The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R. Strengths and limitations of genetic models of ADHD. Atten. Defic. Hyperact. Disord. 2010, 2, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Banaschewski, T.; Becker, K.; Scherag, S.; Franke, B.; Coghill, D. Molecular genetics of attention-deficit/hyperactivity disorder: An overview. Eur. Child. Adolesc. Psychiatry 2010, 19, 237–257. [Google Scholar] [CrossRef] [PubMed]
- Solanto, M.V. Neuropsychopharmacological mechanisms of stimulant drug action in Attention-Deficit hyperactivity disorder: A review and integration. Behav. Brain Res. 1998, 94, 127–152. [Google Scholar] [CrossRef]
- Caballero, M.; Núñez, F.; Ahern, S.; Cuffí, M.L.; Carbonell, L.; Sánchez, S.; Fernández-Dueñas, V.; Ciruela, F. Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Neurosci. Lett. 2011, 494, 44–48. [Google Scholar] [CrossRef]
- Pliszka, S.R.; McCracken, J.T.; Maas, J.W. Catecholamines in attention-deficit hyperactivity disorder: Current perspectives. J. Am. Acad. Child. Adolesc. Psychiatry 1996, 35, 264–272. [Google Scholar] [CrossRef]
- Arnsten, A.F. Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn. Sci. 1998, 2, 436–447. [Google Scholar] [CrossRef]
- Arnsten, A.F.; Pliszka, S.R. Catecholamine influences on prefrontal cortical function: Relevance to treatment of attention deficit/hyperactivity disorder and related disorders. Pharmacol. Biochem. Behav. 2011, 99, 211–216. [Google Scholar] [CrossRef]
- Cho, S.C.; Kim, J.W.; Kim, B.N.; Hwang, J.W.; Park, M.; Kim, S.A.; Cho, D.Y.; Yoo, H.J.; Chung, U.S.; Son, J.W. Possible association of the Alpha-2A-Adrenergic receptor gene with response time variability in attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 957–963. [Google Scholar] [CrossRef]
- Lario, S.; Calls, J.; Cases, A.; Oriola, J.; Torras, A.; Rivera, F. Mspl identifies a biallelic polymorphism in the promoter region of the α2A-adrenergic receptor gene. Clin. Genet. 1997, 51, 129–130. [Google Scholar] [CrossRef]
- Bono, M.; Cases, A.; Oriola, J.; Calls, J.; Torras, A.; Rivera, F. Polymorphisms of the human alpha 2A-adrenergic receptor gene in a Catalan population: Description of a new polymorphism in the promoter region. Gene Geogr. 1996, 10, 151–159. [Google Scholar] [PubMed]
- Roman, T.; Schmitz, M.; Polanczyk, G.V.; Eizirik, M.; Rohde, L.A.; Hutz, M.H. Is the α-2A adrenergic receptor gene (ADRA2A) associated with Attention-Deficit/hyperactivity disorder? Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 120, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, M.; Denardin, D.; Silva, T.L.; Pianca, T.; Roman, T.; Hutz, M.H.; Faraone, S.V.; Rohde, L.A. Association between alpha-2a-adrenergic receptor gene and ADHD inattentive type. Biol. Psychiatry 2006, 60, 1028–1033. [Google Scholar] [CrossRef]
- Park, L.; Nigg, J.; Waldman, I.; Nummy, K.; Huang-Pollock, C.; Rappley, M.; Friderici, K. Association and linkage of α-2A adrenergic receptor gene polymorphisms with childhood ADHD. Mol. Psychiatry 2005, 10, 572–580. [Google Scholar] [CrossRef]
