Short-Term Impact of Slow Maxillary Expansion on Labial Ectopic Canine Eruption Pathway in Children: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Samples
2.3. Treatment Protocol and Imaging
2.4. Data Acquisition and Measurement
2.5. Classification
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SME | Slow maxillary expansion |
RME | Rapid maxillary expansion |
OPGs | Panoramic radiographs |
3c-OP | Canine cusp-to-occlusal plane distance |
3c-ML | Canine cusp-to-midline distance |
3^ML | Canine-to-midline angle |
TE | Ectopic canine in treatment group |
TN | Normally positioned canine in treatment group |
CE | Ectopic canine in control group |
CN | Normally positioned canine in control group |
TES | Superior-positioned canines in the TE group |
TEI | Inferior-positioned canines in the TE group |
CES | Superior-positioned canines in the CE group |
CEI | Inferior-positioned canines in the CE group |
ICC | Intraclass correlation coefficients |
References
- Mucedero, M.; Ricchiuti, M.R.; Cozza, P.; Baccetti, T. Prevalence rate and dentoskeletal features associated with buccally displaced maxillary canines. Eur. J. Orthod. 2013, 35, 305–309. [Google Scholar] [CrossRef]
- Yan, B.; Sun, Z.; Fields, H.; Wang, L.; Luo, L. Etiologic factors for buccal and palatal maxillary canine impaction: A perspective based on cone-beam computed tomography analyses. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 527–534. [Google Scholar] [CrossRef]
- Kim, Y.; Hyun, H.K.; Jang, K.T. The position of maxillary canine impactions and the influenced factors to adjacent root resorption in the Korean population. Eur. J. Orthod. 2011, 34, 302–306. [Google Scholar] [CrossRef]
- Zhong, Y.L.; Zeng, X.L.; Jia, Q.L.; Zhang, W.L.; Chen, L. Clinical investigation of impacted maxillary canine. Zhonghua Kou Qiang Yi Xue Za Zhi 2006, 41, 483–485. [Google Scholar] [PubMed]
- Fournier, A.; Turcotte, J.Y.; Bernard, C. Orthodontic considerations in the treatment of maxillary impacted canines. Am. J. Orthod. 1982, 81, 236–239. [Google Scholar] [CrossRef] [PubMed]
- Peck, S.; Peck, L.; Kataja, M. The palatally displaced canine as a dental anomaly of genetic origin. Angle Orthod. 1994, 64, 249–256. [Google Scholar]
- Sajnani, A.K. Permanent maxillary canines—Review of eruption pattern and local etiological factors leading to impaction. J. Investig. Clin. Dent. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Zhang, S.; Shi, D.; Liu, M.; Li, W.; Tang, P.; Choi, K.; Yang, X.; Wu, J. Association between the occurrence of buccally displaced canine and palatal and craniofacial morphology in adolescents. J. Clin. Pediatr. Dent. 2023, 47, 138–144. [Google Scholar]
- Smailienė, D.; Sidlauskas, A.; Lopatienė, K.; Guzevičienė, V.; Juodžbalys, G. Factors affecting self-eruption of displaced permanent maxillary canines. Medicina 2011, 47, 163–169. [Google Scholar] [CrossRef]
- Ericson, S.; Kurol, P.J. Resorption of incisors after ectopic eruption of maxillary canines: A CT study. Angle Orthod. 2000, 70, 415–423. [Google Scholar]
