Bubble NIPPV: Guidelines for Use
Abstract
1. Introduction
2. Nomenclature
2.1. Bubble NIPPV Equipment Description and Use
2.2. Proposed Guidelines and Settings
3. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kamath, B.D.; Macguire, E.R.; McClure, E.M.; Goldenberg, R.L.; Jobe, A.H. Neonatal mortality from respiratory distress syndrome: Lessons for low-resource countries. Pediatrics 2011, 127, 1139–1146. [Google Scholar] [CrossRef]
- United Nations Children’s Fund. Neonatal Mortality. Available online: https://data.unicef.org/topic/child-survival/neonatal-mortality/ (accessed on 4 June 2025).
- Ekhaguere, O.A.; Okonkwo, I.R.; Batra, M.; Hedstrom, A.B. Respiratory distress syndrome management in resource limited settings-Current evidence and opportunities in 2022. Front. Pediatr. 2022, 10, 961509. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, A.; Carroll, C.; Bhandari, V. BPD Following Preterm Birth: A Model for Chronic Lung Disease and a Substrate for ARDS in Childhood. Front. Pediatr. 2016, 4, 60. [Google Scholar] [CrossRef]
- Ruegger, C.M.; Owen, L.S.; Davis, P.G. Nasal Intermittent Positive Pressure Ventilation for Neonatal Respiratory Distress Syndrome. Clin. Perinatol. 2021, 48, 725–744. [Google Scholar] [CrossRef] [PubMed]
- Lemyre, B.; Deguise, M.O.; Benson, P.; Kirpalani, H.; Ekhaguere, O.A.; Davis, P.G. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst. Rev. 2023, 7, CD005384. [Google Scholar] [CrossRef]
- Bhandari, V.; Gavino, R.G.; Nedrelow, J.H.; Pallela, P.; Salvador, A.; Ehrenkranz, R.A.; Brodsky, N.L. A randomized controlled trial of synchronized nasal intermittent positive pressure ventilation in RDS. J. Perinatol. 2007, 27, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Mukerji, A.; Abdul Wahab, M.G.; Razak, A.; Rempel, E.; Patel, W.; Mondal, T.; Beck, J. High CPAP vs. NIPPV in preterm neonates—A physiological cross-over study. J. Perinatol. 2021, 41, 1690–1696. [Google Scholar] [CrossRef]
- Owen, L.S.; Morley, C.J.; Davis, P.G. Neonatal nasal intermittent positive pressure ventilation: What do we know in 2007? Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, F414–F418. [Google Scholar] [CrossRef]
- Shi, Y.; Muniraman, H.; Biniwale, M.; Ramanathan, R. A Review on Non-invasive Respiratory Support for Management of Respiratory Distress in Extremely Preterm Infants. Front. Pediatr. 2020, 8, 270. [Google Scholar] [CrossRef]
- Boel, L.; Broad, K.; Chakraborty, M. Non-invasive respiratory support in newborn infants. Paediatr. Child Health 2018, 28, 6–12. [Google Scholar] [CrossRef]
- Bhandari, V. Nasal intermittent positive pressure ventilation in the newborn: Review of literature and evidence-based guidelines. J. Perinatol. 2010, 30, 505–512. [Google Scholar] [CrossRef]
- Kumar, J.; Kumar, P.; Bhandari, V. Noninvasive ventilation strategies in neonates. Indian Pediatr. 2025, 62, 451–460. [Google Scholar] [CrossRef]
- John, S.C.; John, A.V.; Moss, A.W.; Gustafson, P.A.; Fernando-Silva, L.; John, S.P. Bench Testing of a Bubble Noninvasive Ventilation Device in an Infant Lung Simulator. Respir. Care 2020, 65, 1339–1345. [Google Scholar] [CrossRef] [PubMed]
- Poletto, S.; Trevisanuto, D.; Ramaswamy, V.V.; Seni, A.H.A.; Ouedraogo, P.; Dellaca, R.L.; Zannin, E. Bubble CPAP respiratory support devices for infants in low-resource settings. Pediatr. Pulmonol. 2023, 58, 643–652. [Google Scholar] [CrossRef]
- John, S.C.; Adhikari, B.R.; John, A.V.; Cheng, E.O.; Weiner, G.M.; John, S.P. Feasibility of bubble non-invasive positive pressure ventilation, a first-in-human study. J. Trop. Pediatr. 2022, 68, fmac095. [Google Scholar] [CrossRef]
