Characteristics of Anemia in Children Aged 6 Months to 5 Years Attending External Consultations at a Pediatric Hospital in Lisbon, Portugal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting
2.2. Study Design, Population, and Sample Universe
2.3. Inclusion and Exclusion Criteria
2.4. Data Collection and Quality Control
2.5. Outcome Variable
2.6. Exposure Variables
2.7. Data Analysis
2.8. Ethical Considerations
3. Results
3.1. Sociodemographic Characteristics
3.2. Childhood Anemia by Sociodemographic Characteristics
3.3. Childhood Anemia by Nutritional and Clinical Characteristics
3.4. Hematological and Iron Status Characteristics of Anemic Children
4. Discussion
4.1. Sociodemographic Patterns in Childhood Anemia
4.2. Nutritional Characteristics in Childhood Anemia
4.3. Clinical and Hematological Parameters in Childhood Anemia
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIDS | Acquired immunodeficiency syndrome |
CBC | Complete blood count |
CPLP | Community of Portuguese Language Countries |
CRP | C-reactive protein |
DDS | Dietary diversity score |
ID | Iron deficiency |
IDA | Iron deficiency anemia |
Hb | Hemoglobin |
HIV | Human immunodeficiency virus |
HDE | Dona Estefânia Hospital |
MCV | Mean corpuscular volume |
MDD | Mininum dietary diversity |
RCBs | Red blood cells |
TIBC | Iron binding capacity |
UI | Uncertainty interval |
ULS | Unidade Local de Saúde |
WHO | World Health Organization |
References
- Gallagher, P.G. Anemia in the pediatric patient. Blood 2022, 140, 571–593. [Google Scholar] [CrossRef]
- Ouédraogo, O.; Compaoré, E.W.R.; Kiburente, M.; Dicko, M.H. Prevalence and Associated Factors of Anemia in Children Aged 6 to 59 Months in the Eastern Region of Burkina Faso. Glob. Pediatr. Health 2024, 11, 2333794X241263163. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Anaemia. World Health Organization. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/anaemia (accessed on 30 January 2025).
- Matysiak, M. Anemia in children: A pediatrician’s view. Acta Haematol. Pol. 2021, 52, 402–405. [Google Scholar] [CrossRef]
- Lopes, A.I.; Azevedo, S.; Cabral, J.; Ferreira, M.G.; Sande-Lemos, P.; Ferreira, R.; Trindade, E.; Lima, R.; Antunes, H. Portuguese Consensus on Diagnosis, Treatment, and Management of Anemia in Pediatric Inflammatory Bowel Disease. GE Port. J. Gastroenterol. 2020, 27, 244–254. [Google Scholar] [CrossRef]
- Gelaw, Y.; Getaneh, Z.; Melku, M. Anemia as a risk factor for tuberculosis: A systematic review and meta-analysis. Environ. Health Prev. Med. 2021, 26, 13. [Google Scholar] [CrossRef]
- Thompson, L.; Arnold, C.; Peerson, J.; Long, J.M.; EWestcott, J.L.; Islam, M.M.; Black, R.E.; Krebs, N.F.; McDonald, C.M. Predictors of Anaemia Among Young Children Receiving Daily Micronutrient Powders (MNPs) for 24 Weeks in Bangladesh: A Secondary Analysis of the Zinc in Powders Trial. Matern. Child Nutr. 2025, 21, e13806. [Google Scholar] [CrossRef]
- Braat, S.; Fielding, K.L.; Han, J.; Jackson, V.E.; Zaloumis, S.; Xu, J.X.H.; Moir-Meyer, G.; Blaauwendraad, S.M.; Jaddoe, V.W.V.; Gaillard, R.; et al. Haemoglobin thresholds to define anaemia from age 6 months to 65 years: Estimates from international data sources. Lancet Haematol. 2024, 11, e253–e264. [Google Scholar] [CrossRef]
- King, F.S.; Burgess, A.; Quinn, V.J.; Osei, A.J. Nutrition for Developing Countries, 3rd ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Qiu, Y.; Long, Z.; Long, Z. Epidemiology of dietary iron deficiency in China from 1990 to 2021: Findings from the global burden of disease study 2021. BMC Public Health 2025, 25, 596. [Google Scholar] [CrossRef]
- Chaparro, C.M.; Suchdev, P.S. Anemia epidemiology, pathophysiology, and etiology in low- and middle-income countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Brittenham, G.M.; Moir-Meyer, G.; Abuga, K.M.; Datta-Mitra, A.; Cerami, C.; Green, R.; Pasricha, S.-R.; Atkinson, S.H. Biology of Anemia: A Public Health Perspective. J. Nutr. 2023, 153, S7–S28. [Google Scholar] [CrossRef]
- USAID Advancing Nutrition. Understanding Anemia and Its Coexisting Factors: A Brief. USAID. 2022. Available online: https://www.usaid.gov/ (accessed on 2 April 2025).
