The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R. Strengths and limitations of genetic models of ADHD. Atten. Defic. Hyperact. Disord. 2010, 2, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Banaschewski, T.; Becker, K.; Scherag, S.; Franke, B.; Coghill, D. Molecular genetics of attention-deficit/hyperactivity disorder: An overview. Eur. Child. Adolesc. Psychiatry 2010, 19, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Solanto, M.V. Neuropsychopharmacological mechanisms of stimulant drug action in Attention-Deficit hyperactivity disorder: A review and integration. Behav. Brain Res. 1998, 94, 127–152. [Google Scholar] [CrossRef]
- Caballero, M.; Núñez, F.; Ahern, S.; Cuffí, M.L.; Carbonell, L.; Sánchez, S.; Fernández-Dueñas, V.; Ciruela, F. Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Neurosci. Lett. 2011, 494, 44–48. [Google Scholar] [CrossRef]
- Pliszka, S.R.; McCracken, J.T.; Maas, J.W. Catecholamines in attention-deficit hyperactivity disorder: Current perspectives. J. Am. Acad. Child. Adolesc. Psychiatry 1996, 35, 264–272. [Google Scholar] [CrossRef]
- Arnsten, A.F. Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn. Sci. 1998, 2, 436–447. [Google Scholar] [CrossRef]
- Arnsten, A.F.; Pliszka, S.R. Catecholamine influences on prefrontal cortical function: Relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol. Biochem. Behav. 2011, 99, 211–216. [Google Scholar] [CrossRef]
- Cho, S.C.; Kim, J.W.; Kim, B.N.; Hwang, J.W.; Park, M.; Kim, S.A.; Cho, D.Y.; Yoo, H.J.; Chung, U.S.; Son, J.W. Possible association of the Alpha-2A-Adrenergic receptor gene with response time variability in attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 957–963. [Google Scholar] [CrossRef]
- Lario, S.; Calls, J.; Cases, A.; Oriola, J.; Torras, A.; Rivera, F. Mspl identifies a biallelic polymorphism in the promoter region of the α2A-adrenergic receptor gene. Clin. Genet. 1997, 51, 129–130. [Google Scholar] [CrossRef]
- Bono, M.; Cases, A.; Oriola, J.; Calls, J.; Torras, A.; Rivera, F. Polymorphisms of the human alpha 2A-adrenergic receptor gene in a Catalan population: Description of a new polymorphism in the promoter region. Gene Geogr. 1996, 10, 151–159. [Google Scholar] [PubMed]
- Roman, T.; Schmitz, M.; Polanczyk, G.V.; Eizirik, M.; Rohde, L.A.; Hutz, M.H. Is the α-2A adrenergic receptor gene (ADRA2A) associated with Attention-Deficit/hyperactivity disorder? Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 120, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, M.; Denardin, D.; Silva, T.L.; Pianca, T.; Roman, T.; Hutz, M.H.; Faraone, S.V.; Rohde, L.A. Association between alpha-2a-adrenergic receptor gene and ADHD inattentive type. Biol. Psychiatry 2006, 60, 1028–1033. [Google Scholar] [CrossRef]
- Park, L.; Nigg, J.; Waldman, I.; Nummy, K.; Huang-Pollock, C.; Rappley, M.; Friderici, K. Association and linkage of α-2A adrenergic receptor gene polymorphisms with childhood ADHD. Mol. Psychiatry 2005, 10, 572–580. [Google Scholar] [CrossRef]
- Deupree, J.; Smith, S.D.; Kratochvil, C.J.; Bohac, D.; Ellis, C.R.; Polaha, J.; Bylund, D.; Team, U.C.A.R. Possible involvement of alpha-2A adrenergic receptors in attention deficit hyperactivity disorder: Radioligand binding and polymorphism studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141, 877–884. [Google Scholar] [CrossRef]
- Berridge, C.W.; Devilbiss, D.M.; Andrzejewski, M.E.; Arnsten, A.F.; Kelley, A.E.; Schmeichel, B.; Hamilton, C.; Spencer, R.C. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol. Psychiatry 2006, 60, 1111–1120. [Google Scholar] [CrossRef]
- Davids, E.; Zhang, K.; Kula, N.S.; Tarazi, F.I.; Baldessarini, R.J. Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J. Pharmacol. Exp. Ther. 2002, 301, 1097–1102. [Google Scholar] [CrossRef]
