Antioxidant Status in Children with Neurogenic Bladder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Biochemistry
2.3. Statistics
2.4. Ethical Issues
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NB | neurogenic bladder |
MMC | myelomeningocele |
GFR | glomerular filtration rate |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid |
TAS | total antioxidant status |
uTAS | urinary total antioxidant status |
UTI | urinary tract infections |
CIC | clean intermittent catheterization |
CKD | chronic kidney disease |
Pdet urg | the detrusor pressure at urgency |
Pdet CC | the detrusor pressure at the maximum cystometric capacity |
EMG | electromyography |
EMG1 | electromyography of the sphincter at the beginning of the filling phase |
EMG2 | electromyography of the sphincter at the end of the filling phase |
ROS | reactive oxygen species |
References
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Batty, M.; Bennett, M.R.; Yu, E. The Role of Oxidative Stress in Atherosclerosis. Cells 2022, 11, 3843. [Google Scholar] [CrossRef]
- Jin, S.; Kang, P.M. A Systematic Review on Advances in Management of Oxidative Stress-Associated Cardiovascular Diseases. Antioxidants 2024, 13, 923. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef] [PubMed]
- Akhigbe, R.E.; Ajayi, A.F.; Ram, S.K. Oxidative Stress and Cardiometabolic Disorders. Biomed. Res. Int. 2021, 2021, 9872109. [Google Scholar] [CrossRef] [PubMed]
- Kishi, S.; Nagasu, H.; Kidokoro, K.; Kashihara, N. Oxidative stress and the role of redox signalling in chronic kidney disease. Nat. Rev. Nephrol. 2024, 20, 101–119. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Jhang, J.F.; Wang, J.H.; Wu, Y.H.; Kuo, H.C. A Decision Tree Model Using Urine Inflammatory and Oxidative Stress Biomarkers for Predicting Lower Urinary Tract Dysfunction in Females. Int. J. Mol. Sci. 2024, 25, 12857. [Google Scholar] [CrossRef]
- Miyata, Y.; Matsuo, T.; Mitsunari, K.; Asai, A.; Ohba, K.; Sakai, H. A Review of Oxidative Stress and Urinary Dysfunction Caused by Bladder Outlet Obstruction and Treatments Using Antioxidants. Antioxidants 2019, 8, 132. [Google Scholar] [CrossRef]
- Carmichael, S.L.; Yang, W.; Ma, C.; Desrosiers, T.A.; Weber, K.; Collins, R.T.; Nestoridi, E.; Shaw, G.M.; National Birth Defects Prevention Study. Oxidative balance scores and neural crest cell-related congenital anomalies. Birth Defects Res. 2023, 115, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Laforgia, N.; Di Mauro, A.; Favia Guarnieri, G.; Varvara, D.; De Cosmo, L.; Panza, R.; Capozza, M.; Baldassarre, M.E.; Resta, N. The Role of Oxidative Stress in the Pathomechanism of Congenital Malformations. Oxid. Med. Cell. Longev. 2018, 2018, 7404082. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R. Needs of Parents of Children with Spina Bifida: A Review. J. Pediatr. Surg. Nurs. 2021, 12, 3–10. [Google Scholar] [CrossRef]