- Martins, R.R.; Paixão, F.; Mendes, I.; Schäfer, S.; Monge, I.; Costa, F.; Correia, P. Intestinal Parasitic Infections in Children: A 10-Year Retrospective Study. Cureus 2024, 16, e75862. [Google Scholar] [CrossRef] [PubMed]
- Shimanda, P.P.; Amukugo, H.J.; Norström, F. Socioeconomic factors associated with anemia among children aged 6-59 months in Namibia. J. Public Health Afr. 2020, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Melku, M.; Alene, K.A.; Terefe, B.; Enawgaw, B.; Biadgo, B.; Abebe, M.; Muchie, K.F.; Kebede, A.; Melak, T.; Melku, T. Anemia severity among children aged 6–59 months in Gondar town, Ethiopia: A community-based cross-sectional study. Ital. J. Pediatr. 2018, 44, 107. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Liu, X.; Zha, P. Trends in Socioeconomic Inequalities and Prevalence of Anemia Among Children and Nonpregnant Women in Low- and Middle-Income Countries. JAMA Netw. Open 2018, 1, e182899. [Google Scholar] [CrossRef]
- Osborne, A.; Adeleye, K.; Bangura, C.; Wongnaah, F.G. Trends and inequalities in anaemia prevalence among children aged 6–59 months in Ghana, 2003–2022. Int. J. Equity Health 2024, 23, 231. [Google Scholar] [CrossRef]
- Zhao, B.; Sun, M.; Wu, T.; Li, J.; Shi, H.; Wei, Y. The association between maternal anemia and neonatal anemia: A systematic review and meta-analysis. BMC Pregnancy Childbirth 2024, 24, 677. [Google Scholar] [CrossRef]
- Chandran, V.; Kirby, R.S. An Analysis of Maternal, Social and Household Factors Associated with Childhood Anemia. Int. J. Environ. Res. Public Health 2021, 18, 3105. [Google Scholar] [CrossRef]
- Sowe, A.; Wood, E.; Gautam, S.K. Maternal Anemia as a Predictor of Childhood Anemia: Evidence from Gambian Health Data. Nutrients 2025, 17, 879. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. World Health Organization. 2011. Available online: https://www.who.int/publications/i/item/WHO-NMH-NHD-MNM-11.1 (accessed on 2 April 2025).
- Williams, A.M.; Ansai, N.; Ahluwalia, N.; Nguyen, D.T. Anemia Prevalence: United States, August 2021–August 2023 (NCHS Data Brief No. 519). National Center for Health Statistics. 2024. Available online: https://www.cdc.gov/nchs/products/databriefs/db519.htm (accessed on 2 April 2025).
- Leung, A.K.; Lam, J.M.; Wong, A.H.; Hon, K.L.; Li, X. Iron Deficiency Anemia: An Updated Review. Curr. Pediatr. Rev. 2024, 20, 339–356. [Google Scholar] [CrossRef]
- Janus, J.; Moerschel, S.K. Evaluation of anemia in children. Am. Fam. Physician 2010, 81, 1462–1471. [Google Scholar]
- Ngnie-Teta, I.; Receveur, O.; Kuate-Defo, B. Risk Factors for Moderate to Severe Anemia among Children in Benin and Mali: Insights from a Multilevel Analysis. Food Nutr. Bull. 2007, 28, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.K.; Pullum, T.W.; Riese, S.; Milner, E.; Navaneetham, K. Is child anemia associated with early childhood development? A cross-sectional analysis of nine Demographic and Health Surveys. PLoS ONE 2024, 19, e0298967. [Google Scholar] [CrossRef] [PubMed]
- Maner, B.S.; Killeen, R.B.; Moosavi, L. Mean corpuscular volume. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK545275/ (accessed on 5 April 2025).
- Turner, J.; Parsi, M.; Badireddy, M. Anemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499994/ (accessed on 5 April 2025).
- Yeboah, F.A.; Bioh, J.; Amoani, B.; Effah, A.; Senu, E.; Mensah, O.S.O.; Agyei, A.; Kwarteng, S.; Agomuo, S.K.S.; Opoku, S.; et al. Iron deficiency anemia and its association with cognitive function among adolescents in the Ashanti Region—Ghana. BMC Public Health 2024, 24, 3209. [Google Scholar] [CrossRef]
- Irwin, J.J.; Kirchner, J.T. Anemia in children. Am. Fam. Physician 2001, 64, 1379–1386. [Google Scholar]
- Chaudhry, H.S.; Kasarla, M.R. Microcytic hypochromic anemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470252/ (accessed on 29 April 2025).
- Sarbay, H.; Ay, Y. Evaluation of children with macrocytosis: Clinical study. Pan Afr. Med. J. 2018, 31, 54. [Google Scholar] [CrossRef]
- Yilmaz, G.; Shaikh, H. Normochromic normocytic anemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK565880/ (accessed on 29 April 2025).
- Moore, C.A.; Killeen, R.B.; Adil, A. Macrocytic anemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK459295/ (accessed on 29 April 2025).
- Gardner, W.M.; Razo, C.; McHugh, T.A.; Hagins, H.; Vilchis-Tella, V.M.; Hennessy, C.; Taylor, H.J.; Perumal, N.; Fuller, K.; Cercy, K.M.; et al. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: Findings from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e713–e734. [Google Scholar] [CrossRef]
- Stevens, G.A.; Paciorek, C.J.; Flores-Urrutia, M.C.; Borghi, E.; Namaste, S.; Wirth, J.P.; Suchdev, P.S.; Ezzati, M.; Rohner, F.; Flaxman, S.R.; et al. National, regional, and global estimates of anaemia by severity in women and children for 2000–2019: A pooled analysis of population-representative data. Lancet Glob. Health 2022, 10, e627–e639. [Google Scholar] [CrossRef]
- World Health Organization. Haemoglobin Concentrations for the Diagnosis of Anaemia and Assessment of Severity. WHO/NMH/NHD/MNM/11.1. 2015. Available online: https://iris.who.int/bitstream/handle/10665/177094/9789241564960_eng.pdf (accessed on 12 March 2025).
