratory impedance and bronchodilator responsiveness in healthy children aged 2–13 years. Pediatr. Pulmonol. 2013, 48, 707–715. [Google Scholar] [CrossRef]
- Kirkby, J.; Stanojevic, S.; Welsh, L.; Lum, S.; Badier, M.; Beardsmore, C.; Custovic, A.; Nielsen, K.; Paton, J.; Tomalak, W.; et al. Reference equations for specific airway resistance in children: The Asthma UK initiative. Eur. Respir. J. 2010, 36, 622–629. [Google Scholar] [CrossRef]
- Ramsey, K.A.; Stanojevic, S.; Chavez, L.; Johnson, N.; Bowerman, C.; Hall, G.L.; Latzin, P.; O’Neill, K.; Robinson, P.D.; Stahl, M.; et al. on behalf of the contributing GLI MBW task force members. Global Lung Function Initiative reference values for multiple breath washout indices. Eur. Respir. J. 2024, 64, 2400524. [Google Scholar] [CrossRef]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative strategies for lung function tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef] [PubMed]
- Zar, H.J.; Ferkol, T.W. The global burden of respiratory disease-impact on child health. Pediatr. Pulmonol. 2014, 49, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Townshend, J.; Brodlie, M. Diagnosis and management of asthma in children. BMJ Paediatrics Open 2022, 6, e001277. [Google Scholar] [CrossRef]
- Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/wp-content/uploads/2024/05/GINA-2024-Strategy-Report-24_05_22_WMS.pdf (accessed on 30 June 2025).
- Hyatt, R.E. Forced expiration. In Handbook of Physiology; Macklem, P.T., Mead, J., Eds.; American Physiological Society: Rockville, MD, USA, 1986; Section 3, Volume III, part 1; pp. 295–314. [Google Scholar]
- Perrem, L.; Wilson, D.; Dell, S.D.; Ratjen, F. Development and Validation of an Algorithm for Quality Grading of Pediatric Spirometry: A Quality Improvement Initiative. Ann. Am. Thorac. Soc. 2022, 19, 74–81. [Google Scholar] [CrossRef]
- Gochicoa-Rangel, L.; Vargas, C.; García-Mujica, M.; Bautista-Bernal, A.; Salas-Escamilla, I.; Perez Padilla, R.; Torre-Bouscoulet, L. Quality of Spirometry in 5-to-8-Year-Old Children. Pediatr. Pulmonol. 2013, 48, 1231–1236. [Google Scholar] [CrossRef]
- van der Plas, K.; Vooren, P. The “opening” interruptor. A new variant of a technique for measuring respiratory resistance. Eur. J. Respir. Dis. 1982, 63, 449–548. [Google Scholar]
- Bates, J.H.; Baconnier, P.; Milic-Emili, J. A theoretical analysis of interrupter technique for measuring respiratory mechanics. J. Appl. Physiol. 1988, 64, 2204–2214. [Google Scholar] [CrossRef]
- Chan, E.Y.; Bridge, P.D.; Dundas, I.; Pao, C.S.; Healy, M.I.R.; McKenzie, S.A. Repeatability of airway resistance measurements made using the interrupter technique. Thorax 2003, 58, 344–347. [Google Scholar] [CrossRef]
- Peslin, R.; Fredberg, J.J. Oscillation Mechanics of the Respiratory System. Supplement 12. In Handbook of Physiology, The Respiratory System, Mechanics of Breathing; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Oostveen, E.; MacLeod, D.; Lorino, H.; Farré, R.; Hantos, Z.; Desager, K.; Marchal, F. ERSTask Force on Respiratory Impedance Measurements—The forced oscillation technique in clinical practice: Methodology recommendations future developments. Eur. Respir. J. 2003, 22, 1026–1241. [Google Scholar] [CrossRef]
- King, G.G.; Bates, J.; Berger, K.I.; Calverley, P.; de Melo, P.L.; Dellacà, R.L.; Farré, R.; Hall, G.L.; Ioan, I.; Irvin, C.G.; et al. Technical standards for respiratory oscillometry. Eur. Respir. J. 2020, 55, 1900753. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.G. Clinical application of forced oscillation. Pulm. Pharmacol. Ther. 2001, 14, 341–350. [Google Scholar] [CrossRef]
