Current and Emerging Applications of Artificial Intelligence in Medical Imaging for Paediatric Hip Disorders—A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stage 1: Identifying the Research Question
- -
- Population: paediatric patients (≤18 years old) with hip disorders.
- -
- Concept: the use of AI in medical imaging (all modalities).
- -
- Context: applied during one or more phases of diagnostics and treatment (screening/detection, diagnostics/grading, treatment, and follow-up).
2.2. Stage 2: Identifying Relevant Articles
2.3. Stage 3: Article Selection
2.4. Stage 4: Charting the Data
2.5. Stage 5: Collating, Summarising, and Reporting the Results
- A descriptive analysis of the included articles and mapping of the data, showing distributions of articles by time period of publication, country of origin, and study methods.
- A narrative summary outlining the applications of the identified AI models, their central themes and focus, and their performance (presented per model application type).
3. Results
3.1. Articles on AI Models for Paediatric Hip Disorders
3.2. Descriptives of the AI Models
3.3. AI Model Performance
3.3.1. Screening/Detection
3.3.2. Diagnostics/Grading
3.3.3. Treatment
3.3.4. Speed
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agostiniani, R.; Atti, G.; Bonforte, S.; Casini, C.; Cirillo, M.; De Pellegrin, M.; Di Bello, D.; Esposito, F.; Galla, A.; Marre Brunenghi, G.; et al. Recommendations for early diagnosis of Developmental Dysplasia of the Hip (DDH): Working group intersociety consensus document. Ital. J. Pediatr. 2020, 46, 150. [Google Scholar] [CrossRef] [PubMed]
- Beni, R.; Hussain, S.A.; Monsell, F.; Gelfer, Y. Management of Legg-Calve-Perthes disease: A scoping review with advice on initial management. Arch. Dis. Child. 2024, 110, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Pavone, V.; Testa, G.; Torrisi, P.; McCracken, K.L.; Caldaci, A.; Vescio, A.; Sapienza, M. Diagnosis of Slipped Capital Femoral Epiphysis: How to Stay out of Trouble? Children 2023, 10, 778. [Google Scholar] [CrossRef] [PubMed]
- Quader, N.; Schaeffer, E.K.; Hodgson, A.J.; Abugharbieh, R.; Mulpuri, K. A Systematic Review and Meta-analysis on the Reproducibility of Ultrasound-based Metrics for Assessing Developmental Dysplasia of the Hip. J. Pediatr. Orthop. 2018, 38, e305–e311. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Yang, Y.; Gao, Y. Artificial intelligence-aided decision support in paediatrics clinical diagnosis: Development and future prospects. J. Int. Med. Res. 2020, 48, 300060520945141. [Google Scholar] [CrossRef]
- Offiah, A.C. Current and emerging artificial intelligence applications for pediatric musculoskeletal radiology. Pediatr. Radiol. 2022, 52, 2149–2158. [Google Scholar] [CrossRef]
- Luo, S.; Deng, L.; Chen, Y.; Zhou, W.; Canavese, F.; Li, L. Revolutionizing pediatric orthopedics: GPT-4, a groundbreaking innovation or just a fleeting trend? Int. J. Surg. 2023, 109, 3694–3697. [Google Scholar] [CrossRef]
- Federer, S.J.; Jones, G.G. Artificial intelligence in orthopaedics: A scoping review. PLoS ONE 2021, 16, e0260471. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, J.; Liu, S.; Huo, T.; He, J.; Xue, M.; Fang, Y.; Wang, H.; Xie, Y.; Xie, M.; et al. Application of artificial intelligence technology in the field of orthopedics: A narrative review. Artif. Intell. Rev. 2024, 57, 13. [Google Scholar] [CrossRef]
- Schaeffer, E.K.; Study Group, I.; Mulpuri, K. Developmental dysplasia of the hip: Addressing evidence gaps with a multicentre prospective international study. Med. J. Aust. 2018, 208, 359–364. [Google Scholar] [CrossRef]
- Herregods, N.; Vanhoenacker, F.M.; Jaremko, J.L.; Jans, L. Update on Pediatric Hip Imaging. Semin. Musculoskelet. Radiol. 2017, 21, 561–581. [Google Scholar] [CrossRef] [PubMed]
- van Kouswijk, H.W.; Yazid, H.; Schoones, J.W.; de Witte, P.B. Scoping Review: The Use of Artificial Intelligence in Medical Imaging of Pediatric Hip Disorders. Available online: https://osf.io/67h2g/?view_only=e3f1c5eda9ff4fefa13b8391a639142e (accessed on 1 April 2025).