- Nunes, A.R.; Mairos, J.; Brilhante, D.; Marques, F.; Belo, A.; Cortez, J.; Fonseca, C. Screening for Anemia and Iron Deficiency in the Adult Portuguese Population. Anemia 2020, 2020, 1048283. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Observatory Data Repository: By Category, Child Malnutrition, Anaemia in Children; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Fonseca, C.; Marques, F.; Nunes, A.R.; Belo, A.; Brilhante, D.; Cortez, J. Prevalence of anaemia and iron deficiency in Portugal: The EMPIRE study. Intern. Med. J. 2016, 46, 470–478. [Google Scholar] [CrossRef]
- Marques, F.; Fonseca, C.; Robalo Nunes, A.; Belo, A.; Brilhante, D.; Cortez, J. Contextualising the High Prevalence of Anaemia in the Portuguese Population: Perception, Characterisation and Predictors: An EMPIRE Sub-Study. Intern. Med. 2016, 23, 26–38. [Google Scholar] [CrossRef]
- Cane, R.M.; Chidassicua, J.B.; Varandas, L.; Craveiro, I. Anemia in Pregnant Women and Children Aged 6 to 59 Months Living in Mozambique and Portugal: An Overview of Systematic Reviews. Int. J. Environ. Res. Public Health 2022, 19, 4685. [Google Scholar] [CrossRef]
- Palaré, M.J.; Ferrão, A.; Carreira, M.; Morais, A. Défice de ferro na criança. Acta Pediátrica Port. 2004, 3, 243–247. [Google Scholar]
- Antunes, H.; Gonçalves, S.; Teixeira-Pinto, A.; Costa-Pereira, A.; Tojo-Sierra, R.; Aguiar, Á. Anemia por deficiência de ferro no lactente: Resultados preliminares do desenvolvimento aos cinco anos. Acta Médica Port. 2005, 18, 261–266. Available online: https://www.actamedicaportuguesa.com/revista/index.php/amp/article/view/1034/702 (accessed on 10 March 2025).
- Virella, D.; Pina, M.J. Prevalence of iron deficiency in early infancy. Acta Médica Port. 1998, 11, 607–613. [Google Scholar]
- Ministério dos Negócios Estrangeiros. Sobre Portugal. Portal Diplomático. 2025. Available online: https://portaldiplomatico.mne.gov.pt/sobre-portugal (accessed on 19 February 2025).
- European Union. Portugal. 2024. Available online: https://european-union.europa.eu/principles-countries-history/eu-countries/portugal_en (accessed on 6 February 2025).
- European Parliament. Economic, Social and Territorial Situation of Portugal: Briefing Requested by the REGI Committee. 2019. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/629190/IPOL_BRI(2019)629190_EN.pdf (accessed on 6 February 2025).
- Serviço Nacional de Saúde. Unidade Local de Saúde de São José. 2025. Available online: https://www.sns.gov.pt/entidades-de-saude/unidade-local-de-saude-de-sao-jose/ (accessed on 20 February 2025).
- Hospital Dona Estefânia. Contexto Regional e Nacional da Instituição; ULS São José: Lisbon, Portugal, 2025. [Google Scholar]
- World Health Organization. Guideline on Haemoglobin Cutoffs to Define Anaemia in Individuals and Populations. 2024. Available online: https://www.who.int/publications/i/item/9789240088542 (accessed on 27 May 2025).
- World Health Organization. Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations. 2023. Available online: https://www.who.int/tools/elena/interventions/ferritin-concentrations (accessed on 27 May 2025).
- World Health Organization. WHO Guideline on Use of Ferritin Concentrations to Assess Iron Status in Individuals and Populations (WHO/NMH/NHD/EPG/20.1). 2020. Available online: https://iris.who.int/bitstream/handle/10665/331505/9789240000124-eng.pdf?sequence=1 (accessed on 27 May 2025).
- Centers for Disease Control and Prevention. Recommendations to prevent and control iron deficiency in the United States. Morb. Mortal. Wkly. Rep. 1998, 47, 1–29. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/00051880.htm (accessed on 27 May 2025).
- UpToDate. Approach to the Child with Anemia. 2025. Available online: https://www.uptodate.com/contents/approach-to-the-child-with-anemia?search=Approach%20to%20the%20child%20with%20anemia&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1 (accessed on 27 May 2025).
- North Bristol NHS Trust. Children’s Reference Ranges for Routine Haematology Tests [PDF]. 2025. Available online: https://www.nbt.nhs.uk/sites/default/files/Childrens%20FBC%20Reference%20Ranges.pdf (accessed on 27 May 2025).
- Staples, A.O.; Wong, C.S.; Smith, J.M.; Gipson, D.S.; Filler, G.; Warady, B.A.; Martz, K.; Greenbaum, L.A. Anemia and Risk of Hospitalization in Pediatric Chronic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 48–56. [Google Scholar] [CrossRef]
- World Health Organization. Iron Deficiency Anaemia: Assessment, Prevention and Control: A Guide for Programme Managers. WHO/NHD/01.3. World Health Organization. 2001. Available online: https://www.who.int/publications/m/item/iron-children-6to23--archived-iron-deficiency-anaemia-assessment-prevention-and-control (accessed on 27 May 2025).