- Venegas, J.G.; Winkler, T.; Musch, G.; Vidal Melo, M.F.; Layfield, D.; Tgavalekos, N.; Fischman, A.J.; Callahan, R.J.; Bellani, G.; Harris, R.S. Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 2005, 434, 777–782. [Google Scholar] [CrossRef]
- Winkler, T.; Venegas, J.G. Complex airway behavior and paradoxical responses to bronchoprovocation. J. Appl. Physiol. 2007, 103, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Tgavalekos, N.T.; Venegas, J.G.; Suki, B.; Lutchen, K.R. Relation between structure, function, and imaging in a three-dimensional model of the lung. Ann. Biomed. Eng. 2003, 31, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Rutting, S.; Chapman, D.G.; Farah, C.S.; Thamrin, C. Lung heterogeneity as a predictor for disease severity and response to therapy. Curr. Opin. Physiol. 2021, 22, 100446. [Google Scholar] [CrossRef]
- Antonelli, A.; Crimi, E.; Gobbi, A.; Torchio, R.; Gulotta, C.; Dellaca, R.; Scano, G.; Brusasco, V.; Pellegrino, R. Mechanical correlates of dyspnea in bronchial asthma. Physiol. Rep. 2013, 1, e00166. [Google Scholar] [CrossRef]
- Ducharme, F.M.; Davis, G.M.; Ducharme, G.R. Pediatric reference values for respiratory resistance measured by forced oscillation. Chest 1998, 113, 1322–1328. [Google Scholar] [CrossRef]
- Verbanck, S.; Schuermans, D.; Van Muylem, A.; Paiva, M.; Noppen, M.; Vincken, W. Ventilation distribution during histamine provocation. J. Appl. Physiol. 1997, 83, 1907–1916. [Google Scholar] [CrossRef] [PubMed]
- Downie, S.R.; Salome, C.M.; Verbanck, S.; Thompson, B.; Berend, N.; King, G.G. Ventilation heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent of airway inflammation. Thorax 2007, 62, 684–689. [Google Scholar] [CrossRef]
- Jensen, R.; Stanojevic, S.; Klingel, M.; Pizarro, M.E.; Hall, G.L.; Ramsey, K.; Foong, R.; Saunders, C.; Robinson, P.D.; Webster, H.; et al. A Systematic Approach to Multiple Breath Nitrogen Washout Test Quality. PLoS ONE 2016, 11, e0157523. [Google Scholar] [CrossRef]
- Louis, R.; Satia, I.; Ojanguren, I.; Schleich, F.; Bonini, M.; Tonia, T.; Rigau, D.; ten Brinke, A.; Buhl, R.; Loukides, S.; et al. European Respiratory Society guidelines for the diagnosis of asthma in adults. Eur. Respir. J. 2022, 60, 2101585. [Google Scholar] [CrossRef]
- Hoang, J.; Wong, A.; Hardaker, K.; Peiris, S.; de Queiroz Andrade, E.; Blaxland, A.; Field, P.; Fitzgerald, D.; Jayasuriya, G.; Pandit, C.; et al. Day-to-day variability indices improve utility of oscillometry in paediatric asthma. Thorax 2025. e-pub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Salome, C.M.; Thorpe, C.W.; Diba, C.; Brown, N.J.; Berend, N.; King, G.G. Airway re-narrowing following deep inspiration in asthmatic and nonasthmatic subjects. Eur. Respir. J. 2003, 22, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Que, C.L.; Kenyon, C.M.; Olivenstein, R.; Macklem, P.T.; Maksym, G.N. Homeokinesis and short-term variability of human airway caliber. J. Appl. Physiol. 2001, 91, 1131–1141. [Google Scholar] [CrossRef]
- Gulotta, C.; Suki, B.; Brusasco, V.; Pellegrino, R.; Gobbi, A.; Pedotti, A.; Dellacà, R.L. Monitoring the Temporal Changes of Respiratory Resistance: A Novel Test for the Management of Asthma. Am. J. Respir. Crit. Care Med. 2012, 185, 1330–1331. [Google Scholar] [CrossRef] [PubMed]
- Gobbi, A.; Gulotta, C.; Suki, B.; Mellano, E.; Pellegrino, R.; Brusasco, V.; Dellacà, R.L. Monitoring of respiratory resistance in the diagnosis of mild intermittent asthma. Clin. Exp. Allergy 2019, 49, 921–923. [Google Scholar] [CrossRef]