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Arklsey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Godfrey, C.; McInerney, P.; Munn, Z.; Tricco, A.C.; Khalil, H. Scoping reviews. In JBI Manual for Evidence Synthesis; Aromataris, E., Lockwood, C., Porritt, K., Pilla, B., Jordan, Z., Eds.; JBI: Adelaide, Australia, 2020. [Google Scholar]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, Version 29.0; IBM: Armonk, NY, USA, 2023. [Google Scholar]
- Quader, N.; Hodgson, A.J.; Mulpuri, K.; Schaeffer, E.; Abugharbieh, R. Automatic Evaluation of Scan Adequacy and Dysplasia Metrics in 2-D Ultrasound Images of the Neonatal Hip. Ultrasound Med. Biol. 2017, 43, 1252–1262. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, Y.; Wang, B.; Wang, J.; Cui, L.; He, J.; Cong, L. Development of a Fully Automated Graf Standard Plane and Angle Evaluation Method for Infant Hip Ultrasound Scans. Diagnostics 2022, 12, 1423. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, S.; Shi, W.; Wu, D.; Huang, B.; Tao, H.; He, X.; Xu, N. A deep learning model adjusting for infant gender, age, height, and weight to determine whether the individual infant suit ultrasound examination of developmental dysplasia of the hip (DDH). Front. Pediatr. 2023, 11, 1293320. [Google Scholar] [CrossRef]
- Chen, J.; Fan, X.; Chen, Z.; Peng, Y.; Liang, L.; Su, C.; Chen, Y.; Yao, J. Enhancing YOLO5 for the Assessment of Irregular Pelvic Radiographs with Multimodal Information. J. Imaging Inform. Med. 2024, 37, 744–755. [Google Scholar] [CrossRef]
- Gong, B.; Shi, J.; Han, X.; Zhang, H.; Huang, Y.; Hu, L.; Wang, J.; Du, J.; Shi, J. Diagnosis of Infantile Hip Dysplasia With B-Mode Ultrasound via Two-Stage Meta-Learning Based Deep Exclusivity Regularized Machine. IEEE J. Biomed. Health Inform. 2022, 26, 334–344. [Google Scholar] [CrossRef]
- He, J.; Cui, L.; Chen, T.; Lyu, X.; Yu, J.; Guo, W.; Wang, D.; Qin, X.; Zhao, Y.; Zhang, S. Study on multiplanar measurements of infant hips with three-dimensional ultrasonography. J. Clin. Ultrasound 2022, 50, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Xia, B.; Qian, J.; Zhou, X.; Zhou, X.; Liu, S.; Chang, A.; Yan, Z.; Tang, Z.; Xu, N.; et al. Artificial Intelligence-Assisted Ultrasound Diagnosis on Infant Developmental Dysplasia of the Hip Under Constrained Computational Resources. J. Ultrasound Med. 2023, 42, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Shi, J.; Li, J.; Wang, J.; Du, J.; Shi, J. Involution Transformer based U-Net for Landmark Detection in Ultrasound Images for Diagnosis of Infantile DDH. IEEE J. Biomed. Health Inform. 2024, 28, 4797–4809. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yan, Y.; Xu, H.; Cao, H.; Zhang, J.; Sha, J.; Fan, Z.; Huang, L. Comparison of Transfer Learning Models in Pelvic Tilt and Rotation Measurement in Pediatric Anteroposterior Pelvic Radiographs. J. Digit. Imaging 2022, 35, 1506–1513. [Google Scholar] [CrossRef]
- Li, X.; Zhang, R.; Wang, Z.; Wang, J. Semi-supervised learning in diagnosis of infant hip dysplasia towards multisource ultrasound images. Quant. Imaging Med. Surg. 2024, 14, 3707–3716. [Google Scholar] [CrossRef]