- University of Iowa Health Care. Pediatric Reference Ranges. University of Iowa Health Care. 2025. Available online: https://www.healthcare.uiowa.edu/path_handbook/appendix/heme/pediatric_normals.html (accessed on 27 May 2025).
- World Health Organization. Prevalence of Anemia Among Children Under 5 Years (%). Global Health Observatory (GHO) Data. 2025. Available online: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/7042 (accessed on 27 May 2025).
- Raru, T.B.; Merga, B.T.; Mulatu, G.; Deressa, A.; Birhanu, A.; Negash, B.; Gamachu, M.; Regassa, L.D.; Ayana, G.M.; Roba, K.T. Minimum Dietary Diversity Among Children Aged 6–59 Months in East Africa Countries: A Multilevel Analysis. Int. J. Public Health 2023, 68, 1605807. [Google Scholar] [CrossRef]
- Paulo, H.A.; Andrew, J.; Luoga, P.; Omary, H.; Chombo, S.; Mbishi, J.V.; Addo, I.Y. Minimum dietary diversity behaviour among children aged 6 to 24 months and their determinants: Insights from 31 Sub-Saharan African (SSA) countries. BMC Nutr. 2024, 10, 160. [Google Scholar] [CrossRef]
- Lencha, F.M.; Zaza, Z.J.; Digesa, L.E.; Ayana, T.M. Minimum dietary diversity and associated factors among children under the age of five attending public health facilities in Wolaita Soddo town, Southern Ethiopia, 2021: A cross-sectional study. BMC Public Heal 2022, 22, 2368. [Google Scholar] [CrossRef]
- Bliznashka, L.; Perumal, N.; Yousafzai, A.; Sudfeld, C. Diet and development among children aged 36–59 months in low-income countries. Arch. Dis. Child. 2021, 107, 719–725. [Google Scholar] [CrossRef]
- Woldegebriel, A.G.; Desta, A.A.; Gebreegziabiher, G.; Berhe, A.A.; Ajemu, K.F.; Woldearegay, T.W. Dietary Diversity and Associated Factors among Children Aged 6-59 Months in Ethiopia: Analysis of Ethiopian Demographic and Health Survey 2016 (EDHS 2016). Int. J. Pediatr. 2020, 2020, 3040845. [Google Scholar] [CrossRef] [PubMed]
- Direção-Geral da Saúde. Roda dos Alimentos. Programa Nacional para a Promoção da Alimentação Saudável. 2024. Available online: https://alimentacaosaudavel.dgs.pt/roda-dos-alimentos (accessed on 27 May 2025).
- World Health Organization. Child Growth Standards. World Health Organization. 2025. Available online: https://www.who.int/tools/child-growth-standards/standards (accessed on 15 March 2025).
- IBM Corp. IBM SPSS Statistics for Windows, Version 28.0; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- World Health Organization. Haemoglobin Cutoffs to Define Anaemia in Individuals and Populations. Guideline Central. 2024. Available online: https://www.guidelinecentral.com/guideline/3534081/#section-3534102 (accessed on 20 March 2025).
- World Health Organization. Nutrition Landscape Information System (Nlis). Anaemia. Nutrition and Nutrition-Related Health and Development Data. Geneva, Switzerland: WHO. 2023. Available online: https://www.who.int/data/nutrition/nlis/info/anaemia (accessed on 20 March 2025).
- da Silva, L.L.S.; Fawzi, W.W.; Cardoso, M.A.; ENFAC Working Group; Connor, J.R. Factors associated with anemia in young children in Brazil. PLoS ONE 2018, 13, e0204504. [Google Scholar] [CrossRef] [PubMed]
- Agho, K.E.; Dibley, M.J.; D’Este, C.; Gibberd, R. Factors Associated with Haemoglobin Concentration among Timor-Leste Children Aged 6–59 Months. J. Health Popul. Nutr. 2008, 26, 200–209. [Google Scholar]
- Ferreira, H.S.; Vieira, R.C.S.; Livramento, A.R.S.; Dourado, B.L.L.; Silva, G.F.; Calheiros, M.S.C. Prevalence of anaemia in Brazilian children in different epidemiological scenarios: An updated meta-analysis. Public Health Nutr 2020, 24, 2171–2184. [Google Scholar] [CrossRef]
- dos Santos, R.F.; Gonzalez, E.S.C.; de Albuquerque, E.C.; de Arruda, I.K.G.; Diniz, A.d.S.; Figueroa, J.N.; Pereira, A.P.C. Prevalence of anemia in under five-year-old children in a children's hospital in Recife, Brazil. Rev. Bras. Hematol. Hemoter. 2010, 33, 100–104. [Google Scholar] [CrossRef]
- Oliveira, C.S.M.; Cardoso, M.A.; Araújo, T.S.; Muniz, P.T. Anemia em crianças de 6 a 59 meses e fatores associados no Município de Jordão, Estado do Acre, Brasil. Cad. Saúde Pública 2011, 27, 1008–1020. [Google Scholar] [CrossRef]
