Clinical and Echocardiographic Factors Influencing Patent Ductus Arteriosus Treatment in Preterm Neonates
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Clinical and Echocardiographic Data
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Clinical and Echocardiographic Parameters Related to PDA Treatment
3.3. Clinical and Echocardiographic Parameters Related to Medical Treatment Failure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PDA | Patent ductus arteriosus |
HS PDA | Hemodynamically significant PDA |
LA/Ao | Left atrium-to-aortic root |
LA | Left atrium |
ASDs | Atrial septal defects |
References
- Ambalavanan, N.; Aucott, S.W.; Salavitabar, A.; Levy, V.Y.; Committee on Fetus and Newborn; Section on Cardiology and Cardiac Surgery. Patent ductus arteriosus in preterm infants. Pediatrics 2025, 155, e2025071425. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ma, F.; Li, Y.; Zhou, K.; Hua, Y.; Wan, C. The optimal timing of surgical ligation of patent ductus arteriosus in preterm or very-low-birth-weight infants: A systematic review and meta-analysis. Medicine (Baltimore) 2020, 99, e19356. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Yang, Z.; Gan, T.; Tang, J.; Ran, S.; Zhang, K. Echocardiographic parameters predicting spontaneous closure of ductus arteriosus in preterm infants. Front Pediatr. 2023, 11, 1198936. [Google Scholar] [CrossRef]
- Lee, J.A. Practice for preterm patent ductus arteriosus; focusing on the hemodynamic significance and the impact on the neonatal outcomes. Korean J. Pediatr. 2019, 62, 245–251. [Google Scholar] [CrossRef]
- Sung, S.I.; Chang, Y.S.; Kim, J.; Choi, J.H.; Ahn, S.Y.; Park, W.S. Natural evolution of ductus arteriosus with noninterventional conservative management in extremely preterm infants born at 23-28 weeks of gestation. PLoS ONE 2019, 14, e0212256. [Google Scholar] [CrossRef] [PubMed]
- Su, B.H.; Lin, H.Y.; Chiu, H.Y.; Tsai, M.L.; Chen, Y.T.; Lu, I.C. Therapeutic strategy of patent ductus arteriosus in extremely preterm infants. Pediatr. Neonatol. 2020, 61, 133–141. [Google Scholar] [CrossRef]
- El-Khuffash, A.; James, A.T.; Corcoran, J.D.; Dicker, P.; Franklin, O.; Elsayed, Y.N.; Ting, J.Y.; Sehgal, A.; Malikiwi, A.; Harabor, A.; et al. A patent ductus arteriosus severity score predicts chronic lung disease or death before discharge. J. Pediatr. 2015, 167, 1354–1361.e1352. [Google Scholar] [CrossRef]
- McNamara, P.J.; Sehgal, A. Towards rational management of the patent ductus arteriosus: The need for disease staging. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F424–F427. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Z.; Ma, X.; Shi, L. Predictive tool for closure of ductus arteriosus with pharmacologic or surgical treatment in preterm infants. Pediatr. Cardiol. 2022, 43, 373–381. [Google Scholar] [CrossRef]
- Babla, K.; Duffy, D.; Dumitru, R.; Richards, J.; Kulkarni, A. Repeatability of PDA diameter measurements on echocardiography. Eur. J. Pediatr. 2022, 181, 403–406. [Google Scholar] [CrossRef]
- Surak, A.; Sidhu, A.; Ting, J.Y. Should we “eliminate” PDA shunt in preterm infants? A narrative review. Front. Pediatr. 2024, 12, 1257694. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.G.; Rosenfeld, C.R.; Roy, L.; Koch, J.; Ramaciotti, C. Echocardiographic predictors of symptomatic patent ductus arteriosus in extremely-low-birth-weight preterm neonates. J. Perinatol. 2010, 30, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Kwinta, P.; Rudziński, A.; Kruczek, P.; Kordon, Z.; Pietrzyk, J.J. Can early echocardiographic findings predict patent ductus arteriosus? Neonatology 2009, 95, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Harling, S.; Hansen-Pupp, I.; Baigi, A.; Pesonen, E. Echocardiographic prediction of patent ductus arteriosus in need of therapeutic intervention. Acta Paediatr. 2011, 100, 231–235. [Google Scholar] [CrossRef]