- Deupree, J.; Smith, S.D.; Kratochvil, C.J.; Bohac, D.; Ellis, C.R.; Polaha, J.; Bylund, D.; Team, U.C.A.R. Possible involvement of alpha-2A adrenergic receptors in attention deficit hyperactivity disorder: Radioligand binding and polymorphism studies. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141, 877–884. [Google Scholar] [CrossRef]
- Berridge, C.W.; Devilbiss, D.M.; Andrzejewski, M.E.; Arnsten, A.F.; Kelley, A.E.; Schmeichel, B.; Hamilton, C.; Spencer, R.C. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol. Psychiatry 2006, 60, 1111–1120. [Google Scholar] [CrossRef]
- Davids, E.; Zhang, K.; Kula, N.S.; Tarazi, F.I.; Baldessarini, R.J. Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J. Pharmacol. Exp. Ther. 2002, 301, 1097–1102. [Google Scholar] [CrossRef]
- Spencer, T.J.; Biederman, J.; Wilens, T.E.; Faraone, S.V. Novel treatments for Attention-Deficit/hyperactivity disorder in children. J. Clin. Psychiatry 2002, 63, 16–22. [Google Scholar]
- Davids, E.; Gastpar, M. Atomoxetine for the treatment of Attention-Deficit/hyperactivity disorder. Fortschr. Neurol. Psychiatr. 2004, 72, 586–591. [Google Scholar] [CrossRef]
- Kim, C.-H.; Hahn, M.K.; Joung, Y.; Anderson, S.L.; Steele, A.H.; Mazei-Robinson, M.S.; Gizer, I.; Teicher, M.H.; Cohen, B.M.; Robertson, D. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc. Natl. Acad. Sci. USA 2006, 103, 19164–19169. [Google Scholar] [CrossRef]
- Kollins, S.; Anastopoulos, A.D.; Lachiewicz, A.; FitzGerald, D.; Morrissey-Kane, E.; Garrett, M.; Keatts, S.; Ashley-Koch, A. SNPs in dopamine D2 receptor gene (DRD2) and norepinephrine transporter gene (NET) are associated with continuous performance task (CPT) phenotypes in ADHD children and their families. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hawi, Z.; Brookes, K.J.; Anney, R.; Bellgrove, M.; Franke, B.; Barry, E.; Chen, W.; Kuntsi, J.; Banaschewski, T. Replication of a rare protective allele in the noradrenaline transporter gene and ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147, 1564–1567. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-C.; Kim, J.-W.; Kim, B.-N.; Hwang, J.-W.; Park, M.; Kim, S.A.; Cho, D.-Y.; Yoo, H.-J.; Chung, U.-S.; Son, J.-W. No evidence of an association between norepinephrine transporter gene polymorphisms and attention deficit hyperactivity disorder: A Family-Based and Case-Control association study in a Korean sample. Neuropsychobiology 2008, 57, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Renner, T.; Nguyen, T.; Romanos, M.; Walitza, S.; Röser, C.; Reif, A.; Schäfer, H.; Warnke, A.; Gerlach, M.; Lesch, K. No evidence for association between a functional promoter variant of the Norepinephrine Transporter gene SLC6A2 and ADHD in a family-based sample. Atten. Defic. Hyperact. Disord. 2011, 3, 285–289. [Google Scholar] [CrossRef]
- Bobb, A.J.; Addington, A.M.; Sidransky, E.; Gornick, M.C.; Lerch, J.P.; Greenstein, D.K.; Clasen, L.S.; Sharp, W.S.; Inoff-Germain, G.; de Vrièze, F.W. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 134, 67–72. [Google Scholar] [CrossRef]