- Fançony, C.; Lavinha, J.; Brito, M.; Barros, H. Anemia in preschool children from Angola: A review of the evidence. Porto Biomed. J. 2020, 5, e60. [Google Scholar] [CrossRef]
- Semedo, R.M.; Santos, M.M.; Baião, M.R.; Luiz, R.R.; Da Veiga, G.V. Prevalence of Anaemia and Associated Factors among Children below Five Years of Age in Cape Verde, West Africa. J. Health Popul. Nutr. 2014, 32, 646–657. [Google Scholar]
- Silva, C.C.; Catarino, E. Malnutrition and anemia in children aged 6 to 59 months in the Autonomous Region of Príncipe and its relation to maternal health. Popul. Med. 2023, 5, 164213. [Google Scholar] [CrossRef]
- Ncogo, P.; Romay-Barja, M.; Benito, A.; Aparicio, P.; Nseng, G.; Berzosa, P.; Santana-Morales, M.A.; Riloha, M.; Valladares, B.; Herrador, Z.; et al. Prevalence of anemia and associated factors in children living in urban and rural settings from Bata District, Equatorial Guinea, 2013. PLoS ONE 2017, 12, e0176613. [Google Scholar] [CrossRef]
- Aly, M.M.; Berti, C.; Chemane, F.; Macuelo, C.; Marroda, K.R.; La Vecchia, A.; Agostoni, C.; Baglioni, M. Prevalence of anemia among children aged 6–59 months in the Ntele camp for internally displaced persons (Cabo Delgado, Mozambique): A preliminary study. Eur. J. Clin. Nutr. 2024, 79, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Cane, R.M.; Keita, Y.; Lambo, L.; Pambo, E.; Gonçalves, M.P.; Varandas, L.; Craveiro, I. Prevalence and factors related to anaemia in children aged 6–59 months attending a quaternary health facility in Maputo, Mozambique. Glob. Public Health 2023, 18, 2278876. [Google Scholar] [CrossRef] [PubMed]
- Muhajarine, N.; Adeyinka, D.A.; Matandalasse, M.; Chicumbe, S. Inequities in childhood anaemia at provincial borders in Mozambique: Cross-sectional study results from multilevel Bayesian analysis of 2018 National Malaria Indicator Survey. BMJ Open 2021, 11, e051395. [Google Scholar] [CrossRef]
- Ribeiro, L.C.-B.; Paixão, F.; Costa, F.; Correia, P. Migrant Pathology Screening in the Pediatric Population: A Five-Year Retrospective Study From a Level II Hospital. Cureus 2024, 16, e53770. [Google Scholar] [CrossRef]
- Akkermans, M.D.; van der Horst-Graat, J.M.; Eussen, S.R.; van Goudoever, J.B.; Brus, F. Iron and Vitamin D Deficiency in Healthy Young Children in Western Europe Despite Current Nutritional Recommendations. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 635–642. [Google Scholar] [CrossRef]
- van der Merwe, L.F.; Eussen, S.R. Iron status of young children in Europe. Am. J. Clin. Nutr. 2017, 106, 1663S–1671S. [Google Scholar] [CrossRef]
- Leal, L.P.; Filho, M.B.; de Lira, P.I.C.; Figueiroa, J.N.; Osório, M.M. Prevalence of anemia and associated factors in children aged 6-59 months in Pernambuco, Northeastern Brazil. Rev. Saude Publica 2011, 45, 457–466. [Google Scholar] [CrossRef]
- Aheto, J.M.K.; Alhassan, Y.; Puplampu, A.E.; Boglo, J.K.; Sedzro, K.M. Anemia prevalence and its predictors among children under-five years in Ghana. A multilevel analysis of the cross-sectional 2019 Ghana Malaria Indicator Survey. Health Sci. Rep. 2023, 6, e1643. [Google Scholar] [CrossRef]
- Belachew, A.; Tewabe, T. Under-five anemia and its associated factors with dietary diversity, food security, stunted, and deworming in Ethiopia: Systematic review and meta-analysis. Syst. Rev. 2020, 9, 31. [Google Scholar] [CrossRef]
- Tadesse, S.E.; Zerga, A.A.; Mekonnen, T.C.; Tadesse, A.W.; Hussien, F.M.; Feleke, Y.W.; Anagaw, M.Y.; Ayele, F.Y.; Toma, A. Burden and Determinants of Anemia among Under-Five Children in Africa: Systematic Review and Meta-Analysis. Anemia 2022, 2022, 1382940. [Google Scholar] [CrossRef]