- Wu, Y.H.; Chang, S.W.; Chen, C.C.; Liu, H.Y.; Lai, Y.J.; Huang, E.Y.; Tsai, C.C.; Hsu, T.Y.; Lin, I.C. Differential determinants of patent ductus arteriosus closure for prematurity of varying birth body weight: A retrospective cohort study. Pediatr. Neonatol. 2020, 61, 513–521. [Google Scholar] [CrossRef]
- Louis, D.; Dey, A.; Jain, A. Association between changes in urine output and successful indomethacin treatment for patent ductus arteriosus in preterm neonates. J. Paediatr. Child Health 2021, 57, 554–558. [Google Scholar] [CrossRef]
- Goel, M.; Dutta, S.; Saini, S.S.; Sundaram, V. Relationship between decrease in urine output following treatment with prostaglandin inhibitors and PDA closure. Am. J. Perinatol. 2024, 41, e53–e59. [Google Scholar] [CrossRef]
- Pees, C.; Walch, E.; Obladen, M.; Koehne, P. Echocardiography predicts closure of patent ductus arteriosus in response to ibuprofen in infants less than 28 weeks gestational age. Early Hum. Dev. 2010, 86, 503–508. [Google Scholar] [CrossRef]
- Vaidya, R.; Knee, A.; Paris, Y.; Singh, R. Predictors of successful patent ductus arteriosus closure with acetaminophen in preterm infants. J. Perinatol. 2021, 41, 998–1006. [Google Scholar] [CrossRef]
- Mydam, J.; Rastogi, A.; Naheed, Z.J. Base excess and hematocrit predict response to indomethacin in very low birth weight infants with patent ductus arteriosus. Ital. J. Pediatr. 2019, 45, 107. [Google Scholar] [CrossRef]
- Moronta, S.C.; Bischoff, A.R.; Ryckman, K.K.; Dagle, J.M.; Giesinger, R.E.; McNamara, P.J. Clinical and echocardiography predictors of response to first-line acetaminophen treatment in preterm infants with hemodynamically significant patent ductus arteriosus. J. Perinatol. 2024, 44, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Steiner, M.; Salzer-Muhar, U.; Swoboda, V.; Unterasinger, L.; Baumgartner, S.; Waldhoer, T.; Langgartner, M.; Klebermass-Schrehof, K.; Berger, A. Preterm infants who later require duct ligation show different vital signs and pH in early postnatal life. Acta Paediatr. 2015, 104, e7–e13. [Google Scholar] [CrossRef] [PubMed]
Conservative (n = 93) | Intervention (n = 149) | Medical (n = 125) | Surgical (n = 24) | p-Value | |
---|---|---|---|---|---|
Mean airway pressure (cmH2O) | 9.5 ± 2.6 | 9.0 ± 3.1 | 9.0 ± 2.7 | 9.1 ± 4.6 | 0.542 |
FiO2 | 0.23 ± 0.05 | 0.22 ± 0.05 | 0.22 ± 0.05 | 0.22 ± 0.06 | 0.731 |
Oxygen use | 14.6% | 13.8% | 12.4% | 20.8% | 0.861 |
Apnea | 15.2% | 34.9% | 37.6% * | 20.8% | 0.001 |
Bradycardia | 6.5% | 14.2% | 10.2% | 20.8% † | 0.092 |
Oliguria | 18.7% | 51.0% | 46.4% * | 75.0% † | <0.001 |
Inotropic drug use | 27.2% | 45.6% | 38.4% | 83.3% † | 0.004 |
Mechanical ventilator support | 0.067 | ||||
No | 9.8% | 9.9% | 4.8% | 4.2% | |
Non-invasive | 67.4% | 60.4% | 61.6% | 54.2% | |
Invasive | 22.8% | 34.9% | 33.6% | 41.7% | |
Creatinine (mg/dL) | 0.88 ± 0.51 | 1.06 ± 0.71 | 0.92 ± 0.38 | 1.87 ± 1.40 † | 0.046 |
pH | 7.25 ± 0.13 | 7.24 ± 0.10 | 7.25 ± 0.09 | 7.19 ± 0.12 † | 0.273 |
Base deficit (mmol/L) | −9.81 ± 5.75 | −10.45 ± 5.35 | −10.00 ± 4.95 | −12.79 ± 6.76 † | 0.304 |
PDA size (mm) | 1.76 ± 0.55 | 2.17 ± 0.61 | 2.14 ± 0.57 * | 2.33 ± 0.79 † | <0.001 |