- Liu, C.; Xie, H.; Zhang, S.; Mao, Z.; Sun, J.; Zhang, Y. Misshapen Pelvis Landmark Detection With Local-Global Feature Learning for Diagnosing Developmental Dysplasia of the Hip. IEEE Trans. Med. Imaging 2020, 39, 3944–3954. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, L.; Fan, M.; Zhang, T.; Chen, J.; Li, X.; Lv, Y.; Zheng, P.; Chen, F.; Sun, G. Application of AI-assisted MRI for the identification of surgical target areas in pediatric hip and periarticular infections. BMC Musculoskelet. Disord. 2024, 25, 428. [Google Scholar] [CrossRef]
- Lv, J.; Che, J.; Chen, X. CBA-YOLOv5s: A hip dysplasia detection algorithm based on YOLOv5s using angle consistency and bi-level routing attention. Biomed. Signal Process. Control. 2024, 95, 106482. [Google Scholar] [CrossRef]
- Sha, J.; Huang, L.; Chen, Y.; Lin, J.; Fan, Z.; Li, Y.; Yan, Y. A novel approach for screening standard anteroposterior pelvic radiographs in children. Eur. J. Pediatr. 2023, 182, 4983–4991. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, H.; Sun, J.; Liu, C.; Fang, J.; Xie, H.; Zhang, S. Application of deep-learning-based artificial intelligence in acetabular index measurement. Front. Pediatr. 2022, 10, 1049575. [Google Scholar] [CrossRef]
- Xu, J.; Xie, H.; Liu, C.; Yang, F.; Zhang, S.; Chen, X.; Zhang, Y. Hip Landmark Detection With Dependency Mining in Ultrasound Image. IEEE Trans. Med. Imaging 2021, 40, 3762–3774. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Shu, L.; Gong, P.; Huang, C.; Xu, J.; Zhao, J.; Shu, Q.; Zhu, M.; Qi, G.; Zhao, G.; et al. A Deep-Learning Aided Diagnostic System in Assessing Developmental Dysplasia of the Hip on Pediatric Pelvic Radiographs. Front. Pediatr. 2021, 9, 785480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.C.; Sun, J.; Liu, C.B.; Fang, J.H.; Xie, H.T.; Ning, B. Clinical application of artificial intelligence-assisted diagnosis using anteroposterior pelvic radiographs in children with developmental dysplasia of the hip. Bone Joint J. 2020, 102-B, 1574–1581. [Google Scholar] [CrossRef]
- El-Hariri, H.; Hodgson, A.J.; Mulpuri, K.; Garbi, R. Automatically Delineating Key Anatomy in 3-D Ultrasound Volumes for Hip Dysplasia Screening. Ultrasound Med. Biol. 2021, 47, 2713–2722. [Google Scholar] [CrossRef]
- Ghasseminia, S.; Lim, A.K.S.; Concepcion, N.D.P.; Kirschner, D.; Teo, Y.M.; Dulai, S.; Mabee, M.; Kernick, S.; Brockley, C.; Muljadi, S.; et al. Interobserver Variability of Hip Dysplasia Indices on Sweep Ultrasound for Novices, Experts, and Artificial Intelligence. J. Pediatr. Orthop. 2022, 42, e315–e323. [Google Scholar] [CrossRef]
- Ghasseminia, S.; Seyed Bolouri, S.E.; Dulai, S.; Kernick, S.; Brockley, C.; Rakkunedeth Hareendranathan, A.; Zonoobi, D.; Rao, P.; Jaremko, J.L. Automated diagnosis of hip dysplasia from 3D ultrasound using artificial intelligence: A two-center multi-year study. Inform. Med. Unlocked 2022, 33, 101082. [Google Scholar] [CrossRef]
- Hareendranathan, A.R.; Chahal, B.S.; Zonoobi, D.; Sukhdeep, D.; Jaremko, J.L. Artificial Intelligence to Automatically Assess Scan Quality in Hip Ultrasound. Indian. J. Orthop. 2021, 55, 1535–1542. [Google Scholar] [CrossRef]