- Pellegrino, R.; Wilson, O.; Jenouri, G.; Rodarte, J.R. Lung mechanics during induced bronchoconstriction. J. Appl. Physiol. 1996, 81, 964–975. [Google Scholar] [CrossRef]
- Brusasco, V.; Pellegrino, R. Complexity of factors modulating airway narrowing in vivo: Relevance to assessment of airway hyperresponsiveness. J. Appl. Physiol. 2003, 95, 4305–4313. [Google Scholar] [CrossRef]
- An, S.S.; Bai, T.R.; Bates, J.H.T.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; et al. Airway smooth muscle dynamics: A common pathway of airway obstruction in asthma. Eur. Respir. J. 2007, 29, 834–860. [Google Scholar] [CrossRef]
- Pellegrino, R.; Violante, B.; Crimi, E.; Brusasco, V. Time course and Calcium dependence of sustained bronchoconstriction induced by deep inhalation in asthma. Am. Rev. Respir. Dis. 1991, 144, 1262–1266. [Google Scholar] [CrossRef]
- Gobbi, A.; Antonelli, A.; Dellacà, R.; Pellegrino, G.M.; Pellegrino, R.; Fredberg, J.J.; Solway, J.; Brusasco, V. Effects of increasing tidal volume and end-expiratory lung volume on induced bronchoconstriction in healthy. Respir. Res. 2024, 25, 298. [Google Scholar] [CrossRef] [PubMed]
- Rodarte, J.R.; Rehder, K. Dynamics of respiration. In Handbook of Physiology; American Physiological Society: Rockville, MD, USA, 1986; Section 3, Volume III, Part 1, Chapter 10; pp. 131–144. [Google Scholar]
- Navanandan, N.; Hagopian, E.; Brinton, J.T.; Tanverdi, M.; Edid, A.; Linn, C.; Sulbaran, H.; Florin, T.A.; Mistry, R.D.; Seibold, M.A.; et al. Oscillometry Measures the Response to Acute Asthma Therapy in the Pediatric Emergency Department. Ann. Am. Thorac. Soc. 2025. e-pub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.A.; Berlinski, A. Use of Digital Health in Pediatric Asthma. Respir. Care 2025, 70, 686–699. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Dong, Q.; Wang, X. The impact of asthma education grounded in virtual reality technology upon the quality of life of pediatric patients with bronchial asthma. Front. Pediatr. 2025, 13, 1588562. [Google Scholar] [CrossRef]
- van der Kamp, M.R.; Hengeveld, V.S.; Brusse-Keizer, M.G.J.; Thio, B.J.; Tabak, M. eHealth Technologies for Monitoring Pediatric Asthma at Home: Scoping Review. J. Med. Internet Res. 2023, 25, e45896. [Google Scholar] [CrossRef]
- Drummond, D.; Roukema, J.; Pijnemburg, P. Home monitoring in asthma: Towards digital twins. Curr. Opin. Pulm. Med. 2023, 29, 270–276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pellegrino, G.M.; Gobbi, A.; Fantini, M.; Pellegrino, R.; Sferrazza Papa, G.F. Lung Function Assessment in Pediatric Asthma: Selecting the Optimal Tests for Clinical and Research Applications. Children 2025, 12, 1073. https://doi.org/10.3390/children12081073
Pellegrino GM, Gobbi A, Fantini M, Pellegrino R, Sferrazza Papa GF. Lung Function Assessment in Pediatric Asthma: Selecting the Optimal Tests for Clinical and Research Applications. Children. 2025; 12(8):1073. https://doi.org/10.3390/children12081073
Chicago/Turabian StylePellegrino, Giulia Michela, Alessandro Gobbi, Marco Fantini, Riccardo Pellegrino, and Giuseppe Francesco Sferrazza Papa. 2025. "Lung Function Assessment in Pediatric Asthma: Selecting the Optimal Tests for Clinical and Research Applications" Children 12, no. 8: 1073. https://doi.org/10.3390/children12081073
APA StylePellegrino, G. M., Gobbi, A., Fantini, M., Pellegrino, R., & Sferrazza Papa, G. F. (2025). Lung Function Assessment in Pediatric Asthma: Selecting the Optimal Tests for Clinical and Research Applications. Children, 12(8), 1073. https://doi.org/10.3390/children12081073