From Inactivity to Activity: Passive Wheelchair Bike Rides Increase Trapezius Muscle Activity in Non-Ambulant Youth with Disabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Sample Size
2.4. Passive Wheelchair Bike Ride Intervention
2.5. Outcome Measures
2.5.1. Muscle Activity Measurement
2.5.2. Cardiorespiratory Response Measurement
2.5.3. Autonomic Nervous System Response Measurement
2.6. Data Reduction and Statistical Analysis
3. Results
3.1. Participants
3.2. Muscle Activity
3.3. Cardiorespiratory Response
3.4. Autonomic Nervous System Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GMFCS | Gross Motor Function Classification System |
WHO | World Health Organization |
VO2 | Oxygen consumption |
HRV | Heart rate variability |
sEMG | Surface electromyography |
ICF-CY | International classification of functioning, disability, and health for children and youth |
ICF | International Classification of Functioning, Disability, and health |
LUT | Left upper trapezius |
RUT | Right upper trapezius |
LLT | Left lower trapezius |
RLT | Right lower trapezius |
SENIAM | Surface Electromyography for the non-invasive assessment of muscles |
HR | Heart rate |
SDNN | Standard deviation of normal-to-normal intervals |
RMSSD | Root mean square of the successive differences |
STDHR | Standard deviation of the heart rate |
SPSS | Statistical Package for Social Sciences |
References
- Palisano, R.J.; Rosenbaum, P.; Bartlett, D.; Livingston, M.H. Content validity of the expanded and revised Gross Motor Function Classification System. Dev. Med. Child Neurol. 2008, 50, 744–750. [Google Scholar] [CrossRef]
- Haak, P.; Lenski, M.; Hidecker, M.J.; Li, M.; Paneth, N. Cerebral palsy and aging. Dev. Med. Child Neurol. 2009, 51 (Suppl. 4), 16–23. [Google Scholar] [CrossRef]
- Jackman, M.; Sakzewski, L.; Morgan, C.; Boyd, R.N.; Brennan, S.E.; Langdon, K.; Toovey, R.A.M.; Greaves, S.; Thorley, M.; Novak, I. Interventions to improve physical function for children and young people with cerebral palsy: International clinical practice guideline. Dev. Med. Child Neurol. 2022, 64, 536–549. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Martin Ginis, K.A.; van der Ploeg, H.P.; Foster, C.; Lai, B.; McBride, C.B.; Ng, K.; Pratt, M.; Shirazipour, C.H.; Smith, B.; Vásquez, P.M.; et al. Participation of people living with disabilities in physical activity: A global perspective. Lancet 2021, 398, 443–455. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Rosenbaum, P.; Gorter, J.W. The ’F-words’ in childhood disability: I swear this is how we should think! Child Care Health Dev. 2012, 38, 457–463. [Google Scholar] [CrossRef]
- Rosenbaum, P.L. The F-words for child development: Functioning, family, fitness, fun, friends, and future. Dev. Med. Child Neurol. 2022, 64, 141–142. [Google Scholar] [CrossRef]
- Verschuren, O.; Peterson, M.D.; Balemans, A.C.; Hurvitz, E.A. Exercise and physical activity recommendations for people with cerebral palsy. Dev. Med. Child Neurol. 2016, 58, 798–808. [Google Scholar] [CrossRef]