- Hareendranathan, A.R.; Chahal, B.; Ghasseminia, S.; Zonoobi, D.; Jaremko, J.L. Impact of scan quality on AI assessment of hip dysplasia ultrasound. J. Ultrasound 2022, 25, 145–153. [Google Scholar] [CrossRef]
- Hareendrananthan, A.R.; Mabee, M.; Chahal, B.S.; Dulai, S.K.; Jaremko, J.L. Can AI Automatically Assess Scan Quality of Hip Ultrasound? Appl. Sci. 2022, 12, 4072. [Google Scholar] [CrossRef]
- Jaremko, J.L.; Hareendranathan, A.; Bolouri, S.E.S.; Frey, R.F.; Dulai, S.; Bailey, A.L. AI aided workflow for hip dysplasia screening using ultrasound in primary care clinics. Sci. Rep. 2023, 13, 9224. [Google Scholar] [CrossRef]
- Libon, J.; Ng, C.; Bailey, A.; Hareendranathan, A.; Joseph, R.; Dulai, S. Remote diagnostic imaging using artificial intelligence for diagnosing hip dysplasia in infants: Results from a mixed-methods feasibility pilot study. Paediatr. Child. Health 2023, 28, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.T.; Le, M.B.; Le, L.H.; Andersen, J.; Lou, E. Assessment of hip displacement in children with cerebral palsy using machine learning approach. Med. Biol. Eng. Comput. 2021, 59, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
- Sezer, A.; Sezer, H.B. Deep Convolutional Neural Network-Based Automatic Classification of Neonatal Hip Ultrasound Images: A Novel Data Augmentation Approach with Speckle Noise Reduction. Ultrasound Med. Biol. 2020, 46, 735–749. [Google Scholar] [CrossRef] [PubMed]
- Kinugasa, M.; Inui, A.; Satsuma, S.; Kobayashi, D.; Sakata, R.; Morishita, M.; Komoto, I.; Kuroda, R. Diagnosis of Developmental Dysplasia of the Hip by Ultrasound Imaging Using Deep Learning. J. Pediatr. Orthop. 2023, 43, e538–e544. [Google Scholar] [CrossRef]
- Fraiwan, M.; Al-Kofahi, N.; Ibnian, A.; Hanatleh, O. Detection of developmental dysplasia of the hip in X-ray images using deep transfer learning. BMC Med. Inform. Decis. Mak. 2022, 22, 216. [Google Scholar] [CrossRef]
- Lee, S.W.; Ye, H.U.; Lee, K.J.; Jang, W.Y.; Lee, J.H.; Hwang, S.M.; Heo, Y.R. Accuracy of New Deep Learning Model-Based Segmentation and Key-Point Multi-Detection Method for Ultrasonographic Developmental Dysplasia of the Hip (DDH) Screening. Diagnostics 2021, 11, 1174. [Google Scholar] [CrossRef]
- Park, H.S.; Jeon, K.; Cho, Y.J.; Kim, S.W.; Lee, S.B.; Choi, G.; Lee, S.; Choi, Y.H.; Cheon, J.E.; Kim, W.S.; et al. Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs. Korean J. Radiol. 2021, 22, 612–623. [Google Scholar] [CrossRef]
- Jan, F.; Rahman, A.; Busaleh, R.; Alwarthan, H.; Aljaser, S.; Al-Towailib, S.; Alshammari, S.; Alhindi, K.R.; Almogbil, A.; Bubshait, D.A.; et al. Assessing Acetabular Index Angle in Infants: A Deep Learning-Based Novel Approach. J. Imaging 2023, 9, 242. [Google Scholar] [CrossRef]
- Atalar, H.; Ureten, K.; Tokdemir, G.; Tolunay, T.; Ciceklidag, M.; Atik, O.S. The Diagnosis of Developmental Dysplasia of the Hip From Hip Ultrasonography Images With Deep Learning Methods. J. Pediatr. Orthop. 2023, 43, e132–e137. [Google Scholar] [CrossRef]