- Song, J.; Song, D.-H.; Jhung, K.; Cheon, K.-A. Norepinephrine transporter gene (SLC6A2) is involved with methylphenidate response in Korean children with attention deficit hyperactivity disorder. Int. Clin. Psychopharmacol. 2011, 26, 107–113. [Google Scholar] [CrossRef]
- Kim, B.-N.; Kim, J.-W.; Hong, S.B.; Cho, S.-C.; Shin, M.-S.; Yoo, H.-J. Possible association of norepinephrine Transporter-3081 (A/T) polymorphism with methylphenidate response in attention deficit hyperactivity disorder. Behav. Brain Funct. 2010, 6, 57. [Google Scholar] [CrossRef]
- Das, M.; Bhowmik, A.D.; Bhaduri, N.; Sarkar, K.; Ghosh, P.; Sinha, S.; Ray, A.; Chatterjee, A.; Mukhopadhyay, K. Role of gene–gene/gene–Environment interaction in the etiology of eastern Indian ADHD probands. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 577–587. [Google Scholar] [CrossRef]
- Roman, T.; Schmitz, M.; Polanczyk, G.; Eizirik, M.; Rohde, L.A.; Hutz, M.H. Attention-deficit hyperactivity disorder: A study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am. J. Med. Genet. 2001, 105, 471–478. [Google Scholar] [CrossRef]
- Carrasco, X.; Rothhammer, P.; Moraga, M.; Henríquez, H.; Aboitiz, F.; Rothhammer, F. Presence of DRD4/7R and DAT1/10R allele in Chilean family members with attention deficit hyperactivity disorder. Rev. Med. Chil. 2004, 132, 1047–1052. [Google Scholar] [CrossRef]
- Kaufman, J.; Birmaher, B.; Brent, D.; Rao, U.; Flynn, C.; Moreci, P.; Williamson, D.; Ryan, N. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. J. Am. Acad. Child. Adolesc. Psychiatry 1997, 36, 980–988. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Cheon, K.A.; Kim, B.N.; Chang, S.A.; Yoo, H.J.; Kim, J.W.; Cho, S.C.; Seo, D.H.; Bae, M.O.; So, Y.K. The reliability and validity of kiddie-schedule for affective disorders and schizophrenia-present and lifetime version-Korean version (K-SADS-PL-K). Yonsei Med. J. 2004, 45, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Reid, R.; DuPaul, G.J.; Power, T.J.; Anastopoulos, A.D.; Rogers-Adkinson, D.; Noll, M.-B.; Riccio, C. Assessing culturally different students for attention deficit hyperactivity disorder using behavior rating scales. J. Abnorm. Child. Psychol. 1998, 26, 187–198. [Google Scholar] [CrossRef]
- Greenberg, L.M.; Waldmant, I.D. Developmental normative data on the Test of Variables of Attention (TOVA™). J. Child. Psychol. Psychiatry 1993, 34, 1019–1030. [Google Scholar] [CrossRef]
- Cheon, K.-A.; Cho, D.-Y.; Koo, M.-S.; Song, D.-H.; Namkoong, K. Association between homozygosity of a G allele of the alpha-2a-adrenergic receptor gene and methylphenidate response in Korean children and adolescents with attention-deficit/hyperactivity disorder. Biol. Psychiatry 2009, 65, 564–570. [Google Scholar] [CrossRef]
- Kim, B.-N.; Cummins, T.D.; Kim, J.-W.; Bellgrove, M.A.; Hong, S.-B.; Song, S.-H.; Shin, M.-S.; Cho, S.-C.; Kim, J.-H.; Son, J.-W. Val/Val genotype of brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with a better response to OROS-MPH in Korean ADHD children. Int. J. Neuropsychopharmacol. 2011, 14, 1399–1410. [Google Scholar] [CrossRef]