- Butler, J.M.; Scianni, A.; Ada, L. Effect of cardiorespiratory training on aerobic fitness and carryover to activity in children with cerebral palsy: A systematic review. Int. J. Rehabil. Res. 2010, 33, 97–103. [Google Scholar] [CrossRef]
- Dodd, K.J.; Taylor, N.F.; Damiano, D.L. A systematic review of the effectiveness of strength-training programs for people with cerebral palsy. Arch. Phys. Med. Rehabil. 2002, 83, 1157–1164. [Google Scholar] [CrossRef]
- Rostron, Z.P.; Green, R.A.; Kingsley, M.; Zacharias, A. Associations Between Measures of Physical Activity and Muscle Size and Strength: A Systematic Review. Arch. Rehabil. Res. Clin. Transl. 2021, 3, 100124. [Google Scholar] [CrossRef]
- Shephard, R.J.; Allen, C.; Benade, A.J.; Davies, C.T.; Di Prampero, P.E.; Hedman, R.; Merriman, J.E.; Myhre, K.; Simmons, R. The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull. World Health Organ. 1968, 38, 757–764. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Maltais, D.B.; Wiart, L.; Fowler, E.; Verschuren, O.; Damiano, D.L. Health-related physical fitness for children with cerebral palsy. J. Child. Neurol. 2014, 29, 1091–1100. [Google Scholar] [CrossRef]
- Bawa, A.; Banitsas, K. Design Validation of a Low-Cost EMG Sensor Compared to a Commercial-Based System for Measuring Muscle Activity and Fatigue. Sensors 2022, 22, 5799. [Google Scholar] [CrossRef]
- Mol-Bakker, A.; Van der Putten, A.A.J.; Krijnen, W.P.; Waninge, A. Physical health conditions in young children with profound intellectual and multiple disabilities: The prevalence and associations between these conditions. Child Care Health Dev. 2024, 50, e13252. [Google Scholar] [CrossRef]
- Sartori, R.; Romanello, V.; Sandri, M. Mechanisms of muscle atrophy and hypertrophy: Implications in health and disease. Nat. Commun. 2021, 12, 330. [Google Scholar] [CrossRef]
- Gurel, N.Z.; Carek, A.M.; Inan, O.T.; Levantsevych, O.; Abdelhadi, N.; Hammadah, M.; O’Neal, W.T.; Kelli, H.; Wilmot, K.; Ward, L.; et al. Comparison of autonomic stress reactivity in young healthy versus aging subjects with heart disease. PLoS ONE 2019, 14, e0216278. [Google Scholar] [CrossRef]
- Burlacu, A.; Brinza, C.; Popa, I.V.; Covic, A.; Floria, M. Influencing Cardiovascular Outcomes through Heart Rate Variability Modulation: A Systematic Review. Diagnostics 2021, 11, 2198. [Google Scholar] [CrossRef]
- Lauruschkus, K.; Holmberg, R.; Tornberg, A.B. “It is something that gives us hope”: Lived experience among parents to children with cerebral palsy who are non-ambulant of the phenomenon physical activity, with or without the use of a novel dynamic standing device. Front. Rehabil. Sci. 2023, 4, 1139847. [Google Scholar] [CrossRef]
- Williams, H.; Pountney, T. Effects of a static bicycling programme on the functional ability of young people with cerebral palsy who are non-ambulant. Dev. Med. Child Neurol. 2007, 49, 522–527. [Google Scholar] [CrossRef]