- Mboya, I.B.; Mamseri, R.; Leyaro, B.J.; George, J.; Msuya, S.E.; Mgongo, M. Prevalence and factors associated with anemia among children under five years of age in Rombo district, Kilimanjaro region, Northern Tanzania. F1000Research 2023, 9, 1102. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Torres, V.; Torres, N.; Davis, J.A.; Corrales-Medina, F.F. Anemia and Associated Risk Factors in Pediatric Patients. Pediatr. Health Med. Ther. 2023, 14, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Sunardi, D.; Bardosono, S.; Basrowi, R.W.; Wasito, E.; Vandenplas, Y. Dietary Determinants of Anemia in Children Aged 6–36 Months: A Cross-Sectional Study in Indonesia. Nutrients 2021, 13, 2397. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.N.; Madeira, S.; Sobral, M.A.; Delgadinho, G. Hemoglobinopatias em Portugal e a intervenção do médico de família. Rev. Port. Med. Geral E Familiar 2016, 32, 416–424. [Google Scholar] [CrossRef]
- Estrela, P. A saúde dos imigrantes em Portugal. Rev. Port. Clínica Geral 2009, 25, 45–55. [Google Scholar] [CrossRef]
- Raju, A.A.; Boddu, A.B.; Raju, D.S.S.K.; Surabhi, U.S. The prevalence and predictors of iron deficiency anemia in toddlers: A population-based study. J. Adv. Med. Pharm. 2023, 6, 648–651. [Google Scholar]
- Omer, A.; Hailu, D.; Nigusse, G.; Mulugeta, A. Magnitude and morphological types of anemia differ by age among under five children: A facility-based study. Heliyon 2022, 8, e10494. [Google Scholar] [CrossRef]
- Fatima, T.; Faridi, M.M.A.; Srivastava, G. Iron status of exclusively breastfed low-birth-weight infants born to anemic mothers and effect of maternal iron supplementation for 3 versus 6 months: A randomized double-blind placebo control trial. Front. Pediatr. 2022, 10, 880431. [Google Scholar] [CrossRef]
- Meinzen-Derr, J.K.; Guerrero, M.L.; Altaye, M.; Ortega-Gallegos, H.; Ruiz-Palacios, G.M.; Morrow, A.L. Risk of Infant Anemia Is Associated with Exclusive Breast-Feeding and Maternal Anemia in a Mexican Cohort. J. Nutr. 2006, 136, 452–458. [Google Scholar] [CrossRef]
- Caldwell, A.R.; Krause, E.K. Mealtime behaviours of young children with sensory food aversions: An observational study. Aust. Occup. Ther. J. 2021, 68, 336–344. [Google Scholar] [CrossRef]
Age Group | Anemia Status | Hemoglobin (Hb) Level (g/dL) |
---|---|---|
6–23 months | Not anemic | ≥10.5 |
Mild anemia | 9.5–10.4 | |
Moderate anemia | 7.0–9.4 | |
Severe anemia | <7.0 | |
24 months to 5 years | Not anemic | >11.4 |
Borderline/pre-anemic | 11.0–11.4 | |
Mild anemia | 10.0–10.9 | |
Moderate anemia | 7.0–9.9 | |
Severe anemia | <7.0 |
Parameter | Age Group | Classification | Cut-Off/Range |
---|---|---|---|
MCV (fL) | 6–23 months | Microcytic | <70 |
Normocytic | 70–86 | ||
Macrocytic | >86 | ||
24 months–5 years | Microcytic | <75 | |
Normocytic | 75–87 | ||
Macrocytic | >87 | ||
Hematocrit (%) | 6–23 months | Not anemic | 33.0–38.0 |
Anemic | <33.0 | ||
24 months–5 years | Not anemic | 34.0–40.0 | |
Anemic | <34.0 | ||
Serum iron (mcg/dL) | All ages * | Not anemic | 50.0–120.0 |
Pre-anemic stage | 30.0–50.0 | ||
Anemic | <30.0 | ||
Ferritin (ng/mL) | All ages * | Not anemic | >30.0 |
Iron deficiency anemia | 12.0–30.0 | ||
Risk of iron overload | >500.0 | ||
Notes | [28,29,52,53,54,55,56,57,58,59,60] | ||
(*) Although serum iron levels may show minor physiological variations with age in children under five, in this study, standardized cut-offs were applied across the 6 months to 5 years group for consistency [59,60]. |
Characteristic (n = 74) | Categories | N | % |
---|---|---|---|
Sex | Male | 42 | 56.8 |
Female | 32 | 43.2 | |
Child’s age | 6 months–23 months | 28 | 37.8 |
24 months–5 years | 46 | 62.2 | |
Country of residence | Portugal | 73 | 98.6 |
Cape Verde | 1 | 1.4 | |
Region of residence | Metropolitan Lisbon Area (Greater Lisbon) | 61 | 82.4 |
Other regions (Setúbal peninsula, Alentejo, Madeira, West and Tagus Valley, etc.) | 13 | 17.6 | |
Caregiver’s Degree of Kinship | Mother | 63 | 85.1 |
Father | 11 | 14.9 | |
Caregiver’s Level of Education | Basic/Primary or Secondary Level | 41 | 55.4 |
Technical or Higher education (bachelor’s, master’s, doctorate) | 22 | 29.7 | |
Other | 11 | 14.9 | |
Country of origin of the child’s mother | Portugal | 20 | 29.9 |
CPLP | 32 | 47.8 | |
Other countries | 15 | 22.4 | |
Mother’s occupation (by role) | Specialized Intellectual and scientific roles | 5 | 12.2 |
