Diagnostic Accuracy of a Machine Learning-Derived Appendicitis Score in Children: A Multicenter Validation Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Participants
2.3. Outcome Definition
2.4. Data Collection and Variables
2.5. Model Development and Validation
2.6. Comparison with Existing Scores
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristic
3.2. Model Performance
3.3. Comparison with Traditional Scoring Systems
3.4. Calibration and Feature Importance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | Area Under the Curve |
AIRS | Appendicitis Inflammatory Response Score |
CART | Classification and Regression Tree |
CBC | Complete Blood Count |
CT | Computed Tomography |
LR | Logistic Regression |
KNN | k-th Nearest Neighbor |
ML | Machine Learning |
MPV | Mean Platelet Volume |
MCV | Mean Corpuscular Volume |
MCHC | Mean Corpuscular Hemoglobin Concentration |
NLR | Neutrophil-to-Lymphocyte Ratio |
PAS | Pediatric Appendicitis Score |
PLT | Platelet Count |
PLR | Platelet-to-Lymphocyte Ratio |
RF | Random Forest |
RIPASA | Raja Isteri Pengiran Anak Saleha Appendicitis Score |
ROC | Receiver Operating Characteristic |
SVM | Support Vector Machine |
USG | Ultrasonography |
WBC | White Blood Cell Count |
References
- Andersson, R.E. The Magic of an Appendicitis Score. World J. Surg. 2015, 39, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, C.H.; Lu, R.H.; Lee, N.H.; Chiu, W.T.; Hsu, M.H.; Li, Y.C. Novel Solutions for an Old Disease: Diagnosis of Acute Appendicitis with Random Forest, Support Vector Machines, and Artificial Neural Networks. Surgery 2011, 149, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Doria, A.S.; Moineddin, R.; Kellenberger, C.J.; Epelman, M.; Beyene, J.; Schuh, S.; Babyn, P.S.; Dick, P.T. US or CT for Diagnosis of Appendicitis in Children and Adults? A Meta-Analysis. Radiology 2006, 241, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Kim, K.A.; Nam, Y.; Choi, M.H.; Choi, S.Y.; Rhie, J. Convolutional-Neural-Network-Based Diagnosis of Appendicitis via CT Scans in Patients with Acute Abdominal Pain Presenting in the Emergency Department. Sci. Rep. 2020, 10, 9556. [Google Scholar] [CrossRef] [PubMed]
- Samuel, M. Pediatric Appendicitis Score. J. Pediatr. Surg. 2002, 37, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Rey, R.; Gualtieri, R.; La Scala, G.; Posfay Barbe, K.M. Artificial Intelligence in the Diagnosis and Management of Appendicitis in Pediatric Departments: A Systematic Review. Eur. J. Pediatr. Surg. 2024, 34, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Omari, A.H.; Khammash, M.R.; Qasaimeh, G.R.; Shammari, A.K.; Yaseen, M.K.B.; Hammori, S.K. Acute Appendicitis in the Elderly: Risk Factors for Perforation. World J. Emerg. Surg. 2014, 9, 6. [Google Scholar] [CrossRef] [PubMed]
- Doupe, P.; Faghmous, J.; Basu, S. Machine Learning for Health Services Researchers. Value Health 2019, 22, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Byun, J.; Park, S.; Hwang, S.M. Diagnostic Algorithm Based on Machine Learning to Predict Complicated Appendicitis in Children Using CT, Laboratory, and Clinical Features. Diagnostics 2023, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.; Squires, E.; Tan, S.; Swen, N.J.; Barilla, A.; Kovoor, J.; Gupta, A.; Bacchi, S.; Khurana, S. Artificial Intelligence for Predicting Acute Appendicitis: A Systematic Review. ANZ J. Surg. 2023, 93, 2070–2078. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Karaman, K.; Aziret, M.; Ercan, M.; Köse, E.; Kahraman, Y.S.; Karacaer, C. The Role of Hematological Parameters in Distinguishing Acute Appendicitis from Lymphoid Hyperplasia. Ulus. Travma Acil Cerrahi Derg. 2022, 28, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Acharya, A.; Markar, S.R.; Ni, M.; Hanna, G.B. Biomarkers of Acute Appendicitis: Systematic Review and Cost–benefit Trade-off Analysis. Surg. Endosc. 2017, 31, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Yardımcı, S. Neutrophil-Lymphocyte Ratio and Mean Platelet Volume Can Be a Predictor for the Severity of Acute Appendicitis. Turkish J. Trauma. Emerg. Surg. 2015, 22, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Hajibandeh, S.; Hajibandeh, S.; Hobbs, N.; Mansour, M. Neutrophil-to-Lymphocyte Ratio Predicts Acute Appendicitis and Distinguishes between Complicated and Uncomplicated Appendicitis: A Systematic Review and Meta-Analysis. Am. J. Surg. 2020, 219, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Demirkol, M.E.; Kaya, M.; Kocadağ, D.; Özsarı, E. Prognostic Value of Complete Blood Count Parameters in COVID-19 Patients. Northwest. Med. J. 2022, 2, 94–102. [Google Scholar] [CrossRef]
- Demir, Ş.; Mert, M.; Yasin, Y.K.; Kahya, M.O.; Demirtaş, O. Importance of Pediatric Appendicitis Scoring System and Ultrasonography in the Diagnosis of Acute Appendicitis in Children. Forbes J. Med. 2023, 4, 259–264. [Google Scholar] [CrossRef]
- Maleki, F.; Ovens, K.; Gupta, R.; Reinhold, C.; Spatz, A.; Forghani, R. Generalizability of Machine Learning Models: Quantitative Evaluation of Three Methodological Pitfalls. Radiol. Artif. Intell. 2023, 5, e220028. [Google Scholar] [CrossRef] [PubMed]
- Aydin, E.; Türkmen, İ.U.; Namli, G.; Öztürk, Ç.; Esen, A.B.; Eray, Y.N.; Eroğlu, E.; Akova, F. A Novel and Simple Machine Learning Algorithm for Preoperative Diagnosis of Acute Appendicitis in Children. Pediatr. Surg. Int. 2020, 36, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Males, I.; Boban, Z.; Kumric, M.; Vrdoljak, J.; Berkovic, K.; Pogorelic, Z.; Bozic, J. Applying an Explainable Machine Learning Model Might Reduce the Number of Negative Appendectomies in Pediatric Patients with a High Probability of Acute Appendicitis. Sci. Rep. 2024, 14, 12772. [Google Scholar] [CrossRef] [PubMed]
- Yazici, H.; Ugurlu, O.; Aygul, Y.; Ugur, M.A.; Sen, Y.K.; Yildirim, M. Predicting Severity of Acute Appendicitis with Machine Learning Methods: A Simple and Promising Approach for Clinicians. BMC Emerg. Med. 2024, 24, 101. [Google Scholar] [CrossRef] [PubMed]
- Navaei, M.; Doogchi, Z.; Gholami, F.; Tavakoli, M.K. Leveraging Machine Learning for Pediatric Appendicitis Diagnosis: A Retrospective Study Integrating Clinical, Laboratory, and Imaging Data. Heal. Sci. Reports 2025, 8, e70756. [Google Scholar] [CrossRef] [PubMed]
- Erman, A.; Ferreira, J.; Ashour, W.A.; Guadagno, E.; St-Louis, E.; Emil, S.; Cheung, J.; Poenaru, D. Machine-Learning-Assisted Preoperative Prediction of Pediatric Appendicitis Severity. J. Pediatr. Surg. 2025, 60, 162151. [Google Scholar] [CrossRef] [PubMed]
- Tamyalew, Y.; Salau, A.O.; Ayalew, A.M. Detection and Classification of Large Bowel Obstruction from X-Ray Images Using Machine Learning Algorithms. Int. J. Imaging Syst. Technol. 2023, 33, 158–174. [Google Scholar] [CrossRef]
- Yu, C.W.; Juan, L.I.; Wu, M.H.; Shen, C.J.; Wu, J.Y.; Lee, C.C. Systematic Review and Meta-Analysis of the Diagnostic Accuracy of Procalcitonin, C-Reactive Protein and White Blood Cell Count for Suspected Acute Appendicitis. Br. J. Surg. 2013, 100, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Shera, A.H.; Nizami, F.A.; Malik, A.A.; Naikoo, Z.A.; Wani, M.A. Clinical Scoring System for Diagnosis of Acute Appendicitis in Children. Indian J. Pediatr. 2011, 78, 287–290. [Google Scholar] [CrossRef] [PubMed]
