Gender Differences in Lower Limb Strength and Endurance Among Saudi Adolescents: A Cross-Sectional Study on the Limited Role of Body Mass Index
Abstract
1. Introduction
- (1)
- Higher BMI is associated with lower STS and SLJ performance;
- (2)
- Boys will outperform girls in both SLJ and STS; and
- (3)
- SLJ performance mediates the relationship between BMI, physical activity, and STS outcomes.
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Outcome Measures
2.2.1. Anthropometrics Data
2.2.2. Physical Activity Questionnaire (PAQ-A)
2.2.3. Physical Performance Tests
2.3. Study Procedure
2.4. Statistical Analysis
3. Results
3.1. Gender Disparities for Sit-to-Stand Test, Standing Long Jump, and Physical Activity
3.2. Comparison of Sit-to-Stand, Standing Long Jump, and Physical Activity Across BMI Categories
3.3. Mediation Analysis
4. Discussion
4.1. Limitations
4.2. Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Lister, N.B.; Baur, L.A.; Felix, J.F.; Hill, A.J.; Marcus, C.; Reinehr, T.; Summerbell, C.; Wabitsch, M. Child and adolescent obesity. Nat. Rev. Dis. Primer 2023, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Al-Omar, H.A.; Alshehri, A.; Alqahtani, S.A.; Alabdulkarim, H.; Alrumaih, A.; Eldin, M.S. A systematic review of obesity burden in Saudi Arabia: Prevalence and associated co-morbidities. Saudi Pharm. J. 2024, 32, 102192. [Google Scholar] [CrossRef]
- Albaker, W.; Saklawi, R.; Bah, S.; Motawei, K.; Futa, B.; Al-Hariri, M. What is the current status of childhood obesity in Saudi Arabia?: Evidence from 20,000 cases in the Eastern Province: A cross-sectional study. Medicine 2022, 101, e29800. [Google Scholar] [CrossRef]
- Salem, V.; AlHusseini, N.; Abdul Razack, H.I.; Naoum, A.; Sims, O.T.; Alqahtani, S.A. Prevalence, risk factors, and interventions for obesity in Saudi Arabia: A systematic review. Obes. Rev. 2022, 23, e13448. [Google Scholar] [CrossRef]
- Alhusseini, N.; Alsinan, N.; Almutahhar, S.; Khader, M.; Tamimi, R.; Elsarrag, M.I.; Warar, R.; Alnasser, S.; Ramadan, M.; Omair, A. Dietary trends and obesity in Saudi Arabia. Front. Public Health 2024, 11, 1326418. [Google Scholar] [CrossRef]
- Pulgaron, E.R.; Delamater, A.M. Obesity and type 2 diabetes in children: Epidemiology and treatment. Curr. Diab. Rep. 2014, 14, 508. [Google Scholar] [CrossRef]
- Al-Hussaini, A.; Bashir, M.S.; Khormi, M.; AlTuraiki, M.; Alkhamis, W.; Alrajhi, M.; Halal, T. Overweight and obesity among Saudi children and adolescents: Where do we stand today? Saudi J. Gastroenterol. 2019, 25, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Fiori, F.; Bravo, G.; Parpinel, M.; Messina, G.; Malavolta, R.; Lazzer, S. Relationship between body mass index and physical fitness in Italian prepubertal schoolchildren. PLoS ONE 2020, 15, e0233362. [Google Scholar] [CrossRef]
- Fühner, T.; Kliegl, R.; Arntz, F.; Kriemler, S.; Granacher, U. An update on secular trends in physical fitness of children and adolescents from 1972 to 2015: A systematic review. Sports Med. 2021, 51, 303–320. [Google Scholar] [CrossRef]
- de Oliveira, R.R.; dos Santos, M.G.; da Silva, C.L.; Domingues, S.C. Components of health-related physical fitness and physical-sport content of leisure. World J. Biol. Pharm. Health Sci. 2023, 15, 131–137. [Google Scholar] [CrossRef]