- Memis, A.; Varli, S.; Bilgili, F. Semantic segmentation of the multiform proximal femur and femoral head bones with the deep convolutional neural networks in low quality MRI sections acquired in different MRI protocols. Comput. Med. Imaging Graph. 2020, 81, 101715. [Google Scholar] [CrossRef]
- Chen, Y.P.; Fan, T.Y.; Chu, C.C.; Lin, J.J.; Ji, C.Y.; Kuo, C.F.; Kao, H.K. Automatic and Human Level Graf’s Type Identification for Detecting Developmental Dysplasia of the Hip. Biomed. J. 2023, 47, 100614. [Google Scholar] [CrossRef] [PubMed]
- Perry, S.; Folkman, M.; O’Brien, T.; Wilson, L.A.; Coyle, E.; Liu, R.W.; Price, C.T.; Huayamave, V.A. Unaligned Hip Radiograph Assessment Utilizing Convolutional Neural Networks for the Assessment of Developmental Dysplasia of the Hip. J. Eng. Sci. Med. Diagn. Ther. 2024, 7, 041003. [Google Scholar] [CrossRef]
- Sezer, A.; Sezer, H.B. Segmentation of measurable images from standard plane of Graf hip ultrasonograms based on Mask Region-Based Convolutional Neural Network. Jt. Dis. Relat. Surg. 2023, 34, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Oelen, D.; Kaiser, P.; Baumann, T.; Schmid, R.; Buhler, C.; Munkhuu, B.; Essig, S. Accuracy of Trained Physicians is Inferior to Deep Learning-Based Algorithm for Determining Angles in Ultrasound of the Newborn Hip. Ultraschall Med. 2022, 43, e49–e55. [Google Scholar] [CrossRef]
- Den, H.; Ito, J.; Kokaze, A. Diagnostic accuracy of a deep learning model using YOLOv5 for detecting developmental dysplasia of the hip on radiography images. Sci. Rep. 2023, 13, 6693. [Google Scholar] [CrossRef]
- Netherlands Federation of University Medical Centres (NFU). Guideline “Quality Assurance of Research Involving Human Subjects”; NFU: Utrecht, The Netherlands, 2020. [Google Scholar]
- Mulder, F.E.C.M.; van Kouswijk, H.W.; Witlox, M.A.; Mathijssen, N.M.C.; de Witte, P.B. An Overview and Quality Assessment of European National Guidelines For Screening and Treatment of Developmental Dysplasia of The Hip. 2025; manuscript submitted for publication. [Google Scholar]
- Graf, R. New possibilities for the diagnosis of congenital hip joint dislocation by ultrasonography. J. Pediatr. Orthop. 1983, 3, 354–359. [Google Scholar] [CrossRef]
- Wu, F.; Lu, C.; Zhu, M.; Chen, H.; Zhu, J.; Yu, K.; Li, L.; Li, M.; Chen, Q.; Li, X.; et al. Towards a new generation of artificial intelligence in China. Nat. Mach. Intell. 2020, 2, 312–316. [Google Scholar] [CrossRef]
- Shahbazi, N.; Lin, Y.; Asudeh, A.; Jagadish, H.V. Representation Bias in Data: A Survey on Identification and Resolution Techniques. ACM Comput. Surv. 2023, 55, 293. [Google Scholar] [CrossRef]
- Ritore, A.; Jimenez, C.M.; Gonzalez, J.L.; Rejon-Parrilla, J.C.; Hervas, P.; Toro, E.; Parra-Calderon, C.L.; Celi, L.A.; Tunez, I.; Armengol de la Hoz, M.A. The role of Open Access Data in democratizing healthcare AI: A pathway to research enhancement, patient well-being and treatment equity in Andalusia, Spain. PLOS Digit. Health 2024, 3, e0000599. [Google Scholar] [CrossRef]