- Sager, C.; Barroso, U., Jr.; Netto, J.M.B.; Retamal, G.; Ormaechea, E. Management of neurogenic bladder dysfunction in children update and recommendations on medical treatment. Int. Braz. J. Urol. 2022, 48, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Sturm, R.M.; Cheng, E.Y. The Management of the Pediatric Neurogenic Bladder. Curr. Bladder Dysfunct. Rep. 2016, 11, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.H.; Liu, M.; Wu, Y.; Furth, S.; Warady, B.; Trachtman, H.; Trasande, L. Oxidant stress and renal function among children with chronic kidney disease: A repeated measures study. Sci. Rep. 2020, 10, 3129. [Google Scholar] [CrossRef]
- Bauer, S.B.; Nijman, R.J.; Drzewiecki, B.A.; Sillen, U.; Hoebeke, P. International Children’s Continence Society Standardization Subcommittee. International Children’s Continence Society standardization report on urodynamic studies of the lower urinary tract in children. Neurourol. Urodyn. 2015, 34, 640–647. [Google Scholar] [CrossRef]
- Hoffer, M.M.; Feiwell, E.; Perry, R.; Perry, J.; Bonnettet, C. Functional ambulation in patients with myelomeningocele. J. Bone Jt. Surg. Am. 1973, 55, 137–148. [Google Scholar] [CrossRef]
- Srinivasa Rao, P.V.L.N.; Kiranmayi, V.S.; Swathi, P.; Jeyseelan, L.; Suchitra, M.M.; Bitla, A.R. Comparison of Two Analytical Methods used for the Measurement of Total Antioxidant Status. J. Antioxid. Act. 2015, 1, 22–28. [Google Scholar] [CrossRef]
- Pierre, N.; Appriou, Z.; Gratas-Delamarche, A.; Derbré, F. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic. Biol. Med. 2016, 98, 197–207. [Google Scholar] [CrossRef]
- Ji, L.L.; Yeo, D. Mitochondrial dysregulation and muscle disuse atrophy. F1000Research 2019, 8, 1621. [Google Scholar] [CrossRef]
- Dudley, A.G. Nutritional Aspects of Spina Bifida Care: Optimizing Medical Management and Surgical Healing. Curr. Urol. Rep. 2025, 26, 5. [Google Scholar] [CrossRef]
- Ghone, R.A.; Suryakar, A.N.; Kulhalli, P.M.; Bhagat, S.S.; Padalkar, R.K.; Karnik, A.C.; Hundekar, P.S.; Sangle, D.A. A study of oxidative stress biomarkers and effect of oral antioxidant supplementation in severe acute malnutrition. J. Clin. Diagn. Res. 2013, 7, 2146–2148. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tang, Z.; Jiang, Y.; Yang, Y.; Liao, J.; Su, Z.; Usman, A.M.; Chen, X.; Xiao, G. Oxidative stress in hydrocephalus: A new potential therapeutic target. Brain-X 2024, 2, e70008. [Google Scholar] [CrossRef]
- Josephs-Spaulding, J.; Krogh, T.J.; Rettig, H.C.; Lyng, M.; Chkonia, M.; Waschina, S.; Graspeuntner, S.; Rupp, J.; Møller-Jensen, J.; Kaleta, C. Recurrent Urinary Tract Infections: Unraveling the Complicated Environment of Uncomplicated rUTIs. Front. Cell. Infect. Microbiol. 2021, 11, 562525. [Google Scholar] [CrossRef] [PubMed]
- Masuda, H.; Kihara, K.; Saito, K.; Matsuoka, Y.; Yoshida, S.; Chancellor, M.B.; de Groat, W.C.; Yoshimura, N. Reactive oxygen species mediate detrusor overactivity via sensitization of afferent pathway in the bladder of anaesthetized rats. BJU Int. 2007, 101, 775–780. [Google Scholar] [CrossRef]
- Wu, Y.H.; Chueh, K.S.; Chuang, S.M.; Long, C.Y.; Lu, J.H.; Juan, Y.S. Bladder Hyperactivity Induced by Oxidative Stress and Bladder Ischemia: A Review of Treatment Strategies with Antioxidants. Int. J. Mol. Sci. 2021, 22, 6014. [Google Scholar] [CrossRef]