- John, S.C.; Garg, M.; Muttineni, M.; Brearley, A.M.; Rao, P.; Bhandari, V.; Slusher, T.; Murki, S. Safety of bubble nasal intermittent positive pressure ventilation (NIPPV) versus bubble nasal continuous positive airway pressure (NCPAP) in preterm infants with respiratory distress. J. Perinatol. 2024, 44, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Falk, M.; Donaldsson, S.; Drevhammar, T. Infant CPAP for low-income countries: An experimental comparison of standard bubble CPAP and the Pumani system. PLoS ONE 2018, 13, e0196683. [Google Scholar] [CrossRef]
- Bhandari, V. NIPPV in the neonate: Answers to FAQs—A personal perspective. J. Neonatol. 2017, 31, 31–34. [Google Scholar] [CrossRef]
- Owen, L.S.; Manley, B.J. Nasal intermittent positive pressure ventilation in preterm infants: Equipment, evidence, and synchronization. Semin. Fetal Neonatal Med. 2016, 21, 146–153. [Google Scholar] [CrossRef]
- John, S.C.; Barnett, J.D.; Habben, N.D.; Le, H.T.; Cheng, E.; John, S.P.; Gustafson, P.A. Development and Testing of a Bubble Bi-Level Positive Airway Pressure System. Respir. Care 2017, 62, 1131–1136. [Google Scholar] [CrossRef]
- John, S.C.; Cheng, E.O.; John, S.P. The BCPAP Score: Five Questions to Assess the Effectiveness of a Bubble CPAP Circuit. J. Trop. Pediatr. 2020, 66, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Downes, J.J.; Vidyasagar, D.; Boggs, T.R.; Morrow, G.M. Respiratory distress syndrome of newborn infants. I. New clinical scoring system (RDS score) with acid–base and blood-gas correlations. Clin. Pediatr. 1970, 9, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, V.; Black, R.; Gandhi, B.; Hogue, S.; Kakkilaya, V.; Mikhael, M.; Moya, F.; Pezzano, C.; Read, P.; Roberts, K.D.; et al. RDS-NExT workshop: Consensus statements for the use of surfactant in preterm neonates with RDS. J. Perinatol. 2023, 43, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023, 120, 3–23. [Google Scholar] [CrossRef]
- Wright, C.J.; Sherlock, L.G.; Sahni, R.; Polin, R.A. Preventing Continuous Positive Airway Pressure Failure: Evidence-Based and Physiologically Sound Practices from Delivery Room to the Neonatal Intensive Care Unit. Clin. Perinatol. 2018, 45, 257–271. [Google Scholar] [CrossRef]
- Ramaswamy, V.V.; More, K.; Roehr, C.C.; Bandiya, P.; Nangia, S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis. Pediatr. Pulmonol. 2020, 55, 2940–2963. [Google Scholar] [CrossRef]
- Lemyre, B.; Deguise, M.O.; Benson, P.; Kirpalani, H.; De Paoli, A.G.; Davis, P.G. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst. Rev. 2023, 7, CD003212. [Google Scholar] [CrossRef]
- Bisceglia, M.; Belcastro, A.; Poerio, V.; Raimondi, F.; Mesuraca, L.; Crugliano, C.; Corapi, U.P. A comparison of nasal intermittent versus continuous positive pressure delivery for the treatment of moderate respiratory syndrome in preterm infants. Minerva Pediatr. 2007, 59, 91–95. [Google Scholar]
- Kishore, M.S.; Dutta, S.; Kumar, P. Early nasal intermittent positive pressure ventilation versus continuous positive airway pressure for respiratory distress syndrome. Acta Paediatr. 2009, 98, 1412–1415. [Google Scholar] [CrossRef]
- Meneses, J.; Bhandari, V.; Alves, J.G.; Herrmann, D. Noninvasive ventilation for respiratory distress syndrome: A randomized controlled trial. Pediatrics 2011, 127, 300–307. [Google Scholar] [CrossRef]