Administrative, Managerial, or Support roles | 36 | 87.8 | |
Country of origin of the child’s father | Portugal | 18 | 34.6 |
Other countries | 34 | 65.4 | |
Father’s occupation (by role) | Administrative, Managerial, or Support roles | 18 | 45.0 |
Other roles | 22 | 55.0 | |
Notes: |
| ||
| |||
|
Characteristic | Category | Total with Anemia (N = 69) | 6–23 Months 1 (n = 26) | 24 Months–5 Years 2 (n = 43) |
---|---|---|---|---|
Sex | Male | 38 (55.1%) | 12 (46.2%) | 26 (60.5%) |
Female | 31 (44.9%) | 14 (53.8%) | 17 (39.5%) | |
Region of residence | Metropolitan Lisbon Area (Greater Lisbon) | 57 (82.6%) | 24 (92.3%) | 33 (76.7%) |
Other regions (Setúbal peninsula, Alentejo, Madeira, West and Tagus Valley, etc.) | 12 (17.4%) | 2 (7.7%) | 10 (23.3%) | |
Caregiver’s Degree of Kinship | Mother | 58 (84.1%) | 21 (80.8%) | 37 (86.0%) |
Father | 11 (15.9%) | 5 (19.2%) | 6 (14.0%) | |
Caregiver’s Level of Education | Basic/Primary or Secondary Level | 40 (58.0%) | 12 (46.2%) | 28 (65.1%) |
Technical or Higher education (bachelor’s, master’s, doctorate) | 19 (27.5%) | 11 (42.3%) | 8 (18.6%) | |
Other | 10 (14.5%) | 3 (11.5%) | 7 (16.3%) | |
Country of origin of the child’s mother | Portugal | 18 (29.0%) | 9 (36.0%) | 9 (24.3%) |
CPLP | 30 (48.4%) | 9 (36.0%) | 21 (56.8%) | |
Other countries | 14 (22.6%) | 7 (28.0%) | 7 (18.9%) | |
Mother’s occupation (by role) | Specialized Intellectual and scientific roles | 3 (8.3%) | 3 (18.8%) | 0 (0.0%) |
Administrative, Managerial, or Support roles | 33 (91.7%) | 13 (81.3%) | 20 (100.0%) | |
Country of origin of the child’s father | Portugal | 15 (31.9%) | 6 (30.0%) | 9 (33.3%) |
Other countries | 32 (68.1%) | 14 (70.0%) | 18 (66.7%) | |
Father’s occupation (by role) | Administrative, Managerial, or Support roles | 16 (45.7%) | 5 (33.3%) | 11 (55.0%) |
Other roles | 19 (54.3%) | 10 (66.7%) | 9 (45.0%) | |
Notes: | 1 Hb < 10.5 g/dL—anemic 2 Hb ≤ 11.4 g/dL—anemic or at risk of anemia | |||
| ||||
| ||||
|
Characteristic | Category | Total with Anemia * (N = 69) | 6–23 Months a (n = 29) | 24 Months–5 Years b (n = 43) |
---|---|---|---|---|
Nutritional characteristics | ||||
Exclusive breastfeeding history | Yes (Past/Present) c | 50 (82.0%) | 20 (83.3%) | 30 (81.1%) |
No | 11 (18.0%) | 4 (16.7%) | 7 (18.9%) | |
History of complementary feeding | Yes (Past/Present) d | 59 (85.5%) | 24 (92.3%) | 35 (81.4%) |
No | 10 (14.5%) | 2 (7.7%) | 8 (18.6%) | |
History of food selectivity behavior | Yes e | 11 (15.9%) | 2 (7.7%) | 9 (20.9%) |
No | 58 (84.1%) | 24 (92.3%) | 34 (79.1%) | |
Dietary Diversity Score (DDS) f | Adequate (DDS ≥ 4) | 56 (81.2%) | 23 (88.5%) | 33 (76.7%) |
Inadequate (DDS <4) | 13 (18.8%) | 3 (11.5%) | 10 (23.3%) | |
Supplements intake (post-anemia diagnosis) g | Yes | 35 (50.7%) | 12 (46.2%) | 23 (53.5%) |
No | 34 (49.3%) | 14 (53.8%) | 20 (46.5%) | |
Other characteristics | ||||
Weight percentile h | Adequate for age | 27 (87.1%) | 14 (93.3%) | 13 (81.3%) |
Inadequate for age | 4 (12.9%) | 1 (6.7%) | 3 (18.8%) | |
C reactive protein (CRP) | Normal (CRP ≤ 5.0 mg/L) | 28 (65.1%) | 8 (47.1%) | 20 (76.9%) |
High (CRP > 5.0 mg/L) | 15 (34.9%) | 9 (52.9%) | 6 (23.1%) | |
Bilirubin | Normal (0.30–1.20 mg/dL) | 10 (90.9%) | 2 (66.7%) | 8 (100.0%) |
Elevated (>1.20 mg/dL) | 1 (9.1%) | 1 (33.3%) | 0 (0.0%) | |
Glucose | Normal (60–180 mg/dL) | 18 (100.0%) | 5 (100.0%) | 13 (100.0%) |
Urea | Uremia (Blood urea> 36.0 mg/dL) | 5 (14.3%) | 1 (7.7%) | 4 (18.2%) |
Normal (5.0–36.0 mg/dL) | 30 (85.7%) | 12 (92.3%) | 18 (81.8%) | |
Previous hospitalization | Yes | 23 (34.3%) | 9 (36.0%) | 14 (33.3%) |
No | 44 (65.7%) | 16 (64.0%) | 28 (66.7%) | |