- Kokkinos, P. Physical fitness evaluation. Am. J. Lifestyle Med. 2015, 9, 308–317. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- Beunen, G.; Thomis, M. Muscular Strength Development in Children and Adolescents. Pediatr. Exerc. Sci. 2000, 12, 174–197. [Google Scholar] [CrossRef]
- Haile, S.R.; Fühner, T.; Granacher, U.; Stocker, J.; Radtke, T.; Kriemler, S. Reference values and validation of the 1-minute sit-to-stand test in healthy 5–16-year-old youth: A cross-sectional study. BMJ Open 2021, 11, e049143. [Google Scholar] [CrossRef]
- Bulten, R.; King-Dowling, S.; Cairney, J. Assessing the validity of standing long jump to predict muscle power in children with and without motor delays. Pediatr. Exerc. Sci. 2019, 31, 432–437. [Google Scholar] [CrossRef]
- Hallal, P.C.; Victora, C.G.; Azevedo, M.R.; Wells, J.C.K. Adolescent physical activity and health: A systematic review. Sports Med. 2006, 36, 1019–1030. [Google Scholar] [CrossRef]
- Al Ghifari, M.F.; Himawati, Y.; Ismail, A.; Murti, B. Meta-Analysis: Effects of Smoking, Alcohol Consumption, and Low Physical Activity on Osteoporosis in Adults. J. Epidemiol. Public Health 2024, 9, 25–36. [Google Scholar] [CrossRef]
- Haapala, E.A.; Gråsten, A.; Huhtiniemi, M.; Ortega, F.B.; Rantalainen, T.; Jaakkola, T. Trajectories of osteogenic physical activity in children and adolescents: A 3-year cohort study. J. Sci. Med. Sport 2024, 27, 319–325. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J. Physical activity, physical fitness, and overweight in children and adolescents: Evidence from epidemiologic studies. Endocrinol. Nutr. Engl. Ed. 2013, 60, 458–469. [Google Scholar] [CrossRef]
- Going, S.B.; Williams, D.P.; Lohman, T.G. Setting standards for health-related youth fitness tests—Determining critical body fat levels. J. Phys. Educ. Recreat. Dance 1992, 63, 19–24. [Google Scholar] [CrossRef]
- Hunter, S.K.; Angadi, S.S.; Bhargava, A.; Harper, J.; Hirschberg, A.L.; Levine, B.D.; Moreau, K.L.; Nokoff, N.J.; Stachenfeld, N.S.; Bermon, S. The biological basis of sex differences in athletic performance: Consensus statement for the American College of Sports Medicine. Transl. J. Am. Coll. Sports Med. 2023, 8, 1–33. [Google Scholar]
- Duffey, K.; Barbosa, A.; Whiting, S.; Mendes, R.; Yordi Aguirre, I.; Tcymbal, A.; Abu-Omar, K.; Gelius, P.; Breda, J. Barriers and Facilitators of Physical Activity Participation in Adolescent Girls: A Systematic Review of Systematic Reviews. Front. Public Health 2021, 9, 743935. [Google Scholar] [CrossRef] [PubMed]
- Gallant, F.; Hebert, J.J.; Thibault, V.; Mekari, S.; Sabiston, C.M.; Bélanger, M. Puberty timing and relative age as predictors of physical activity discontinuation during adolescence. Sci. Rep. 2023, 13, 13740. [Google Scholar] [CrossRef] [PubMed]
- Cavuoto, L.A.; Nussbaum, M.A. Influences of obesity on job demands and worker capacity. Curr. Obes. Rep. 2014, 3, 341–347. [Google Scholar] [CrossRef]
- Kowalski, K.C.; Crocker, P.R.E.; Donen, R.M. The Physical Activity Questionnaire for Older Children (PAC-C) and Adolescents (PAQ-A) Manual; Universtiy of Saskatchewan: Saskatoon, SK, Canada, 2004; Available online: https://www.prismsports.org/UserFiles/file/PAQ_manual_ScoringandPDF.pdf (accessed on 2 July 2025).