- Ramanathan, R.; Sekar, K.C.; Rasmussen, M.; Bhatia, J.; Soll, R.F. Nasal intermittent positive pressure ventilation after surfactant treatment for respiratory distress syndrome in preterm infants <30 weeks’ gestation: A randomized, controlled trial. J. Perinatol. 2012, 32, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Armanian, A.M.; Badiee, Z.; Heidari, G.; Feizi, A.; Salehimehr, N. Initial Treatment of Respiratory Distress Syndrome with Nasal Intermittent Mandatory Ventilation versus Nasal Continuous Positive Airway Pressure: A Randomized Controlled Trial. Int. J. Prev. Med. 2014, 5, 1543–1551. [Google Scholar]
- Oncel, M.Y.; Arayici, S.; Uras, N.; Alyamac-Dizdar, E.; Sari, F.N.; Karahan, S.; Canpolat, F.E.; Oguz, S.S.; Dilmen, U. Nasal continuous positive airway pressure versus nasal intermittent positive-pressure ventilation within the minimally invasive surfactant therapy approach in preterm infants: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2016, 101, F323–F328. [Google Scholar] [CrossRef] [PubMed]
- Sabzehei, M.K.; Basiri, B.; Shokouhi, M.; Naser, M. A comparative study of treatment response of respiratory distress syndrome in preterm infants: Early nasal intermittent positive pressure ventilation versus early nasal continuous positive airway pressure. Int. J. Pediatr. 2018, 6, 8339–8346. [Google Scholar] [CrossRef]
- Skariah, T.A.; Lewis, L.E. Early nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for respiratory distress syndrome in infants of 28–36 weeks gestational age: A randomized controlled trial. Iran. J. Neonatol. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Shi, Y.; Tang, S.; Zhao, J.; Shen, J. A prospective, randomized, controlled study of NIPPV versus nCPAP in preterm and term infants with respiratory distress syndrome. Pediatr. Pulmonol. 2014, 49, 673–678. [Google Scholar] [CrossRef]
- Khorana, M.; Paradeevisut, H.; Sangtawesin, V.; Kanjanapatanakul, W.; Chotigeat, U.; Ayutthaya, J.K. A randomized trial of non-synchronized Nasopharyngeal Intermittent Mandatory Ventilation (nsNIMV) vs. Nasal Continuous Positive Airway Pressure (NCPAP) in the prevention of extubation failure in pre-term <1500 grams. J. Med. Assoc. Thai. 2008, 91 (Suppl. 3), S136–S142. [Google Scholar]
- Kahramaner, Z.; Erdemir, A.; Turkoglu, E.; Cosar, H.; Sutcuoglu, S.; Ozer, E.A. Unsynchronized nasal intermittent positive pressure versus nasal continuous positive airway pressure in preterm infants after extubation. J. Matern. Fetal Neonatal Med. 2014, 27, 926–929. [Google Scholar] [CrossRef]
- Jasani, B.; Nanavati, R.; Kabra, N.; Rajdeo, S.; Bhandari, V. Comparison of non-synchronized nasal intermittent positive pressure ventilation versus nasal continuous positive airway pressure as post-extubation respiratory support in preterm infants with respiratory distress syndrome: A randomized controlled trial. J. Matern. Fetal Neonatal Med. 2016, 29, 1546–1551. [Google Scholar] [CrossRef]
- Komatsu, D.F.; Diniz, E.M.; Ferraro, A.A.; Ceccon, M.E.; Vaz, F.A. Randomized controlled trial comparing nasal intermittent positive pressure ventilation and nasal continuous positive airway pressure in premature infants after tracheal extubation. Rev. Assoc. Med. Bras. (1992) 2016, 62, 568–574. [Google Scholar] [CrossRef]
- Ribeiro, S.N.S.; Fontes, M.J.F.; Bhandari, V.; Resende, C.B.; Johnston, C. Noninvasive Ventilation in Newborns </=1500 g after Tracheal Extubation: Randomized Clinical Trial. Am. J. Perinatol. 2017, 34, 1190–1198. [Google Scholar] [CrossRef]
- Estay, A.S.; Mariani, G.L.; Alvarez, C.A.; Milet, B.; Agost, D.; Avila, C.P.; Roldan, L.; Abdala, D.A.; Keller, R.; Galletti, M.F.; et al. Randomized Controlled Trial of Nonsynchronized Nasal Intermittent Positive Pressure Ventilation versus Nasal CPAP after Extubation of VLBW Infants. Neonatology 2020, 117, 193–199. [Google Scholar] [CrossRef]