- Spencer, T.J.; Biederman, J.; Wilens, T.E.; Faraone, S.V. Novel treatments for Attention-Deficit/hyperactivity disorder in children. J. Clin. Psychiatry 2002, 63, 16–22. [Google Scholar]
- Davids, E.; Gastpar, M. Atomoxetine for the treatment of Attention-Deficit/hyperactivity disorder. Fortschr. Neurol. Psychiatr. 2004, 72, 586–591. [Google Scholar] [CrossRef]
- Kim, C.-H.; Hahn, M.K.; Joung, Y.; Anderson, S.L.; Steele, A.H.; Mazei-Robinson, M.S.; Gizer, I.; Teicher, M.H.; Cohen, B.M.; Robertson, D. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc. Natl. Acad. Sci. USA 2006, 103, 19164–19169. [Google Scholar] [CrossRef]
- Kollins, S.; Anastopoulos, A.D.; Lachiewicz, A.; FitzGerald, D.; Morrissey-Kane, E.; Garrett, M.; Keatts, S.; Ashley-Koch, A. SNPs in dopamine D2 receptor gene (DRD2) and norepinephrine transporter gene (NET) are associated with continuous performance task (CPT) phenotypes in ADHD children and their families. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hawi, Z.; Brookes, K.J.; Anney, R.; Bellgrove, M.; Franke, B.; Barry, E.; Chen, W.; Kuntsi, J.; Banaschewski, T. Replication of a rare protective allele in the noradrenaline transporter gene and ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-C.; Kim, J.-W.; Kim, B.-N.; Hwang, J.-W.; Park, M.; Kim, S.A.; Cho, D.-Y.; Yoo, H.-J.; Chung, U.-S.; Son, J.-W. No evidence of an association between norepinephrine transporter gene polymorphisms and attention deficit hyperactivity disorder: A Family-Based and Case-Control association study in a Korean sample. Neuropsychobiology 2008, 57, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Renner, T.; Nguyen, T.; Romanos, M.; Walitza, S.; Röser, C.; Reif, A.; Schäfer, H.; Warnke, A.; Gerlach, M.; Lesch, K. No evidence for association between a functional promoter variant of the Norepinephrine Transporter gene SLC6A2 and ADHD in a family-based sample. Atten. Defic. Hyperact. Disord. 2011, 3, 285–289. [Google Scholar] [CrossRef]
- Bobb, A.J.; Addington, A.M.; Sidransky, E.; Gornick, M.C.; Lerch, J.P.; Greenstein, D.K.; Clasen, L.S.; Sharp, W.S.; Inoff-Germain, G.; de Vrièze, F.W. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 134, 67–72. [Google Scholar] [CrossRef]
- Song, J.; Song, D.-H.; Jhung, K.; Cheon, K.-A. Norepinephrine transporter gene (SLC6A2) is involved with methylphenidate response in Korean children with attention deficit hyperactivity disorder. Int. Clin. Psychopharmacol. 2011, 26, 107–113. [Google Scholar] [CrossRef]
- Kim, B.-N.; Kim, J.-W.; Hong, S.B.; Cho, S.-C.; Shin, M.-S.; Yoo, H.-J. Possible association of norepinephrine Transporter-3081 (A/T) polymorphism with methylphenidate response in attention deficit hyperactivity disorder. Behav. Brain Funct. 2010, 6, 57. [Google Scholar] [CrossRef]
- Das, M.; Bhowmik, A.D.; Bhaduri, N.; Sarkar, K.; Ghosh, P.; Sinha, S.; Ray, A.; Chatterjee, A.; Mukhopadhyay, K. Role of gene–gene/gene–Environment interaction in the etiology of eastern Indian ADHD probands. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 577–587. [Google Scholar] [CrossRef]
- Roman, T.; Schmitz, M.; Polanczyk, G.; Eizirik, M.; Rohde, L.A.; Hutz, M.H. Attention-deficit hyperactivity disorder: A study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am. J. Med. Genet. 2001, 105, 471–478. [Google Scholar] [CrossRef]
- Carrasco, X.; Rothhammer, P.; Moraga, M.; Henríquez, H.; Aboitiz, F.; Rothhammer, F. Presence of DRD4/7R and DAT1/10R allele in Chilean family members with attention deficit hyperactivity disorder. Rev. Med. Chil. 2004, 132, 1047–1052. [Google Scholar] [CrossRef]