Appendicitis | Non-Appendicitis | p | ||
---|---|---|---|---|
Red Blood Cell Variables | Hgb | 12.6 ± 1.40 | 12.6 ± 1.41 | 0.9087 |
Htc | 37.5 ± 3.92 | 37.6 ± 3.94 | 0.3276 | |
RDW | 13.1 ± 1.85 | 13.2 ± 1.57 | 0.0117 | |
MCV | 83.8 ± 8.96 | 78.5 ± 3.54 | 0.0000 | |
MCHC | 33.6 ± 1.37 | 33.1 ± 1.53 | 0.0000 | |
White Blood Cell Variables | WBC | 12,315 ± 5460 | 12,050 ± 5400 | 0.1107 |
Lymphocyte | 2710 ± 2037 | 2690 ± 2090 | 0.8771 | |
Neutrophil | 7220 ± 5732 | 6895 ± 5609 | 0.2133 | |
NLR | 2.47 ± 6.79 | 2.34 ± 6.77 | 0.4547 | |
Thrombosis Variables | Platelet | 295,000 ± 93,305 | 310,000 ± 92,694 | 0.0000 |
MPV | 7.9 ± 1.46 | 6.84 ± 1.44 | 0.0000 | |
PDW | 18.9 ± 16.0 | 18.7 ± 5.02 | 0.0000 |
Scoring System/Model | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
Alvarado | 0.632 | 0.744 | 0.326 | 0.852 |
Lintula | 0.816 | 0.847 | 0.650 | 0.892 |
PAS | 0.926 | 0.843 | 0.872 | 0.858 |
RIPASA | 0.683 | 0.758 | 0.321 | 0.795 |
LR | 0.986 | 0.975 | 0.988 | 0.972 |
KNN | 0.988 | 0.979 | 0.997 | 0.963 |
SVM | 0.982 | 0.983 | 0.995 | 0.973 |
CART | 0.994 | 0.976 | 0.997 | 0.967 |
RF | 0.996 | 0.992 | 0.998 | 0.993 |
Model | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
KNN | 0.979 | 0.946 | 0.976 | 0.975 |
SVM | 0.994 | 0.941 | 0.992 | 0.976 |
CART | 0.987 | 0.952 | 0.913 | 0.962 |
RF | 0.995 | 0.992 | 0.993 | 0.991 |
Scoring System/Model | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|
Alvarado | 0.728 | 0.871 | 0.489 | 0.967 |
Lintula | 0.863 | 0.925 | 0.760 | 0.966 |
PAS | 0.944 | 0.953 | 0.927 | 0.960 |
RIPASA | 0.714 | 0.865 | 0.469 | 0.967 |
LR | 0.968 | 0.962 | 0.982 | 0.948 |
KNN | 0.977 | 0.969 | 0.997 | 0.948 |
SVM | 0.974 | 0.967 | 0.997 | 0.946 |
CART | 0.982 | 0.968 | 0.994 | 0.949 |
RF | 0.984 | 0.968 | 0.991 | 0.951 |
Model | AUC (CV) | AUC | Accuracy | Sensitivity | Specificity |
---|---|---|---|---|---|
KNN | 0.962 | 0.973 | 0.913 | 0.958 | 0.911 |
SVM | 0.968 | 0.970 | 0.936 | 1.000 | 0.933 |
CART | 0.956 | 0.971 | 0.939 | 0.833 | 0.943 |
RF | 0.968 | 0.973 | 0.925 | 0.875 | 0.927 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydın, E.; Sarnıç, T.E.; Türkmen, İ.U.; Khanmammadova, N.; Ateş, U.; Öztan, M.O.; Sekmenli, T.; Aras, N.F.; Öztaş, T.; Yalçınkaya, A.; et al. Diagnostic Accuracy of a Machine Learning-Derived Appendicitis Score in Children: A Multicenter Validation Study. Children 2025, 12, 937. https://doi.org/10.3390/children12070937
Aydın E, Sarnıç TE, Türkmen İU, Khanmammadova N, Ateş U, Öztan MO, Sekmenli T, Aras NF, Öztaş T, Yalçınkaya A, et al. Diagnostic Accuracy of a Machine Learning-Derived Appendicitis Score in Children: A Multicenter Validation Study. Children. 2025; 12(7):937. https://doi.org/10.3390/children12070937
Chicago/Turabian StyleAydın, Emrah, Taha Eren Sarnıç, İnan Utku Türkmen, Narmina Khanmammadova, Ufuk Ateş, Mustafa Onur Öztan, Tamer Sekmenli, Necip Fazıl Aras, Tülin Öztaş, Ali Yalçınkaya, and et al. 2025. "Diagnostic Accuracy of a Machine Learning-Derived Appendicitis Score in Children: A Multicenter Validation Study" Children 12, no. 7: 937. https://doi.org/10.3390/children12070937
APA StyleAydın, E., Sarnıç, T. E., Türkmen, İ. U., Khanmammadova, N., Ateş, U., Öztan, M. O., Sekmenli, T., Aras, N. F., Öztaş, T., Yalçınkaya, A., Özbek, M., Gökçe, D., Yalçın Cömert, H. S., Uzunlu, O., Kandırıcı, A., Ertürk, N., Süzen, A., Akova, F., Paşaoğlu, M., ... Karakuş, S. C. (2025). Diagnostic Accuracy of a Machine Learning-Derived Appendicitis Score in Children: A Multicenter Validation Study. Children, 12(7), 937. https://doi.org/10.3390/children12070937