- Yan, B.; Sun, Z.; Fields, H.; Wang, L. Maxillary canine impaction increases root resorption risk of adjacent teeth: A problem of physical proximity. Am. J. Orthod. Dentofac. Orthop. 2012, 142, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Alqerban, A.; Jacobs, R.; Fieuws, S.; Willems, G. Predictors of root resorption associated with maxillary canine impaction in panoramic images. Eur. J. Orthod. 2016, 38, 292–299. [Google Scholar] [CrossRef]
- Schroder, A.G.D.; Guariza-Filho, O.; Ruellas, A.C.; Tanaka, O.M.; Porporatti, A.L. To what extent are impacted canines associated with root resorption of the adjacent tooth?: A systematic review with meta-analysis. J. Am. Dent. Assoc. 2018, 149, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Razeghinejad, M.H.; Bardal, R.; Shahi, S.; Mortezapoor, E.; Mostafavi, M. Volumetric Evaluation of Maxillary Lateral Incisor Root Resorption due to Positional Variations of Impacted Canine. Int J. Dent. 2022, 2022, 2626222. [Google Scholar] [CrossRef]
- Ericson, S.; Kurol, J. Early treatment of palatally erupting maxillary canines by extraction of the primary canines. Eur. J. Orthod. 1988, 10, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Power, S.M.; Short, M.B. An investigation into the response of palatally displaced canines to the removal of deciduous canines and an assessment of factors contributing to favourable eruption. Br. J. Orthod. 1993, 20, 215–223. [Google Scholar] [CrossRef]
- Olive, R.J. Orthodontic treatment of palatally impacted maxillary canines. Aust. Orthod. J. 2002, 18, 64–70. [Google Scholar] [CrossRef]
- Leonardi, M.; Armi, P.; Franchi, L.; Baccetti, T. Two interceptive approaches to palatally displaced canines: A prospective longitudinal study. Angle Orthod. 2004, 74, 581–586. [Google Scholar]
- Harada-Karashima, M.; Ishihara, Y.; Kamioka, H.; Kanomi, R. Age-related changes in the effect of rapid maxillary expansion on the position of labially impacted maxillary canines: A case-control study. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 305–311. [Google Scholar] [CrossRef]
- Colak, C.; Aras, B.; Cheng, L.L.; Elekdag-Turk, S.; Turk, T.; Darendeliler, M.A. Effects of rapid and slow maxillary expansion on root resorption: A micro-computed tomography study. Eur. J. Orthod. 2021, 43, 682–689. [Google Scholar] [CrossRef]
- Marino, M.M.; Quiroga, S.B.; Nieri, M.; Bonanno, A.; Giuntini, V.; McNamara, J.A., Jr.; Franchi, L. Comparison of the effects on facial soft tissues produced by rapid and slow maxillary expansion using stereophotogrammetry: A randomized clinical trial. Prog. Orthod. 2024, 25, 1–9. [Google Scholar] [CrossRef]
- Rutili, V.; Mrakic, G.; Nieri, M.; Franceschi, D.; Pierleoni, F.; Giuntini, V.; Franchi, L. Dento-skeletal effects produced by rapid versus slow maxillary expansion using fixed jackscrew expanders: A systematic review and meta-analysis. Eur. J. Orthod. 2021, 43, 301–312. [Google Scholar] [CrossRef]
- Lanteri, V.; Cossellu, G.; Gianolio, A.; Beretta, M.; Lanteri, C.; Cherchi, C.; Farronato, G. Comparison between RME, SME and Leaf Expander in growing patients: A retrospective postero-anterior cephalometric study. Eur. J. Paediatr. Dent. 2018, 19, 199–204. [Google Scholar] [PubMed]