- Bryant, E.; Pountney, T.; Williams, H.; Edelman, N. Can a six-week exercise intervention improve gross motor function for non-ambulant children with cerebral palsy? A pilot randomized controlled trial. Clin. Rehabil. 2013, 27, 150–159. [Google Scholar] [CrossRef]
- Thevarajah, A.; Wallen, M.; Imms, C.; Lonsdale, C.; Carey, J.J.; Froude, E.H. Impact of adapted bicycle riding on outcomes for children and adolescents with disabilities: A systematic review. Dev. Med. Child Neurol. 2023, 65, 456–468. [Google Scholar] [CrossRef]
- Fitzsimmons, S. Easy rider wheelchair biking. A nursing-recreation therapy clinical trial for the treatment of depression. J. Gerontol. Nurs. 2001, 27, 14–23. [Google Scholar] [CrossRef]
- Shevell, M.I.; Dagenais, L.; Hall, N. Comorbidities in cerebral palsy and their relationship to neurologic subtype and GMFCS level. Neurology 2009, 72, 2090–2096. [Google Scholar] [CrossRef]
- Verschuren, O.; Peterson, M.D.; Leferink, S.; Darrah, J. Muscle activation and energy-requirements for varying postures in children and adolescents with cerebral palsy. J. Pediatr. 2014, 165, 1011–1016. [Google Scholar] [CrossRef]
- Oddsson, L.I.; Giphart, J.E.; Buijs, R.J.; Roy, S.H.; Taylor, H.P.; De Luca, C.J. Development of new protocols and analysis procedures for the assessment of LBP by surface EMG techniques. J. Rehabil. Res. Dev. 1997, 34, 415–426. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Ho, P.C.; Chang, C.H.; Granlund, M.; Hwang, A.W. The Relationships Between Capacity and Performance in Youths with Cerebral Palsy Differ for GMFCS Levels. Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2017, 29, 23–29. [Google Scholar] [CrossRef]
- Volkan Yazici, M.; Cobanoglu, G.; Yazici, G.; Elbasan, B. Effects of progressive functional ankle exercises in spastic cerebral palsy, plantarflexors versus dorsiflexors: A randomized trial. Turk. J. Med. Sci. 2023, 53, 1166–1177. [Google Scholar] [CrossRef]
- Pienciak-Siewert, A.; Horan, D.P.; Ahmed, A.A. Role of muscle coactivation in adaptation of standing posture during arm reaching. J. Neurophysiol. 2020, 123, 529–547. [Google Scholar] [CrossRef]
- Dewar, R.; Love, S.; Johnston, L.M. Exercise interventions improve postural control in children with cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2015, 57, 504–520. [Google Scholar] [CrossRef]
- Sanchez, J.; Monod, H.; Chabaud, F. Effects of dynamic, static and combined work on heart rate and oxygen consumption. Ergonomics 1979, 22, 935–943. [Google Scholar] [CrossRef]
- Van den Berg-Emons, R.J.; Van Baak, M.A.; Speth, L.; Saris, W.H. Physical training of school children with spastic cerebral palsy: Effects on daily activity, fat mass and fitness. Int. J. Rehabil. Res. 1998, 21, 179–194. [Google Scholar] [CrossRef]
- Scribbans, T.D.; Vecsey, S.; Hankinson, P.B.; Foster, W.S.; Gurd, B.J. The Effect of Training Intensity on VO(2)max in Young Healthy Adults: A Meta-Regression and Meta-Analysis. Int. J. Exerc. Sci. 2016, 9, 230–247. [Google Scholar] [CrossRef]
- Kholod, H.; Jamil, A.; Katz-Leurer, M. The associations between motor ability, walking activity and heart rate and heart rate variability parameters among children with cerebral palsy and typically developed controls. NeuroRehabilitation 2013, 33, 113–119. [Google Scholar] [CrossRef]