- van Hooijdonk, C.; Voulgaropoulou, S.; Podrzaj, L.; Wolvekamp, D.; van Amelsvoort, T.; Leibold, N. Noradrenergic gene variation shaping vulnerability and resilience by affecting mental health-related characteristics: A systematic review. Neurosci. Appl. 2024, 3, 104087. [Google Scholar] [CrossRef]
- Cho, S.-C.; Kim, J.-W.; Kim, H.-W.; Kim, B.-N.; Shin, M.-S.; Cho, D.-Y.; Jung, S.-W.; Chung, U.-S.; Son, J.-W. Effect of ADRA2A and BDNF gene–gene interaction on the continuous performance test phenotype. Psychiatr. Genet. 2011, 21, 132–135. [Google Scholar] [CrossRef]
- Qian, Q.-J.; Yang, L.; Wang, Y.-F.; Zhang, H.-B.; Guan, L.-L.; Chen, Y.; Ji, N.; Liu, L.; Faraone, S. Gene–gene interaction between COMT and MAOA potentially predicts the intelligence of attention-deficit hyperactivity disorder boys in China. Behav. Genet. 2010, 40, 357–365. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.-F.; Li, J.; Faraone, S.V. Association of norepinephrine transporter gene with methylphenidate response. J. Am. Acad. Child. Adolesc. Psychiatry 2004, 43, 1154–1158. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, S.W.; Lee, M.G.; Yook, K.-H.; Greenhill, L.L.; Fradin, K.N.; Hong, H.J. Lack of association between response of OROS-methylphenidate and norepinephrine transporter (SLC6A2) polymorphism in Korean ADHD. Psychiatry Res. 2011, 186, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, C.I.; Carballo, J.J.; Riveiro-Alvarez, R.; Soto-Insuga, V.; Rodrigo, M.; Mahillo-Fernandez, I.; Abad-Santos, F.; Dal-Ré, R.; Ayuso, C. Pharmacogenetics of methylphenidate in childhood attention-deficit/hyperactivity disorder: Long-term effects. Sci. Rep. 2017, 7, 10391. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Zhang, M.; Huang, Y.; Wang, X.; Jiao, J.; Huang, Y. Noradrenergic genes polymorphisms and response to methylphenidate in children with ADHD: A systematic review and meta-Analysis. Medicine 2021, 100, e27858. [Google Scholar] [CrossRef]
- Stein, M.A.; Waldman, I.D.; Sarampote, C.S.; Seymour, K.E.; Robb, A.S.; Conlon, C.; Kim, S.-J.; Cook, E.H. Dopamine transporter genotype and methylphenidate dose response in children with ADHD. Neuropsychopharmacology 2005, 30, 1374–1382. [Google Scholar] [CrossRef]
- Rapport, M.D.; Denney, C. Titrating methylphenidate in children with attention-deficit/hyperactivity disorder: Is body mass predictive of clinical response? J. Am. Acad. Child. Adolesc. Psychiatry 1997, 36, 523–530. [Google Scholar] [CrossRef]
- Sprague, R.L.; Sleator, E.K. Methylphenidate in hyperkinetic children: Differences in dose effects on learning and social behavior. Science 1977, 198, 1274–1276. [Google Scholar] [CrossRef]
11 * | 12 and 22 * | F or χ2 | p | |
---|---|---|---|---|
SLC6A2 rs998424 (N) | 45 | 38 | ||
Age (y, mean ± SD) | 8.69 ± 2.07 | 8.89 ± 1.96 | 0.49 | 0.64 b |
Sex | ||||
Male/female | 37/8 | 35/3 | 1.75 | 0.214 a |
Weight (kg, mean ± SD) | 34.14 ± 13.11 | 38.53 ± 1.80 | 0.00 | 0.13 b |
Subtype | 1.77 | 0.503 a | ||
ADHD-C | 29 | 29 | ||