- Luiz, G.; Jacob, H.B.; Brunetto, M.; Silva, J.; Motohiro, O.; Buschang, P.H. A preliminary 3-D comparison of rapid and slow maxillary expansion in children: A randomized clinical trial. Int. J. Paediatr. Dent. 2020, 30, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Paoloni, V.; Giuntini, V.; Lione, R.; Nieri, M.; Barone, V.; Merlo, M.M.; Mazza, F.; Passaleva, S.; Cozza, P.; Franchi, L. Comparison of the dento-skeletal effects produced by Leaf expander versus rapid maxillary expander in prepubertal patients: A two-center randomized controlled trial. Eur. J. Orthod. 2022, 44, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Rutili, V.; Nieri, M.; Franceschi, D.; Pierleoni, F.; Giuntini, V.; Franchi, L. Comparison of rapid versus slow maxillary expansion on patient-reported outcome measures in growing patients: A systematic review and meta-analysis. Prog. Orthod. 2022, 23, 47–64. [Google Scholar] [CrossRef]
- Abed, F.H.; Alhashimi, N.A. Evaluation of self-perceived pain and jaw function impairment in children undergoing slow and rapid maxillary expansion. Angle Orthod. 2021, 91, 725–732. [Google Scholar] [CrossRef]
- Almeida, A.M.; Ozawa, T.O.; Alves, A.C.M.; Janson, G.; Lauris, J.R.P.; Ioshida, M.S.Y.; Garib, D.G. Slow versus rapid maxillary expansion in bilateral cleft lip and palate: A CBCT randomized clinical trial. Clin. Oral Investig. 2017, 21, 1789–1799. [Google Scholar] [CrossRef]
- Shin, J.H.; Oh, S.; Kim, H.; Lee, E.; Lee, S.M.; Ko, C.C.; Kim, Y.I. Prediction of maxillary canine impaction using eruption pathway and angular measurement on panoramic radiographs. Angle Orthod. 2022, 92, 18–26. [Google Scholar] [CrossRef]
- Uribe, P.; Ransjö, M.; Westerlund, A. Clinical predictors of maxillary canine impaction: A novel approach using multivariate analysis. Eur. J. Orthod. 2017, 39, 153–160. [Google Scholar] [CrossRef]
- Willems, G.; Butaye, C.; Raes, M.; Zong, C.; Begnoni, G.; Cadenas, M. Early prevention of maxillary canine impaction: A randomized clinical trial. Eur. J. Orthod. 2023, 45, 359–369. [Google Scholar] [CrossRef]
- Margot, R.; Maria, C.L.; Ali, A.; Annouschka, L.; Anna, V.; Guy, W. Prediction of maxillary canine impaction based on panoramic radiographs. Clin. Exp. Dent. Res. 2020, 6, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Barros, S.E.; Hoffelder, L.; Araújo, F.; Janson, G.; Chiqueto, K.; Ferreira, E. Short-term impact of rapid maxillary expansion on ectopically and normally erupting canines. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 524–534. [Google Scholar] [CrossRef]
- Coulter, J.; Richardson, A. Normal eruption of the maxillary canine quantified in three dimensions. Eur. J. Orthod. 1997, 19, 171–183. [Google Scholar] [CrossRef]
- Armi, P.; Cozza, P.; Baccetti, T. Effect of RME and headgear treatment on the eruption of palatally displaced canines: A randomized clinical study. Angle Orthod. 2011, 81, 370–374. [Google Scholar] [CrossRef]
- Sigler, L.M.; Baccetti, T.; McNamara, J.A. Effect of rapid maxillary expansion and transpalatal arch treatment associated with deciduous canine extraction on the eruption of palatally displaced canines: A 2-center prospective study. Am. J. Orthod. Dentofac. Orthop. 2011, 139, e235–e244. [Google Scholar] [CrossRef] [PubMed]