- Gasior, J.S.; Zamuner, A.R.; Silva, L.E.V.; Williams, C.A.; Baranowski, R.; Sacha, J.; Machura, P.; Kochman, W.; Werner, B. Heart Rate Variability in Children and Adolescents with Cerebral Palsy-A Systematic Literature Review. J. Clin. Med. 2020, 9, 1141. [Google Scholar] [CrossRef]
- Zamunér, A.R.; Cunha, A.B.; da Silva, E.; Negri, A.P.; Tudella, E.; Moreno, M.A. The influence of motor impairment on autonomic heart rate modulation among children with cerebral palsy. Res. Dev. Disabil. 2011, 32, 217–221. [Google Scholar] [CrossRef]
- Israeli-Mendlovic, H.; Mendlovic, J.; Katz-Leurer, M. Heart rate and heart rate variability parameters at rest, during activity and passive standing among children with cerebral palsy GMFCS IV-V. Dev. Neurorehabilit. 2014, 17, 398–402. [Google Scholar] [CrossRef]
- Amichai, T.; Eylon, S.; Berger, I.; Katz-Leurer, M. The impact of breathing rate on the cardiac autonomic dynamics among children with cerebral palsy compared to typically developed controls. Dev. Neurorehabilit. 2019, 22, 98–103. [Google Scholar] [CrossRef]
- Kerppers, I.I.; Arisawa, E.A.; Oliveira, L.V.; Sampaio, L.M.; Oliveira, C.S. Heart rate variability in individuals with cerebral palsy. Arch. Med. Sci. 2009, 5, 45–50. [Google Scholar]
- Katz-Leurer, M.; Amichai, T. Heart rate variability in children with cerebral palsy. Dev. Med. Child Neurol. 2019, 61, 730–731. [Google Scholar] [CrossRef]
- Buchheit, M.; Platat, C.; Oujaa, M.; Simon, C. Habitual physical activity, physical fitness and heart rate variability in preadolescents. Int. J. Sports Med. 2007, 28, 204–210. [Google Scholar] [CrossRef]
Variables (mean ± SD) | Total | GMFCS IV | GMFCS V |
---|---|---|---|
Sex (n, % females) | 24, 50% | 9, 66% | 15, 40% |
Age (years) | 14.42 ± 5.09 | 14.56 ± 5.43 | 14.33 ± 5.07 |
Height (cm) | 140.92 ± 19.41 | 139.89 ± 18.84 | 141.53 ± 20.37 |
Weight (kg) | 36.45 ± 13.80 | 34.34 ± 14.66 | 37.71 ± 13.62 |
Cognitive impairment Moderate (n, %) Severe (n, %) | 7, 29% 17, 71% | 3, 33% 6, 66% | 4, 27% 11, 73% |
Trapezius Activity Mean (n = 24) | Baseline (Resting Condition) | During Activity (Passive Wheelchair Bike Ride) | p-Value | Group-by-Time | Increase from Resting (Δ%) |
---|---|---|---|---|---|
Right lower (µW) (mean ± SD) [median (1st–3rd quartile)] | 32.67 ± 31.54 17.77 (11.60–47.45) | 42.57 ± 28.31 35.47 (21.79–55.06) | 0.040 | 0.682 | 112.49 |
Left lower (µW) (mean ± SD) [median (1st–3rd quartile)] | 26.12 ± 23.38 18.55 (10.52–27.63) | 38.13 ± 32.07 30.06 (17.06–44.10) | 0.063 | 0.201 | 100.66 |
Left upper (µW) (mean ± SD) [median (1st–3rd quartile)] | 22.38 ± 17.00 17.85 (10.90–26.72) | 40.58 ± 42.40 31.08 (18.08–42.19) | 0.008 | 0.277 | 141.89 |
Right upper (µW) (n with data = 23) (mean ± SD) [median (1st–3rd quartile)] | 22.33 ± 22.18 15.56 (7.60–27.56) | 42.12 ± 59.18 26.36 (12.24–29.08) | 0.190 | 0.511 | 96.68 |