- Kong, L.K.; Kong, X.Y.; Li, L.H.; Dong, J.Y.; Shang, M.X.; Chi, J.H.; Huang, R.X.; Zheng, Y.; Ma, J.E.; Chen, X.C.; et al. Comparative study on application of Duo positive airway pressure and continuous positive airway pressure in preterm neonates with respiratory distress syndrome. Zhongguo Dang Dai Er Ke Za Zhi Chin. J. Contemp. Pediatr. 2012, 14, 888–892. [Google Scholar]
- Aguiar, T.; Macedo, I.; Voutsen, O.; Silva, P.; Nona, J.; Araujo, C.; Imaginário, J.; Mauricio, A.; Barroso, R.; Tomé, T.; et al. Nasal bilevel versus continuous positive airway pressure in preterm infants: A randomized controlled trial. J. Clin. Trials 2015, 5, 221. [Google Scholar] [CrossRef]
- Sadeghnia, A.; Barekateyn, B.; Badiei, Z.; Hosseini, S.M. Analysis and comparison of the effects of N-BiPAP and Bubble-CPAP in treatment of preterm newborns with the weight of below 1500 grams affiliated with respiratory distress syndrome: A randomised clinical trial. Adv. Biomed. Res. 2016, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.; Chen, G.Y.; Wang, J.; Zhou, Z.X.; Zhang, P.Y.; Chang, L.W.; Rong, Z.H. Bi-level Nasal Positive Airway Pressure (BiPAP) versus Nasal Continuous Positive Airway Pressure (CPAP) for Preterm Infants with Birth Weight Less Than 1500 g and Respiratory Distress Syndrome Following INSURE Treatment: A Two-center Randomized Controlled Trial. Curr. Med. Sci. 2021, 41, 542–547. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.; Campbell, C.; Brown, L.; Wenger, L.; Shah, V. Infant flow biphasic nasal continuous positive airway pressure (BP- NCPAP) vs. infant flow NCPAP for the facilitation of extubation in infants’ </=1250 grams: A randomized controlled trial. BMC Pediatr. 2012, 12, 43. [Google Scholar] [CrossRef]
- Victor, S.; Roberts, S.A.; Mitchell, S.; Aziz, H.; Lavender, T.; Extubate Trial, G. Biphasic Positive Airway Pressure or Continuous Positive Airway Pressure: A Randomized Trial. Pediatrics 2016, 138, e20154095. [Google Scholar] [CrossRef]
- Manjunatha, C.M.; Kalyanasundaram, S.; Ibhanesebhor, S.E.; Vigni, D.; Robertson, C. Prospective randomized controlled trial comparing the use of biphasic positive airway pressure (BiPAP) with nasal continuous positive airway pressure (n-CPAP) following extubation of preterm babies. EC Paediatr. 2019, 8, 525–532. [Google Scholar]
- Kirpalani, H.; Millar, D.; Lemyre, B.; Yoder, B.A.; Chiu, A.; Roberts, R.S.; Group, N.S. A trial comparing noninvasive ventilation strategies in preterm infants. N. Engl. J. Med. 2013, 369, 611–620. [Google Scholar] [CrossRef]
- El-Farrash, R.A.; DiBlasi, R.M.; Abd, E.L.A.E.A.; El-Tahry, A.M.; Eladawy, M.S.; Tadros, M.A.; Koriesh, M.A.; Farid, J.V.; AbdElwahab, R.S.; Elsayed, M.A.; et al. Postextubation Noninvasive Ventilation in Respiratory Distress Syndrome: A Randomized Controlled Trial. Am. J. Perinatol. 2022, 29, 1577–1585. [Google Scholar] [CrossRef]
- John, S.C.; Mohammed, A.; Church, J.T.; John, A.V.; Perkins, E.M.; McLeod, J.S.; Carr, B.D.; Smith, S.; Barnett, J.H.; Gustafson, P.A.; et al. Bubble bilevel ventilation facilitates gas exchange in anesthetized rabbits. Pediatr. Res. 2021, 89, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Badiee, Z.; Nekooie, B.; Mohammadizadeh, M. Noninvasive positive pressure ventilation or conventional mechanical ventilation for neonatal continuous positive airway pressure failure. Int. J. Prev. Med. 2014, 5, 1045–1053. [Google Scholar] [PubMed]