- Cameron, A.P. Medical management of neurogenic bladder with oral therapy. Transl. Androl. Urol. 2016, 5, 51–62. [Google Scholar] [CrossRef]
- Coyoy-Salgado, A.; Segura-Uribe, J.J.; Guerra-Araiza, C.; Orozco-Suárez, S.; Salgado-Ceballos, H.; Feria-Romero, I.A.; Gallardo, J.M.; Orozco-Barrios, C.E. The Importance of Natural Antioxidants in the Treatment of Spinal Cord Injury in Animal Models: An Overview. Oxid. Med. Cell. Longev. 2019, 2019, 3642491. [Google Scholar] [CrossRef]
- Jun, M.; Venkataraman, V.; Razavian, M.; Cooper, B.; Zoungas, S.; Ninomiya, T.; Webster, A.C.; Perkovic, V. Antioxidants for chronic kidney disease. Cochrane Database Syst. Rev. 2012, 10, CD008176. [Google Scholar] [CrossRef] [PubMed]
- Gyurászová, M.; Gurecká, R.; Bábíčková, J.; Tóthová, Ľ. Oxidative Stress in the Pathophysiology of Kidney Disease: Implications for Noninvasive Monitoring and Identification of Biomarkers. Oxid. Med. Cell. Longev. 2020, 2020, 5478708. [Google Scholar] [CrossRef]
- Tamay-Cach, F.; Quintana-Pérez, J.C.; Trujillo-Ferrara, J.G.; Cuevas-Hernández, R.I.; Del Valle-Mondragón, L.; García-Trejo, E.M.; Arellano-Mendoza, M.G. A review of the impact of oxidative stress and some antioxidant therapies on renal damage. Ren. Fail. 2016, 38, 171–175. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef] [PubMed]
Variables | Group 1 n = 29 | Group 2 n = 57 | p Value |
---|---|---|---|
Gender: Female/male n (%) | 12(41)/17(59) | 31(54)/26(46) | 0.71 |
Median (minimum–maximum) | |||
Age (years) | 7.83 (0.5–17) | 10.1 (1.5–17.8) | 0.14 |
Height (cm) | 135 (70–167) | 152.5 (89–180) | 0.04 * |
Weight (kg) | 25 (6.9–92) | 34.5 (10–84) | 0.16 |
Serum creatinine (mg/dL) | 0.32 (0.19–0.77) | 0.5 (0.2–1.07) | <0.001 * |
Urinary creatinine (mg/dL) | 51.6 (14–111) | 100 (23.5–315) | <0.001 * |
Urea (mg/dL) | 26 (11–42) | 28 (15–43) | 0.28 |
Uric acid (mg/dL) | 3.89 (2.76–5.7) | 4.08 (2.46–7.09) | 0.18 |
eGFR (bedside Schwartz) (mL/min/1.73 m2) | 154.2 (89.6–247.8) | 121.8 (92.5–247.8) | <0.001 * |
Serum TAS (mmol/L) | 0.31 (0.04–5.6) | 1.46 (0–11.98) | <0.001 * |
uTAS (mmol/L) | 8.81 (1.94–29) | 4.51 (1.01–24.9) | <0.001 * |
uTAS/creatinine ratio | 0.1 (0.01–1.2) | 0.04 (0.008–0.09) | <0.001 * |
Urodynamic Parameters | |
---|---|
Pdet urg (cmH2O) | 30 (10–80) |
Pdet CC (cmH2O) | 10 (2–34) |
MaxCC (mL) | 150 (38–287) |
Compliance (mL/cmH2O) | 12 (0.3–70) |
EMG 1 (mV) | 3 (0–25) |
EMG 2 (mV) | 5 (0–30) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagińska-Chyży, J.; Korzeniecka-Kozerska, A. Antioxidant Status in Children with Neurogenic Bladder. Children 2025, 12, 668. https://doi.org/10.3390/children12060668
Bagińska-Chyży J, Korzeniecka-Kozerska A. Antioxidant Status in Children with Neurogenic Bladder. Children. 2025; 12(6):668. https://doi.org/10.3390/children12060668
Chicago/Turabian StyleBagińska-Chyży, Joanna, and Agata Korzeniecka-Kozerska. 2025. "Antioxidant Status in Children with Neurogenic Bladder" Children 12, no. 6: 668. https://doi.org/10.3390/children12060668
APA StyleBagińska-Chyży, J., & Korzeniecka-Kozerska, A. (2025). Antioxidant Status in Children with Neurogenic Bladder. Children, 12(6), 668. https://doi.org/10.3390/children12060668