- Kaufman, J.; Birmaher, B.; Brent, D.; Rao, U.; Flynn, C.; Moreci, P.; Williamson, D.; Ryan, N. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. J. Am. Acad. Child. Adolesc. Psychiatry 1997, 36, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Cheon, K.A.; Kim, B.N.; Chang, S.A.; Yoo, H.J.; Kim, J.W.; Cho, S.C.; Seo, D.H.; Bae, M.O.; So, Y.K. The reliability and validity of kiddie-schedule for affective disorders and schizophrenia-present and lifetime version-Korean version (K-SADS-PL-K). Yonsei Med. J. 2004, 45, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.; DuPaul, G.J.; Power, T.J.; Anastopoulos, A.D.; Rogers-Adkinson, D.; Noll, M.-B.; Riccio, C. Assessing culturally different students for attention deficit hyperactivity disorder using behavior rating scales. J. Abnorm. Child. Psychol. 1998, 26, 187–198. [Google Scholar] [CrossRef]
- Greenberg, L.M.; Waldmant, I.D. Developmental normative data on the Test of Variables of Attention (TOVA™). J. Child. Psychol. Psychiatry 1993, 34, 1019–1030. [Google Scholar] [CrossRef]
- Cheon, K.-A.; Cho, D.-Y.; Koo, M.-S.; Song, D.-H.; Namkoong, K. Association between homozygosity of a G allele of the alpha-2a-adrenergic receptor gene and methylphenidate response in Korean children and adolescents with attention-deficit/hyperactivity disorder. Biol. Psychiatry 2009, 65, 564–570. [Google Scholar] [CrossRef]
- Kim, B.-N.; Cummins, T.D.; Kim, J.-W.; Bellgrove, M.A.; Hong, S.-B.; Song, S.-H.; Shin, M.-S.; Cho, S.-C.; Kim, J.-H.; Son, J.-W. Val/Val genotype of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with a better response to OROS-MPH in Korean ADHD children. Int. J. Neuropsychopharmacol. 2011, 14, 1399–1410. [Google Scholar] [CrossRef]
- van Hooijdonk, C.; Voulgaropoulou, S.; Podrzaj, L.; Wolvekamp, D.; van Amelsvoort, T.; Leibold, N. Noradrenergic gene variation shaping vulnerability and resilience by affecting mental health-related characteristics: A systematic review. Neurosci. Appl. 2024, 3, 104087. [Google Scholar] [CrossRef]
- Cho, S.-C.; Kim, J.-W.; Kim, H.-W.; Kim, B.-N.; Shin, M.-S.; Cho, D.-Y.; Jung, S.-W.; Chung, U.-S.; Son, J.-W. Effect of ADRA2A and BDNF gene–gene interaction on the continuous performance test phenotype. Psychiatr. Genet. 2011, 21, 132–135. [Google Scholar] [CrossRef]
- Qian, Q.-J.; Yang, L.; Wang, Y.-F.; Zhang, H.-B.; Guan, L.-L.; Chen, Y.; Ji, N.; Liu, L.; Faraone, S. Gene–gene interaction between COMT and MAOA potentially predicts the intelligence of attention-deficit hyperactivity disorder boys in China. Behav. Genet. 2010, 40, 357–365. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.-F.; Li, J.; Faraone, S.V. Association of norepinephrine transporter gene with methylphenidate response. J. Am. Acad. Child. Adolesc. Psychiatry 2004, 43, 1154–1158. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.W.; Lee, M.G.; Yook, K.-H.; Greenhill, L.L.; Fradin, K.N.; Hong, H.J. Lack of association between response of OROS-methylphenidate and norepinephrine transporter (SLC6A2) polymorphism in Korean ADHD. Psychiatry Res. 2011, 186, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, C.I.; Carballo, J.J.; Riveiro-Alvarez, R.; Soto-Insuga, V.; Rodrigo, M.; Mahillo-Fernandez, I.; Abad-Santos, F.; Dal-Ré, R.; Ayuso, C. Pharmacogenetics of methylphenidate in childhood attention-deficit/hyperactivity disorder: Long-term effects. Sci. Rep. 2017, 7, 10391. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhang, M.; Huang, Y.; Wang, X.; Jiao, J.; Huang, Y. Noradrenergic genes polymorphisms and response to methylphenidate in children with ADHD: A systematic review and meta-Analysis. Medicine 2021, 100, e27858. [Google Scholar] [CrossRef]
- Stein, M.A.; Waldman, I.D.; Sarampote, C.S.; Seymour, K.E.; Robb, A.S.; Conlon, C.; Kim, S.-J.; Cook, E.H. Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 2005, 30, 1374–1382. [Google Scholar] [CrossRef]