NIPPV | CPAP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Study | n | Type | Mean BW (g) & GA (w) * | PIP (cm H2O) ¥ | PEEP (cm H2O) ¥ | RR (br/min) ¥ | Type | Mean BW (g) & GA (w) | PEEP (cm H2O) ¥ | Noteworthy NIPPV Outcomes | |
Primary Mode | Bisceglia et al (2007) [29] | 88 | ventilator, non-synchronized | 1020 g, 29.8 w | 14–20 | 4–6 | 40 | n/a | 1010 g, 30.6 w | 4–6 | - no difference in IMV 1 occurrence - decreased PCO2 - decreased apneic episodes - decreased duration of NIV 2 support |
Kishore et al (2009) [30] | 76 | ventilator, non-synchronized | 1250 g, 30.7 w | 15–24/26 | 5–6 | 50–60 | ventilator | 1250 g, 30.8 w | 5–7 | - decreased IMV occurrence in the first 48 HOL 3 & 7 d | |
Meneses et al. , (2011) [31] | 200 | ventilator, non-synchronized | 1112 g, 29 w | 15–20 | 4–6 | 20–30 | bubble | 1151 g, 30.1 w | 5–6 | - no difference in overall IMV occurrence in first 72 h, but decrease observed in 24–72 HOL | |
Ramanathan et al (2012) [32] | 110 | ventilator, non-synchronized | 1052 g, 27.8 w | 10–15 | 5 | 30–40 | mixed | 1099 g, 27.8 w | 5–8 | - decreased IMV occurrence in the first 7 d - decreased BPD 4 occurrence | |
Armanian et al (2014) [33] | 98 | ventilator, non-synchronized | 1261.4 g, 30.4 w | 16–20 | 5–6 | 50–60 | bubble | 1156.5 g, 29.5 w | 5–6 | - no difference in IMV occurrence - decreased duration of NIV support - decreased duration of O2 dependency - faster time to reach full enteral feeds | |
Oncel et al (2015) [34] | 200 | ventilator, non-synchronized | 1180 g, 29.2 w | 15–20 | 5–6 | 20–30 | ventilator | 1175 g, 29.1 w | 5–6 | - decreased IMV occurrence in first 72 HOL - decreased surfactant need in first 72 HOL | |
Sabzehei et al (2018) [35] | 60 | ventilator, non-synchronized | 1259 g, 30.1 w | 14–20 | 5–6 | 30–50 | ventilator | 1235 g, 30.1 w | 5–6 | - no difference in IMV occurrence - decreased duration of NIV support | |
Skariah & Lewis et al (2019) [36] | 78 | ventilator, non-synchronized | 1400 g, 31.8 w | 11–18 | 3–5 | 18–30 | ventilator | 1440 g, 31.7 w | 3–5 | - no difference in IMV occurrence - decreased surfactant need - decreased respiratory distress until 12 HOL - decreased time to full feed | |
Shi et al (2021) [37] | 179 | ventilator, non-synchronized | 2421 g, 34.3 w | 15–20 | 4–6 | 10–20 | bubble | 2349 g, 34.2 w | 4–6 | - decreased IMV occurrence - more favorable discharge outcomes | |
Secondary Mode | Khorana et al (2008) [38] | 48 | ventilator, non-synchronized | 948 g, 28.3 w | pre-ext. 5$ | pre-ext. | pre-ext. | n/a | 1067 g, 29.3 w | pre-ext | - no difference in extubation failure rate |
Kahramaner et al (2014) [39] | 67 | ventilator, non-synchronized | 1228 g, 29.3 w | +2 pre-ext. ž | 6 | 25 | variable flow | 1091 g, 28.1 w | 6 | - decreased extubation failure rate - decreased post-extubation atelectasis | |
Jasani et al (2015) [40] | 63 | ventilator, non-synchronized | 1187 g, 30.8 w | +4 pre-ext. ‡ | </=5 | same as pre-ext. | ventilator /variable flow | 1153 g, 30.6 w | 5–6 | - no difference in extubation failure rate - decreased duration of NIV support - decreased duration of O2 dependency - decreased BPD occurrence | |
Komatsu et al (2016) [41] | 72 | ventilator, non-synchronized | 1271 g, 30.2 w | 16 | 6 | 12 | ventilator | 1425 g, 31.2 w | 6 | - no difference in extubation failure rate | |
Ribeiro et al (2017) [42] | 101 | ventilator, non-synchronized | 1121 g, 29.3 w | 14–16 ^ | 4–6 | 12–18 | bubble/ ventilator | 1157 g, 29.7 w | 4–5 | - no difference in extubation failure rate | |