Notes | a Hb < 10.5 g/dL—anemic. b Hb ≤ 11.4 g/dL—anemic or at risk of anemia. c Refers to children who consumed only mother’s milk or formula milk up until 6 months of age (inclusively). d Refers to children who initiated complementary feeding at 6 months of age. e Refers to children whose mothers reported a history of food selectivity behavior (e.g., children who eat “normally” at kindergarten or school but refuse to eat the same foods at home), refusal to eat certain types of food (such as meat), or vomiting after consuming certain types of food (e.g., due to irritability or irritated behavior, abdominal pain, or an unspecified reason. f Dietary diversity score (DDS): number of food groups consumed during the previous day. A DDS ≥ 4 was considered “adequate”, and a DDS < 4 was considered “inadequate”. g Refers to iron or nutritional supplements intake after confirmation of anemia diagnosis during the period of the study. h Based on World Health Organization percentiles. Inadequate for age: percentile <3 (low weight for age) or percentile > 97 (high weight for age). (*) The number of cases may vary across categories due to missing responses for some variables. Percentages are calculated based on the number of valid responses. |
Characteristic | Total Anemic or at Risk of Anemia * (N = 65) | 6–23 Months (n = 23) | 24–59 Months (n = 42) |
---|---|---|---|
Mean corpuscular volume (MCV) (fL) a | |||
Microcytic | 41 (63.1%) | 9 (39.1%) | 32 (76.2%) |
Normocytic | 21 (32.3%) | 13 (56.5%) | 8 (19.0%) |
Macrocytic | 3 (4.6%) | 1 (4.3%) | 2 (4.8%) |
Hematocrit (%)b | |||
Normal | 16 (24.6%) | 5 (21.7%) | 11 (26.2%) |
Anemic | 49 (75.4%) | 18 (78.3%) | 31 (73.8%) |
Serum iron (mcg/dL)c | |||
Not anemic | 7 (28.0%) | 2 (28.6%) | 5 (27.8%) |
Pre-anemic stage | 8 (32.0%) | 1 (14.3%) | 7 (38.9%) |
Anemic | 10 (40.0%) | 4 (57.1%) | 6 (33.3%) |
Ferritin levels (ng/mL) d | |||
Not anemic | 12 (66.7%) | 6 (85.7%) | 6 (54.5%) |
Iron deficiency anemia | 4 (22.2%) | 0 (0.0%) | 4 (36.4%) |
Risk of iron overload | 2 (11.1%) | 1 (14.3%) | 1 (9.1%) |
Sickle cell trait i | |||
No | 6 (66.7%) | 3 (100.0%) | 3 (50.0%) |
Yes | 3 (33.3%) | 0 (0.0%) | 3 (50.0%) |
Notes: | ᵃ For children aged 6–23 months, microcytic is defined as MCV < 70 fL, normocytic as 70–86 fL, and macrocytic as >86 fL. For children aged 24 months–5 years, microcytic is <75 fL, normocytic is 75–87 fL, and macrocytic is >87 fL. ᵇ Hematocrit levels below 33.0% (6–23 months) or 34.0% (24–59 months) are considered anemic. ᶜ Based on serum iron concentrations: not anemic = 50–120 mcg/dL; pre-anemic stage = 30–50 mcg/dL; anemic < 30 mcg/dL. ᵈ Based on ferritin levels: not anemic > 30 ng/mL; iron deficiency anemia = 12–30 ng/mL; risk of iron overload > 500 ng/mL. i Sickle cell trait was identified through hemoglobin electrophoresis. (*) Total N may vary due to missing data. Percentages are based on the number of valid responses per variable. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maulide Cane, R.; Chicumbe, S.; Keita, Y.; Casimiro, A.; Saraiva, B.M.; Vasconcelos, J.; Vaz, B.L.; Sousa, A.; Cabral, M.; Caetano, F.B.; et al. Characteristics of Anemia in Children Aged 6 Months to 5 Years Attending External Consultations at a Pediatric Hospital in Lisbon, Portugal. Children 2025, 12, 832. https://doi.org/10.3390/children12070832
Maulide Cane R, Chicumbe S, Keita Y, Casimiro A, Saraiva BM, Vasconcelos J, Vaz BL, Sousa A, Cabral M, Caetano FB, et al. Characteristics of Anemia in Children Aged 6 Months to 5 Years Attending External Consultations at a Pediatric Hospital in Lisbon, Portugal. Children. 2025; 12(7):832. https://doi.org/10.3390/children12070832
Chicago/Turabian StyleMaulide Cane, Réka, Sérgio Chicumbe, Youssouf Keita, Anaxore Casimiro, Bárbara Martins Saraiva, Joana Vasconcelos, Beatriz Luzio Vaz, Afonso Sousa, Mafalda Cabral, Francisco Branco Caetano, and et al. 2025. "Characteristics of Anemia in Children Aged 6 Months to 5 Years Attending External Consultations at a Pediatric Hospital in Lisbon, Portugal" Children 12, no. 7: 832. https://doi.org/10.3390/children12070832
APA StyleMaulide Cane, R., Chicumbe, S., Keita, Y., Casimiro, A., Saraiva, B. M., Vasconcelos, J., Vaz, B. L., Sousa, A., Cabral, M., Caetano, F. B., Varandas, L., & Craveiro, I. (2025). Characteristics of Anemia in Children Aged 6 Months to 5 Years Attending External Consultations at a Pediatric Hospital in Lisbon, Portugal. Children, 12(7), 832. https://doi.org/10.3390/children12070832