Trapezius Activity Peak (n = 24) | Baseline (Resting Condition) | During Activity (Passive Wheelchair Bike Ride) | Group-by-Time | p-Value |
---|---|---|---|---|
Right lower (µW) (mean ± SD) [median (1st–3rd quartile)] | 186.93 ± 202.50 128.82 (66.26–238.89) | 338.26 ± 198.99 327.98 (203.77–440.57) | 0.512 | 0.050 |
Left lower (µW) (mean ± SD) [median (1st–3rd quartile)] | 164.40 ± 126.15 116.82 (64.77–239.86) | 267.14 ± 186.60 243.09 (126.39–419.04) | 0.918 | 0.038 |
Left upper (µW) (mean ± SD) [median (1st–3rd quartile)] | 161.70 ± 130.13 110.52 (69.95–244.69) | 287.35 ± 187.93 267.64 (188.09–315.02) | 0.739 | 0.001 |
Right upper (µW) (n with data base = 23) (mean ± SD) [median (1st–3rd quartile)] | 234.07 ± 258.72 96.81 (62.80–304.75) | 297.67 ± 196.99 271.81 (151.78–349.20) | 0.648 | 0.107 |
Cardiorespiratory Response (n = 9) | Baseline (Resting Condition) | During Activity (Passive Wheelchair Bike Ride) | p-Value | Increase from Resting (Δ%) |
---|---|---|---|---|
VO2 (mL/kg.min (n with data = 6) (mean ± SD) [median (1st–3rd quartile)] | 4.30 ± 1.18 4.06 (3.34–4.49) | 5.56 ± 2.21 4.92 (3.49–5.74) | 0.253 | 33.94 |
HR (bpm) (n with data = 9) (mean ± SD) [median (1st–3rd quartile)] | 101.62 ± 13.42 101.62 (88.37–110.41) | 111.57 ± 25.24 107.59 (97.12–116,56) | 0.126 | 9.05 |
Rf (breaths/min) (n with data = 9) (mean ± SD) [median (1st–3rd quartile)] | 21.10 ± 2.70 20.07 (19.24–21.10) | 25.50 ± 5.53 24.99 (22.39–27.12) | 0.124 | 24.39 |
Tv[L] (n with data = 9) (mean ± SD) [median (1st–3rd quartile)] | 0.41 ± 0.07 0.41 (0.33–0.43) | 0.46 ± 0.14 0.44 (0.34–0.48) | 0.274 | 15.73 |
Ve[L/min] (n with data = 9) (mean ± SD) [median (1st–3rd quartile)] | 8.53 ± 1.89 8.38 (6.95–8.59) | 12.03 ± 6.01 10.14 (8.58–12.03) | 0.160 | 47.96 |
EqO2 (mL/kg·min (n with data = 6) (mean ± SD) [median (1st–3rd quartile)] | 39.65 ± 13.48 37.09 (24.72–42.15) | 56.00 ± 37.49 39.55 (37.49–44.25) | 0.345 | 23.92 |
RR[ms] (n with data = 8) (mean ± SD) [median (1st–3rd quartile)] | 611.37 ± 96.77 587.47 (521.92–628.36) | 581.46 ± 141.84 545.28 (479.30–603.26) | 0.330 | −5.71 |
Autonomic Nervous System Response (n = 18) | Baseline (Resting Condition) | During Activity (Passive Wheelchair Bike Ride) | p-Value |
---|---|---|---|
RR (ms) (mean ± SD) [median (1st–3rd quartile)] | 568.41 ± 76.33 568.58 (516.29–595.29) | 651.72 ± 257.48 553.76 (510.66–745.43) | 0.286 |
SDNN (ms) (mean ± SD) [median (1st–3rd quartile)] | 31.08 ± 14.59 27.01 (19.00–44.89) | 48.19 ± 42.90 33.57 (24.92–52.23) | 0.157 |
HR (beats/min) (mean ± SD) [median (1st–3rd quartile)] | 107.95 ± 16.85 105.53 (100.79–116.21) | 100.64 ± 23.55 108.36 (80.65–117.50) | 0.252 |
STDHR (beats/min) (mean ± SD) [median (1st–3rd quartile)] | 5.92 ± 3.53 4.86 (3.86–7.60) | 11.24 ± 21.35 5.46 (4.95–7.66) | 0.044 |
Minimum HR (beats/min) (mean ± SD) [median (1st–3rd quartile)] | 85.62 ± 24.55 88.92 (81.77–100.02) | 79.84 ± 24.85 86.57 (65.83–97.65) | 0.616 |
Maximum HR (beats/min) (mean ± SD) [median (1st–3rd quartile)] | 133.56 ± 29.60 129.21 (112.52–138.19) | 144.99 ± 56.94 136.20 (107.84–151.64) | 0.267 |