- Vaidya, T.; De Bisschop, C.; Beaumont, M.; Ouksel, H.; Jean, V.; Dessables, F.; Chambellan, A. Is the 1-minute sit-to-stand test a good tool for the evaluation of the impact of pulmonary rehabilitation? Determination of the minimal important difference in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2609–2616. [Google Scholar] [CrossRef]
- Latorre-Román, P.Á.; García-Pinillos, F.; Mora-López, D. Reference values of standing long jump in preschool children: A population-based study. Pediatr. Exerc. Sci. 2017, 29, 116–120. [Google Scholar] [CrossRef]
- Podstawski, R.; Markowski, P.; Clark, C. Sex-mediated differences and correlations between the anthropometric characteristics and motor abilities of university students. J. Phys. Educ. Sport 2020, 20, 86–96. [Google Scholar]
- Höög, S.; Andersson, E.P. Sex and age-group differences in strength, jump, speed, flexibility, and endurance performances of Swedish elite gymnasts competing in TeamGym. Front. Sports Act. Living 2021, 3, 653503. [Google Scholar] [CrossRef]
- Yaprak, Y.; Küçükkubaş, N. Gender-related differences on physical fitness parameters after core training exercises: A comparative study. Prog. Nutr. 2020, 22, e2020028. [Google Scholar]
- Malina, R.; Sławinska, T.; Ignasiak, Z.; Rożek, K.; Kochan, K.; Domaradzki, J.; Fugiel, J. Sex Differences in Growth and Performance of Track and Field Athletes 11–15 Years. J. Hum. Kinet. 2010, 24, 79–85. [Google Scholar] [CrossRef]
- Pelegrini, A.; Bim, M.A.; Alves, A.D.; Scarabelot, K.S.; Claumann, G.S.; Fernandes, R.A.; de Angelo, H.C.C.; de Araújo Pinto, A. Relationship between muscle strength, body composition and bone mineral density in adolescents. J. Clin. Densitom. 2022, 25, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Thomas, E.; Petrigna, L.; Tabacchi, G.; Teixeira, E.; Pajaujiene, S.; Sturm, D.J.; Sahin, F.N.; Gómez-López, M.; Pausic, J.; Paoli, A. Percentile values of the standing broad jump in children and adolescents aged 6–18 years old. Eur. J. Transl. Myol. 2020, 30, 9050. [Google Scholar] [CrossRef]
- Xu, Y.; Mei, M.; Wang, H.; Yan, Q.; He, G. Association between weight status and physical fitness in Chinese mainland children and adolescents: A cross-sectional study. Int. J. Environ. Res. Public Health 2020, 17, 2468. [Google Scholar] [CrossRef]
- Artero, E.G.; España-Romero, V.; Ortega, F.B.; Jiménez-Pavón, D.; Ruiz, J.R.; Vicente-Rodríguez, G.; Bueno, M.; Marcos, A.; Gómez-Martínez, S.; Urzanqui, A. Health-related fitness in adolescents: Underweight, and not only overweight, as an influencing factor. The AVENA study. Scand. J. Med. Sci. Sports 2010, 20, 418–427. [Google Scholar] [CrossRef]
- Verbecque, E.; Coetzee, D.; Ferguson, G.; Smits-Engelsman, B. High BMI and low muscular fitness predict low motor competence in school-aged children living in low-resourced areas. Int. J. Environ. Res. Public Health 2021, 18, 7878. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, S.; Grillone, G.; Di Michele, R.; Cortesi, M. A comparison between male and female athletes in relative strength and power performances. J. Funct. Morphol. Kinesiol. 2021, 6, 17. [Google Scholar] [CrossRef]
- Fogelholm, M. Physical activity, fitness and fatness: Relations to mortality, morbidity and disease risk factors. A systematic review. Obes. Rev. 2010, 11, 202–221. [Google Scholar] [CrossRef]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef]
- Weber, D.R.; Leonard, M.B.; Shults, J.; Zemel, B.S. A comparison of fat and lean body mass index to BMI for the identification of metabolic syndrome in children and adolescents. J. Clin. Endocrinol. Metab. 2014, 99, 3208–3216. [Google Scholar] [CrossRef]
- Chen, G.; Chen, J.; Liu, J.; Hu, Y.; Liu, Y. Relationship between body mass index and physical fitness of children and adolescents in Xinjiang, China: A cross-sectional study. BMC Public Health 2022, 22, 1680. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, H.; Chen, S.; Ma, J.; Kim, H. The Association of Body Mass Index and Fat Mass with Health-Related Physical Fitness among Chinese Schoolchildren: A Study Using a Predictive Model. Int. J. Environ. Res. Public Health 2022, 20, 355. [Google Scholar] [CrossRef] [PubMed]