PDA velocity (m/s) | 1.99 ± 0.77 | 1.74 ± 0.57 | 1.75 ± 0.58 * | 1.72 ± 0.50 † | 0.010 |
LA/Ao ratio | 1.39 ± 0.31 | 1.59 ± 0.30 | 1.45 ± 0.30 * | 1.70 ± 0.28 † | <0.001 |
Mitral valve inflow (m/s) | 0.60 ± 0.17 | 0.70 ± 0.17 | 0.69 ± 0.16 * | 0.73 ± 0.21 † | 0.009 |
Tricuspid valve inflow (m/s) | 0.65 ± 0.15 | 0.66 ± 0.13 | 0.66 ± 0.13 | 0.68 ± 0.14 | 0.590 |
LA enlargement | 5.6% | 37.1% | 31.2% * | 65.2% † | <0.001 |
Mitral regurgitation | 16.7% | 16.9% | 17.7% | 13.0% | 0.976 |
Atrial septal defect | 74.2% | 95.9% | 95.2% * | 100.0% † | <0.001 |
Exp(B) | 95% CI | p-Value | ||
---|---|---|---|---|
Conservative treatment failure | ||||
Intervention vs. Conservative treatment | Oliguria | 3.229 | 1.709–6.100 | <0.001 |
Inotropic drug use | 3.230 | 1.007–10.354 | 0.049 | |
PDA velocity | 0.175 | 0.033–0.918 | 0.039 | |
LA enlargement | 7.652 | 2.117–27.655 | 0.002 | |
Medical vs. Conservative treatment | Inotropic drug use | 3.817 | 1.048–44.354 | 0.045 |
PDA velocity | 0.091 | 0.011–0.777 | 0.028 | |
LA enlargement | 4.569 | 1.212–17.216 | 0.025 | |
Surgical vs. Conservative treatment | Oliguria | 9.622 | 1.163–79.590 | 0.036 |
Inotropic drug use | 4.565 | 2.110–9.879 | <0.001 | |
Medical treatment failure | ||||
Medical treatment only vs. Surgical treatment after medical treatment | Base deficit | 0.838 | 0.721–0.970 | 0.006 |
Medical Treatment Only (n = 86) | Surgical Treatment After Medical Treatment (n = 39) | ||
---|---|---|---|
Before Medication | Before Medication | Before Surgery | |
Mean airway pressure (cmH2O) | 9.1 ± 2.6 | 8.8 ± 2.9 | 9.3 ± 3.1 |
FiO2 | 0.22 ± 0.05 | 0.22 ± 0.05 | 0.24 ± 0.04 |
Oxygen use | 13.4% | 10.3% | 35.1% † |
Apnea | 32.6% | 48.7% | 38.5% |
Bradycardia | 14.1% | 10.3% | 15.4% |
Oliguria | 48.8% | 41.0% | 43.6% |
Inotropic drug use | 34.9% | 46.2% | 79.5% † |
Mechanical ventilator support | |||
No | 4.1% | 1.9% | 2.6% |
Non-invasive | 53.0% | 59.0% | 41.0% |
Invasive | 31.4% | 38.5% | 56.4% |
Creatinine (mg/dL) | 0.88 ± 0.40 | 1.00 ± 0.30 | 1.56 ± 1.36 † |
pH | 7.26 ± 0.09 | 7.22 ± 0.08 * | 7.20 ± 0.12 |
Base deficit (mmol/L) | −9.20 ± 5.19 | −11.76 ± 3.86 * | −12.59 ± 6.28 |
PDA size (mm) | 2.14 ± 0.59 | 2.14 ± 0.52 | 2.22 ± 0.55 |
PDA velocity (m/s) | 1.74 ± 0.63 | 1.76 ± 0.45 | 2.02 ± 0.46 † |
LA/Ao ratio | 1.60 ± 0.30 | 1.50 ± 0.26 | 1.52 ± 0.36 |
Mitral valve inflow (m/s) | 0.66 ± 0.15 | 0.77 ± 0.15 | 0.85 ± 0.22 |
Tricuspid valve inflow (m/s) | 0.65 ± 0.15 | 0.67 ± 0.10 | 0.73 ± 0.15 |
LA enlargement | 29.7% | 34.3% | 26.1% |
Mitral regurgitation | 19.2% | 14.3% | 9.1% |
Atrial septal defect | 96.5% | 92.3% | 94.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, M.A.; Shin, S.Y.; Park, J.H.; Choi, H.J. Clinical and Echocardiographic Factors Influencing Patent Ductus Arteriosus Treatment in Preterm Neonates. Children 2025, 12, 936. https://doi.org/10.3390/children12070936
Chu MA, Shin SY, Park JH, Choi HJ. Clinical and Echocardiographic Factors Influencing Patent Ductus Arteriosus Treatment in Preterm Neonates. Children. 2025; 12(7):936. https://doi.org/10.3390/children12070936
Chicago/Turabian StyleChu, Mi Ae, So Young Shin, Jae Hyun Park, and Hee Joung Choi. 2025. "Clinical and Echocardiographic Factors Influencing Patent Ductus Arteriosus Treatment in Preterm Neonates" Children 12, no. 7: 936. https://doi.org/10.3390/children12070936
APA StyleChu, M. A., Shin, S. Y., Park, J. H., & Choi, H. J. (2025). Clinical and Echocardiographic Factors Influencing Patent Ductus Arteriosus Treatment in Preterm Neonates. Children, 12(7), 936. https://doi.org/10.3390/children12070936