- Caprioglio, A.; Castiglioni, F.; Sambataro, S.; Giuntini, V.; Comaglio, I.; Lorvetti, F.; Fastuca, R. Changes in canine inclination after rapid and slow maxillary expansion compared to untreated controls. Orthod. Craniofac. Res. 2020, 23, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cárdenas, Y.A.; Arriola-Guillén, L.E.; Aliaga-Del Castillo, A.; Ruíz-Mora, G.A.; Janson, G.; Cevidanes, L.; Ruellas, A.C.; Yatabe, M.; Dias-Da Silveira, H.L. Three-dimensional changes in root angulation of buccal versus palatal maxillary impacted canines after orthodontic traction: A retrospective before and after study. Int. Orthod. 2021, 19, 216–227. [Google Scholar] [CrossRef]
- Yacout, Y.M.; Abdalla, E.M.; Harouny, N.M. Skeletal and dentoalveolar effects of slow vs rapid activation protocols of miniscrew-supported maxillary expanders in adolescents: A randomized clinical trial. Angle Orthod. 2022, 92, 579–588. [Google Scholar] [CrossRef]
- Pereira, J.D.S.; Jacob, H.B.; Locks, A.; Brunetto, M.; Ribeiro, G.L.U. Evaluation of the rapid and slow maxillary expansion using cone-beam computed tomography: A randomized clinical trial. Dent. Press J. Orthod. 2017, 22, 61–68. [Google Scholar] [CrossRef]
- Cao, D.; Shao, B.; Izadikhah, I.; Xie, L.; Wu, B.; Li, H.; Yan, B. Root dilaceration in maxillary impacted canines and adjacent teeth: A retrospective analysis of the difference between buccal and palatal impaction. d canines: A 2-center prospective study. Am. J. Orthod. Dentofac. Orthop. 2021, 159, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, J.; Li, X. Assessment of early dental arch growth modification with removable maxillary expansion by cone-beam computed tomography and lateral cephalometric radiographs: A retrospective study. BMC Oral Health 2023, 23, 727. [Google Scholar] [CrossRef] [PubMed]
- Baccetti, T.; Mucedero, M.; Leonardi, M.; Cozza, P. Interceptive treatment of palatal impaction of maxillary canines with rapid maxillary expansion: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 657–661. [Google Scholar] [CrossRef]
- D’Souza, I.M.; Kumar, H.C.; Shetty, K.S. Dental arch changes associated with rapid maxillary expansion: A retrospective model analysis study. Contemp. Clin. Dent. 2015, 6, 51–57. [Google Scholar] [CrossRef] [PubMed]
Treatment Group | Control Group | p Value | ||
---|---|---|---|---|
Sex | Male | 29 | 22 | 0.56 * |
Female | 47 | 36 | ||
Age at T0 (years) | Mean ± SD | 8.38 ± 0.89 | 8.46 ± 0.79 | 0.63 # |
Follow-up period (months) | Mean ± SD | 11.04 ± 4.44 | 10.32 ± 3.96 | 0.33 # |
Treatment Group | Control Group | p Value (Treatment Group vs. Control Group) | |||
---|---|---|---|---|---|
sec.1 | sec.234 | sec.1 | sec.234 | ||
T0 | 112 | 40 | 84 | 32 | 0.816 |
T1 | 131 | 21 | 100 | 16 | 0.996 |
T1 − T0 | 19 | −19 | 16 | −16 | 0.833 |
p value (T0 vs. T1) | 0.007 | 0.01 |
Group | Time Point | 3c-OP (Proportion) | 3c-ML (Proportion) | 3^ML (°) | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Treatment Group (n = 152) | T0 | 18.63 | 5.86 | 18.91 | 2.78 | 11.27 | 8.38 |
T1 | 13.68 | 7.04 | 20.38 | 3.55 | 7.06 | 10.67 | |
Change T1 − T0 | −4.951 | 4.854 | 1.468 | 3.117 | −4.209 | 8.187 | |
p value | 0.000 | 0.000 | 0.000 | ||||
Control Group (n = 116) | T0 | 18.54 | 5.07 | 19.84 | 3.05 | 10.59 | 9.46 |
T1 | 14.46 | 6.21 | 20.84 | 3.35 | 8.80 | 10.00 | |
Change T1 − T0 | −4.081 | 4.085 | 0.968 | 2.455 | −1.789 | 7.820 | |
p value | 0.000 | 0.000 | 0.015 | ||||