RMSSD (ms) (mean ± SD) [median (1st–3rd quartile)] | 25.41 ± 13.37 24.44 (13.21–32.43) | 37.97 ± 25.68 31.15 (17.51–56.73) | 0.018 |
Autonomic Nervous System Response (n = 18) | Baseline (Resting Condition) | During activity (Passive Wheelchair Bike Ride) | p-Value |
---|---|---|---|
VLF Peak (Hz) (mean ± SD) [median (1st–3rd quartile)] | 0.04 ± 0.00 0.04 (0.03–0.04) | 0.03 ± 0.00 0.04 (0.03–0.04) | 0.620 |
Power (ms2) (mean ± SD) [median (1st–3rd quartile)] | 86.35 ± 75.32 65.32 (17.84–94.30) | 1123.68 ± 3068.60 71.28 (32.41–212.63) | 0.446 |
Power (%) (mean ± SD) [median (1st–3rd quartile)] | 11.54 ± 8.78 8.77 (4.57–15.35) | 13.49 ± 13.59 8.71 (7.56–14.48) | 0.948 |
LF Peak (Hz) (mean ± SD) [median (1st–3rd quartile)] | 0.07 ± 0.03 0.06 (0.05–0.08) | 0.08 ± 0.03 0.08 (0.05–0.11) | 0.193 |
Power (ms2) (mean ± SD) [median (1st–3rd quartile)] | 648.78 ± 699.86 353.01 (175.09–864.83) | 1650.84 ± 2994.47 509.04 (266.69–828.71) | 0.446 |
Power (%) (mean ± SD) [median (1st–3rd quartile)] | 56.87 ± 15.20 53.69 (45.78–66.60) | 55.84 ± 15.49 57.61 (47.58–72.53) | 0.806 |
HF Peak (Hz) (mean ± SD) [median (1st–3rd quartile)] | 0.23 ± 0.07 0.21 (0.16–0.28) | 0.22 ± 0.08 0.18 (0.16–0.29) | 1.000 |
Power (ms2) (mean ± SD) [median (1st–3rd quartile)] | 411.64 ± 377.85 273.00 (48.41–533.27) | 723.65 ± 906.27 299.53 (149.70–840.95) | 0.231 |
Power (%) (mean ± SD) [median (1st–3rd quartile)] | 31.55 ± 16.31 30.42 (16.43–45.52) | 30.62 ± 18.01 29.41 (12.84–42.64) | 0.871 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musso-Daury, L.; García-Chico, C.; López-Ortiz, S.; Peñín-Grandes, S.; del Pozo-González, D.; Sánchez-García, R.A.; Marín-Varela, L.; Matey-Rodríguez, C.; Santos-Lozano, A. From Inactivity to Activity: Passive Wheelchair Bike Rides Increase Trapezius Muscle Activity in Non-Ambulant Youth with Disabilities. Children 2025, 12, 792. https://doi.org/10.3390/children12060792
Musso-Daury L, García-Chico C, López-Ortiz S, Peñín-Grandes S, del Pozo-González D, Sánchez-García RA, Marín-Varela L, Matey-Rodríguez C, Santos-Lozano A. From Inactivity to Activity: Passive Wheelchair Bike Rides Increase Trapezius Muscle Activity in Non-Ambulant Youth with Disabilities. Children. 2025; 12(6):792. https://doi.org/10.3390/children12060792
Chicago/Turabian StyleMusso-Daury, Lisa, Celia García-Chico, Susana López-Ortiz, Saúl Peñín-Grandes, Diego del Pozo-González, Rosa Ana Sánchez-García, Laura Marín-Varela, Carmen Matey-Rodríguez, and Alejandro Santos-Lozano. 2025. "From Inactivity to Activity: Passive Wheelchair Bike Rides Increase Trapezius Muscle Activity in Non-Ambulant Youth with Disabilities" Children 12, no. 6: 792. https://doi.org/10.3390/children12060792
APA StyleMusso-Daury, L., García-Chico, C., López-Ortiz, S., Peñín-Grandes, S., del Pozo-González, D., Sánchez-García, R. A., Marín-Varela, L., Matey-Rodríguez, C., & Santos-Lozano, A. (2025). From Inactivity to Activity: Passive Wheelchair Bike Rides Increase Trapezius Muscle Activity in Non-Ambulant Youth with Disabilities. Children, 12(6), 792. https://doi.org/10.3390/children12060792