- Kasović, M.; Oreški, A.; Vespalec, T.; Gimunová, M.; Štefan, L. Associations between Fat Mass and Fat Free Mass with Physical Fitness in Adolescent Girls: A 3-Year Longitudinal Study. Biology 2022, 11, 783. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wen, Z.; Deng, K.; Li, R.; Yu, Q.; Xiao, S.-M. Relationships of sex hormones with muscle mass and muscle strength in male adolescents at different stages of puberty. PLoS ONE 2021, 16, e0260521. [Google Scholar] [CrossRef]
- Santos, R.; Mota, J.; Santos, D.A.; Silva, A.M.; Baptista, F.; Sardinha, L.B. Physical fitness percentiles for Portuguese children and adolescents aged 10–18 years. J. Sports Sci. 2014, 32, 1510–1518. [Google Scholar] [CrossRef]
- Gürses, H.N.; DeniZoğlu Külli, H.; Durgut, E.; Zeren, M. Effect of Gender and Physical Activity Level on Sit-to-Stand Test Performance Among Young Adults. Bezmialem Sci. 2020, 8, 222–226. [Google Scholar] [CrossRef]
Variable | Boys (n = 44) | Girls (n = 56) | p Value |
---|---|---|---|
Age (years) | 15.20 (0.90) | 14.70 (2.40) | 0.149 A |
Height (cm) | 171.63 (11.08) | 154.04 (8.41) | 0.001 A |
Weight (kg) | 68.58 (19.42) | 54.68 (16.64) | 0.001 A |
BMI (kg/m2) | 22.99 (5.07) | 22.87 (6.51) | 0.920 A |
BMI category | |||
Underweight (%) | 2 (4.5%) | 4 (7.1%) | 0.979 B |
Healthy weight (%) | 26 (59.1%) | 38 (67.9%) | 0.590 B |
Overweight (%) | 10 (22.7%) | 5 (8.9%) | 0.093 B |
Obese (%) | 6 (13.6%) | 9 (16.1%) | 0.363 B |
Variable | STS | SLJ | PAQ | BMI | Age | Weight |
---|---|---|---|---|---|---|
SLJ | 0.768 ** | |||||
PAQ | 0.122 | 0.153 | ||||
BMI | −0.120 | −0.093 | 0.058 | |||
Age | 0.114 | 0.118 | 0.084 | 0.341 ** | ||
Weight | 0.150 | 0.257 ** | 0.052 | 0.861 ** | 0.387 ** | |
Height | 0.506 ** | 0.650 ** | 0.083 | 0.171 | 0.340 ** | 0.623 ** |
Path (Predictor ➔ Outcome) | b | SE | z | p | 95% CI Lower | 95% CI Upper |
---|---|---|---|---|---|---|
Direct & mediating paths | ||||||
STS ➔ SLJ | 0.471 | 0.163 | 2.892 | 0.004 | 0.175 | 0.773 |
BMI ➔ SLJ | −0.696 | 0.325 | −2.138 | 0.033 | −1.477 | −0.102 |
STS ➔ BMI | −0.109 | 0.049 | −2.244 | 0.025 | −0.205 | −0.011 |
Covariate paths (controls) | ||||||
Age ➔ STS | 0.057 | 0.59 | 0.096 | 0.923 | −0.713 | 1.01 |
PAQ ➔ STS | 0.138 | 0.084 | 1.638 | 0.101 | −0.054 | 0.319 |
Gender ➔ STS | −24.811 | 2.238 | −11.088 | <0.001 | −29.801 | −20.313 |
Age ➔ BMI | 1.072 | 0.288 | 3.727 | <0.001 | 0.471 | 1.68 |
PAQ ➔ BMI | 0.028 | 0.042 | 0.679 | 0.497 | −0.064 | 0.123 |
Gender ➔ BMI | −2.288 | 1.63 | −1.404 | 0.16 | −6.141 | 1.035 |
Age ➔ SLJ | 0.426 | 0.999 | 0.427 | 0.67 | −1.442 | 2.651 |
PAQ ➔ SLJ | 0.408 | 0.136 | 3.008 | 0.003 | 0.12 | 0.693 |
Gender ➔ SLJ | −67.226 | 5.356 | −12.551 | <0.001 | −78.630 | −55.862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonazi, A.; Alsunaid, F.; Alofaisan, L.; Ghassan Alqarni, M.; Alhumoud, J.; Kashoo, F. Gender Differences in Lower Limb Strength and Endurance Among Saudi Adolescents: A Cross-Sectional Study on the Limited Role of Body Mass Index. Children 2025, 12, 899. https://doi.org/10.3390/children12070899
Alonazi A, Alsunaid F, Alofaisan L, Ghassan Alqarni M, Alhumoud J, Kashoo F. Gender Differences in Lower Limb Strength and Endurance Among Saudi Adolescents: A Cross-Sectional Study on the Limited Role of Body Mass Index. Children. 2025; 12(7):899. https://doi.org/10.3390/children12070899
Chicago/Turabian StyleAlonazi, Asma, Fay Alsunaid, Latifa Alofaisan, Mohammed Ghassan Alqarni, Jasem Alhumoud, and Faizan Kashoo. 2025. "Gender Differences in Lower Limb Strength and Endurance Among Saudi Adolescents: A Cross-Sectional Study on the Limited Role of Body Mass Index" Children 12, no. 7: 899. https://doi.org/10.3390/children12070899
APA StyleAlonazi, A., Alsunaid, F., Alofaisan, L., Ghassan Alqarni, M., Alhumoud, J., & Kashoo, F. (2025). Gender Differences in Lower Limb Strength and Endurance Among Saudi Adolescents: A Cross-Sectional Study on the Limited Role of Body Mass Index. Children, 12(7), 899. https://doi.org/10.3390/children12070899