TE (n = 40) | T0 | 19.47 | 4.55 | 16.40 | 2.53 | 16.21 | 8.68 |
T1 | 16.71 | 5.29 | 18.46 | 3.78 | 12.01 | 12.83 | |
Change T1 − T0 | −2.76 | 4.56 | 2.06 | 3.26 | −4.21 | 9.10 | |
p value | 0.000 | 0.000 | 0.006 | ||||
CE (n = 32) | T0 | 20.71 | 3.75 | 17.89 | 3.13 | 16.76 | 10.88 |
T1 | 16.44 | 4.70 | 18.49 | 3.40 | 15.36 | 10.30 | |
Change T1 − T0 | −4.27 | 4.08 | 0.50 | 2.01 | −1.40 | 7.91 | |
p value | 0.000 | 0.095 | 0.324 | ||||
TN (n = 112) | T0 | 18.34 | 6.25 | 19.75 | 2.38 | 9.50 | 7.56 |
T1 | 12.60 | 7.29 | 21.13 | 3.09 | 5.29 | 9.23 | |
Change T1 − T0 | −5.74 | 4.73 | 1.38 | 2.98 | −4.21 | 7.88 | |
p value | 0.000 | 0.000 | 0.000 | ||||
CN (n = 84) | T0 | 17.71 | 5.27 | 20.58 | 2.69 | 8.24 | 7.71 |
T1 | 13.70 | 6.57 | 21.74 | 2.88 | 6.30 | 8.72 | |
Change T1 − T0 | −4.01 | 4.11 | 1.15 | 2.59 | −1.94 | 7.83 | |
p value | 0.000 | 0.000 | 0.356 | ||||
TES (n = 15) | T0 | 20.40 | 4.73 | 18.06 | 2.27 | 13.04 | 10.70 |
T1 | 18.31 | 4.18 | 18.44 | 2.49 | 12.13 | 11.21 | |
Change T1 − T0 | −2.09 | 4.94 | 0.38 | 1.94 | −0.91 | 7.05 | |
p value | 0.124 | 0.456 | 0.761 | ||||
TEI (n = 25) | T0 | 18.90 | 4.45 | 15.41 | 2.23 | 12.38 | 10.59 |
T1 | 15.75 | 5.71 | 18.48 | 4.49 | 12.34 | 10.00 | |
Change T1 − T0 | −3.16 | 4.37 | 3.06 | 3.57 | −0.04 | 8.25 | |
p value | 0.001 | 0.000 | 0.003 | ||||
CES (n = 24) | T0 | 21.12 | 4.06 | 18.07 | 3.13 | 10.34 | 6.75 |
T1 | 16.77 | 5.07 | 18.56 | 3.15 | 4.42 | 9.40 | |
Change T1 − T0 | −4.36 | 4.16 | 0.49 | 1.76 | −5.92 | 8.24 | |
p value | 0.000 | 0.186 | 0.774 | ||||
CEI (n = 8) | T0 | 19.47 | 2.40 | 17.34 | 3.26 | 9.13 | 8.23 |
T1 | 15.47 | 3.49 | 18.27 | 4.31 | 5.92 | 9.11 | |
Change T1 − T0 | −4.00 | 4.10 | 0.93 | 2.63 | −3.21 | 7.20 | |
p value | 0.028 | 0.350 | 0.199 |
Group | 3c-OP (Proportion) (T1 − T0) | 3c-ML (Proportion) (T1 − T0) | 3^ML° (T1 − T0) | |||
---|---|---|---|---|---|---|
Mean Difference (95%CI) | p Value | Mean Difference (95% CI) | p Value | Mean Difference (95% CI) | p Value | |
TE vs. CE | 1.513 (−0.55, 3.57) | 0.147 | 1.56 (0.29, 2.82) | 0.043 | −2.81 (−6.87, 1.26) | 0.173 |
TES vs. CES | −2.27 (−5.25, 0.71) | 0.131 | −0.11 (−1.33, 1.12) | 0.861 | −0.07 (−4.92, 4.62) | 0.976 |
TES vs. TEI | −1.07 (−4.10, 1.96) | 0.478 | −2.68 (−4.71, −0.65) | 0.011 | 5.88 (0.11, 11.66) | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Q.; Yang, X.; Fei, Y.; Wang, J. Short-Term Impact of Slow Maxillary Expansion on Labial Ectopic Canine Eruption Pathway in Children: A Retrospective Study. Children 2025, 12, 653. https://doi.org/10.3390/children12050653
Tong Q, Yang X, Fei Y, Wang J. Short-Term Impact of Slow Maxillary Expansion on Labial Ectopic Canine Eruption Pathway in Children: A Retrospective Study. Children. 2025; 12(5):653. https://doi.org/10.3390/children12050653
Chicago/Turabian StyleTong, Qian, Xue Yang, Yue Fei, and Jun Wang. 2025. "Short-Term Impact of Slow Maxillary Expansion on Labial Ectopic Canine Eruption Pathway in Children: A Retrospective Study" Children 12, no. 5: 653. https://doi.org/10.3390/children12050653
APA StyleTong, Q., Yang, X., Fei, Y., & Wang, J. (2025). Short-Term Impact of Slow Maxillary Expansion on Labial Ectopic Canine Eruption Pathway in Children: A Retrospective Study. Children, 12(5), 653. https://doi.org/10.3390/children12050653