Etsay et al (2020) [43] | 220 | ventilator, non-synchronized | 1034 g, 27.8 w | 12–15 ◊ (<1 kg); 14–18 (>1 kg) | 5–6 | 20 | bubble/ ventilator | 1019 g, 27.9 w | 5–6 | - no difference in extubation failure rate |
Study | n | Type | Mean BW (g) & GA (w) | PIP (cm H2O) ¥ | PEEP (cm H2O) ¥ | RR (br/min) ¥ | CPAP Type | Mean BW (g) & GA (w) | PEEP (cm H2O) ¥ | Noteworthy BiPAP Outcomes | |
---|---|---|---|---|---|---|---|---|---|---|---|
Primary Mode | Kong et al (2012) [44] | 67 | flow-driver, non-synchronized | 1983 g, 32.9 w | 12−15 | 4−6 | 20−30 | constant flow | 2036 g, 32.8 w | 4−6 | - decreased IMV 1 occurrence |
Aguiar et al (2015) [45] | 220 | flow-driver, non-synchronized | 1355 g, 31.1 w | 8 | 6 | 10−15 | variable flow | 1373 g, 30.9 w | 6−8 | - no overall difference in IMV occurrence in the first 120 h, but decreased in 30–32.6 w subgroup | |
Sadeghnia et al (2016) [46] | 70 | flow-driver, non-synchronized | 1129.1 g, 29.4 w | 8 | 4 | 30 | bubble | 1090.57 g, 28.32 w | 6 | - no difference in IMV occurrence - no difference in duration of O2 dependency - no difference in duration of NIV 2 support | |
Pan et al (2021) [47] | 284 | flow-driver, non-synchronized | 1251 g, 30.1 w | 9 | 5 | 30 | variable flow | 1264 g, 29.6 w | - no difference in IMV occurrence - decreased duration of NIV support | ||
Secondary Mode | O’Brien et al (2012) [48] | 136 | flow-driver, non-synchronized | 901 g, 27.3 w | 8−10 § | 5−7 | 20 | variable flow | 896 g, 27.4 w | 5−7 | - no difference in extubation failure rate - increased ROP 3 |
Victor et al (2016) [49] | 540 | flow-driver, non-synchronized | 870 g, 26 w 1185 g, 29 w | 6−8 ≠ | 4 | 30 | variable flow | 910 g, 26 w 1173 g, 28 w | 4−6 | - no difference in extubation failure rate in sequential BiPAP + CPAP vs. CPAP alone | |
Manjunatha et al (2019) [50] | 119 | flow-driver, non-synchronized | ~1038 g *, 28−30 w | 8−11 ≈ | 5−8 | 30−40 | variable flow | ~959 g *, 28−30 w | 5−8 | - no difference in extubation failure rate 72 h post extubation |
Study | n | Type | Mean BW (g) & GA (w) | NIPPV/BiPAP PIP (cm H2O) ¥ | PEEP (cm H2O) ¥ | RR (br/min) ¥ | CPAP Type | Mean BW (g) & GA (w) | PEEP (cm H2O) ¥ | Noteworthy BiPAP/NIPPV Outcomes | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Secondary Mode | Primary Mode | Kirpalani et al (2013) [51] | 1009 | ~53% flow-driver BiPAP, remainder ventilator NIPPV | 802 g, 26.1 w | 15–18 or +2–4 pre-ext. ◊ | 5–8 or same as pre-ext. | 10–40 | mixed methods | 805 g, 26.2 w | 5–6 or same as pre-ext. | - no difference in the incidence of intubation - no difference in extubation failure rate - no difference in BPD 1 occurrence |
El Farrash et al (2022) [52] | 120 | ventilator NIPPV, ventilator BiPAP | 1940 g, 32.7 w (NIPPV) 1700 g, 32.1 w (BiPAP) | MAP 7 cm H2O ÷ | ventilator | 1810 g, 32.9 w | MAP 7 cm H2O | - no difference in extubation failure rate - increased duration of hospitalization & duration of IMV 2 in BiPAP group only |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muttineni, M.; Bhandari, V.; John, S.; Slusher, T. Bubble NIPPV: Guidelines for Use. Children 2025, 12, 834. https://doi.org/10.3390/children12070834
Muttineni M, Bhandari V, John S, Slusher T. Bubble NIPPV: Guidelines for Use. Children. 2025; 12(7):834. https://doi.org/10.3390/children12070834
Chicago/Turabian StyleMuttineni, Mounika, Vineet Bhandari, Stephen John, and Tina Slusher. 2025. "Bubble NIPPV: Guidelines for Use" Children 12, no. 7: 834. https://doi.org/10.3390/children12070834
APA StyleMuttineni, M., Bhandari, V., John, S., & Slusher, T. (2025). Bubble NIPPV: Guidelines for Use. Children, 12(7), 834. https://doi.org/10.3390/children12070834