- Rapport, M.D.; Denney, C. Titrating methylphenidate in children with attention-deficit/hyperactivity disorder: Is body mass predictive of clinical response? J. Am. Acad. Child. Adolesc. Psychiatry 1997, 36, 523–530. [Google Scholar] [CrossRef]
- Sprague, R.L.; Sleator, E.K. Methylphenidate in hyperkinetic children: Differences in dose effects on learning and social behavior. Science 1977, 198, 1274–1276. [Google Scholar] [CrossRef]
11 * | 12 and 22 * | F or χ2 | p | |
---|---|---|---|---|
SLC6A2 rs998424 (N) | 45 | 38 | ||
Age (y, mean ± SD) | 8.69 ± 2.07 | 8.89 ± 1.96 | 0.49 | 0.64 b |
Sex | ||||
Male/female | 37/8 | 35/3 | 1.75 | 0.214 a |
Weight (kg, mean ± SD) | 34.14 ± 13.11 | 38.53 ± 1.80 | 0.00 | 0.13 b |
Subtype | 1.77 | 0.503 a | ||
ADHD-C | 29 | 29 | ||
ADHD-I | 15 | 8 | ||
ADHD-H | 1 | 1 | ||
ADRA2A rs553668 (N) | 26 | 57 | ||
Age (y, mean ± SD) | 9.00 ± 1.8 | 8.68 ± 2.1 | 0.30 | 0.51 b |
Sex | ||||
Male/female | 24/2 | 48/9 | 1.02 | 0.49 a |
Weight (kg, mean ± SD) | 38.59 ± 13.7 | 35.05 ± 12.0 | 0.79 | 0.38 b |
Subtype | 0.71 | 0.90 a | ||
ADHD-C | 18 | 40 | ||
ADHD-I | 8 | 15 | ||
ADHD-H | 0 | 1 |
Genotypes (N) | 1 b 13 | 2 b 12 | 3 b 30 | 4 b 24 | χ2 | p a |
---|---|---|---|---|---|---|
Visual CPT c | ||||||
Omission Error | 3.00 (0.00–32.00) | 1.00 (0.00–11.00) | 2.50 (0.00–30.00) | 3.50 (0.00–25.00) | 5.12 | 0.16 |
Commission Error | 16.00 (2.00–46.00) | 11.00 (0.00–42.00) | 5.00 (0.00–30.00) | 9.50 (1.00–41.00) | 11.03 | 0.01 |
Response Time | 543.70 (325.40–959.50) | 482.80 (329.70–714.90) | 567.90 (368.90–868.40) | 510.05 (363.30–836.10) | 2.57 | 0.46 |
Response Time variability | 197.20 (64.70–595.50) | 181.55 (60.30–316.50) | 175.95 (71.80–356.70) | 194.30 (87.30–632.00) | 3.52 | 0.32 |
Auditory CPT c | ||||||
Omission Error | 2.00 (0.00–27.00) | 0.50 (0.00–12.00) | 1.00 (0.00–18.00) | 1.00 (0.00–75.00) | 3.78 | 0.29 |
Commission Error | 8.00 (1.00–36.00) | 1.00 (0.00–9.00) | 3.00 (0.00–7.00) | 2.50 (0.00–55.00) | 9.17 | 0.03 |
Response Time | 556.10 (411.40–896.20) | 653.20 (448.60–914.10) | 701.05 (387.10–972.80) | 700.00 (0.00–1227.90) | 3.12 | 0.37 |
Response Time variability | 243.40 (144.90–580.40) | 188.35 (88.00–329.90) | 213.45 (87.70–483.90) | 204.20 (70.80–783.50) | 4.07 | 0.25 |
df | F | p Value | |
---|---|---|---|
Main effects | |||
MPH dose (Dose) | (6, 294) | 5.797 | <0.001 |
ADRA2A rs553668 | (1, 294) | 2.456 | 0.118 |
SLC6A2 rs998424 | (1, 294) | 4.129 | 0.043 |
Interaction effect | |||
Dose × ADRA2A | (4, 294) | 0.411 | 0.801 |
Dose × SLC6A2 | (4, 294) | 3.317 | 0.011 |
ADRA2A × SLC6A2 | (1, 294) | 0.812 | 0.368 |
Dose × ADRA2A × SLC6A2 | (3, 294) | 7.503 | <0.001 |
SLC6A2 rs998424 | Response to MPH by CGI-S (% Within SLCA6A Genotype) | Total (%) | OR | 95% CI | p | ||
---|---|---|---|---|---|---|---|
Poor (CGI-S Score: 3–7) | Good (CGI-S Score: 1–2) | Lower | Upper | ||||
G/G | 23 (53.5%) | 20 (46.5%) | 43 (53.8%) | 3.152 | 1.176 | 5.045 | 0.020 a |
G/A or A/A | 29 (78.4%) | 8 (21.6%) | 37 (46.3%) | ||||
Total | 52 (65.0%) | 28 (35.0%) | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Choi, B.-S.; Kim, B. The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD. Children 2025, 12, 704. https://doi.org/10.3390/children12060704
Kang J, Choi B-S, Kim B. The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD. Children. 2025; 12(6):704. https://doi.org/10.3390/children12060704
Chicago/Turabian StyleKang, Jewook, Bum-Sung Choi, and Bongseog Kim. 2025. "The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD" Children 12, no. 6: 704. https://doi.org/10.3390/children12060704
APA StyleKang, J., Choi, B.-S., & Kim, B. (2025). The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD. Children, 12(6), 704. https://doi.org/10.3390/children12060704