ADHD-I | 15 | 8 | ||
ADHD-H | 1 | 1 | ||
ADRA2A rs553668 (N) | 26 | 57 | ||
Age (y, mean ± SD) | 9.00 ± 1.8 | 8.68 ± 2.1 | 0.30 | 0.51 b |
Sex | ||||
Male/female | 24/2 | 48/9 | 1.02 | 0.49 a |
Weight (kg, mean ± SD) | 38.59 ± 13.7 | 35.05 ± 12.0 | 0.79 | 0.38 b |
Subtype | 0.71 | 0.90 a | ||
ADHD-C | 18 | 40 | ||
ADHD-I | 8 | 15 | ||
ADHD-H | 0 | 1 |
Genotypes (N) | 1 b 13 | 2 b 12 | 3 b 30 | 4 b 24 | χ2 | p a |
---|---|---|---|---|---|---|
Visual CPT c | ||||||
Omission Error | 3.00 (0.00–32.00) | 1.00 (0.00–11.00) | 2.50 (0.00–30.00) | 3.50 (0.00–25.00) | 5.12 | 0.16 |
Commission Error | 16.00 (2.00–46.00) | 11.00 (0.00–42.00) | 5.00 (0.00–30.00) | 9.50 (1.00–41.00) | 11.03 | 0.01 |
Response Time | 543.70 (325.40–959.50) | 482.80 (329.70–714.90) | 567.90 (368.90–868.40) | 510.05 (363.30–836.10) | 2.57 | 0.46 |
Response Time variability | 197.20 (64.70–595.50) | 181.55 (60.30–316.50) | 175.95 (71.80–356.70) | 194.30 (87.30–632.00) | 3.52 | 0.32 |
Auditory CPT c | ||||||
Omission Error | 2.00 (0.00–27.00) | 0.50 (0.00–12.00) | 1.00 (0.00–18.00) | 1.00 (0.00–75.00) | 3.78 | 0.29 |
Commission Error | 8.00 (1.00–36.00) | 1.00 (0.00–9.00) | 3.00 (0.00–7.00) | 2.50 (0.00–55.00) | 9.17 | 0.03 |
Response Time | 556.10 (411.40–896.20) | 653.20 (448.60–914.10) | 701.05 (387.10–972.80) | 700.00 (0.00–1227.90) | 3.12 | 0.37 |
Response Time variability | 243.40 (144.90–580.40) | 188.35 (88.00–329.90) | 213.45 (87.70–483.90) | 204.20 (70.80–783.50) | 4.07 | 0.25 |
df | F | p Value | |
---|---|---|---|
Main effects | |||
MPH dose (Dose) | (6, 294) | 5.797 | <0.001 |
ADRA2A rs553668 | (1, 294) | 2.456 | 0.118 |
SLC6A2 rs998424 | (1, 294) | 4.129 | 0.043 |
Interaction effect | |||
Dose × ADRA2A | (4, 294) | 0.411 | 0.801 |
Dose × SLC6A2 | (4, 294) | 3.317 | 0.011 |
ADRA2A × SLC6A2 | (1, 294) | 0.812 | 0.368 |
Dose × ADRA2A × SLC6A2 | (3, 294) | 7.503 | <0.001 |
SLC6A2 rs998424 | Response to MPH by CGI-S (% Within SLCA6A Genotype) | Total (%) | OR | 95% CI | p | ||
---|---|---|---|---|---|---|---|
Poor (CGI-S Score: 3–7) | Good (CGI-S Score: 1–2) | Lower | Upper | ||||
G/G | 23 (53.5%) | 20 (46.5%) | 43 (53.8%) | 3.152 | 1.176 | 5.045 | 0.020 a |
G/A or A/A | 29 (78.4%) | 8 (21.6%) | 37 (46.3%) | ||||
Total | 52 (65.0%) | 28 (35.0%) | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Choi, B.-S.; Kim, B. The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD. Children 2025, 12, 704. https://doi.org/10.3390/children12060704
Kang J, Choi B-S, Kim B. The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD. Children. 2025; 12(6):704. https://doi.org/10.3390/children12060704
Chicago/Turabian StyleKang, Jewook, Bum-Sung Choi, and Bongseog Kim. 2025. "The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD" Children 12, no. 6: 704. https://doi.org/10.3390/children12060704
APA StyleKang, J., Choi, B.-S., & Kim, B. (2025). The Role of Gene–Gene Interaction Between ADRA2A and SLC6A2 Polymorphisms in Attention System and Treatment Outcomes for Children with ADHD. Children, 12(6), 704. https://doi.org/10.3390/children12060704