- Pennestri, F.; Cabitza, F.; Picerno, N.; Banfi, G. Sharing reliable information worldwide: Healthcare strategies based on artificial intelligence need external validation. Position Paper. BMC Med. Inform. Decis. Mak. 2025, 25, 56. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.M.; Farahvash, A.; Zezos, P. Artificial Intelligence for Classification of Endoscopic Severity of Inflammatory Bowel Disease: A Systematic Review and Critical Appraisal. Inflamm. Bowel Dis. 2025, izaf050. [Google Scholar] [CrossRef] [PubMed]
- Rockenschaub, P.; Akay, E.M.; Carlisle, B.G.; Hilbert, A.; Wendland, J.; Meyer-Eschenbach, F.; Naher, A.F.; Frey, D.; Madai, V.I. External validation of AI-based scoring systems in the ICU: A systematic review and meta-analysis. BMC Med. Inform. Decis. Mak. 2025, 25, 5. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Quantitative studies Available in English Use of AI in medical imaging in paediatric patients (≤18 years old) with hip disorders | Qualitative studies Grey literature (e.g., theses and editorials) Conference abstracts Reviews (narrative, scoping, and systematic) Including adults (>18 years old) Imaging of joints other than the hip |
Value | |
---|---|
Country of origin (n, %) a | |
China | 17 (42.5) |
Canada | 10 (25) |
France | 2 (5) |
Japan | 2 (5) |
Korea | 2 (5) |
Turkey | 2 (5) |
Jordan | 1 (2.5) |
Mongolia | 1 (2.5) |
Saudi Arabia | 1 (2.5) |
Taiwan | 1 (2.5) |
United States of America | 1 (2.5) |
Institution type (n, %) | |
Academic (children’s) hospital(s) | 28 (70) |
Peripheral (children’s) hospital(s) | 12 (30) |
Research purpose (n, %) b | |
Develop a new model | 23 (57.5) |
Enhance an existing model | 10 (25) |
External validation | 8 (20) |
Feasibility study | 2 (5) |
No. of images in dataset (median, range) | 1321 (107–303,306) |
Moment of Application | Total (n, %) | |||
---|---|---|---|---|
Screening | Diagnosis | Treatment | ||
Ultrasound | DDH: 13 | DDH: 11 | - | 24 (60) |
Radiographs | DDH: 4 | DDH: 9 CP: 1 | - | 14 (35) |
MRI | - | LCPD: 1 | Arthritis: 1 | 2 (5) |
Total (n, %) | 17 (42.5) | 22 (55) | 1 (2.5) | 40 (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Kouswijk, H.W.; Yazid, H.; Schoones, J.W.; Witlox, M.A.; Nelissen, R.G.H.H.; de Witte, P.B. Current and Emerging Applications of Artificial Intelligence in Medical Imaging for Paediatric Hip Disorders—A Scoping Review. Children 2025, 12, 645. https://doi.org/10.3390/children12050645
van Kouswijk HW, Yazid H, Schoones JW, Witlox MA, Nelissen RGHH, de Witte PB. Current and Emerging Applications of Artificial Intelligence in Medical Imaging for Paediatric Hip Disorders—A Scoping Review. Children. 2025; 12(5):645. https://doi.org/10.3390/children12050645
Chicago/Turabian Stylevan Kouswijk, Hilde W., Hizbillah Yazid, Jan W. Schoones, M. Adhiambo Witlox, Rob G. H. H. Nelissen, and Pieter Bas de Witte. 2025. "Current and Emerging Applications of Artificial Intelligence in Medical Imaging for Paediatric Hip Disorders—A Scoping Review" Children 12, no. 5: 645. https://doi.org/10.3390/children12050645
APA Stylevan Kouswijk, H. W., Yazid, H., Schoones, J. W., Witlox, M. A., Nelissen, R. G. H. H., & de Witte, P. B. (2025). Current and Emerging Applications of Artificial Intelligence in Medical Imaging for Paediatric Hip Disorders—A Scoping Review. Children, 12(5), 645. https://doi.org/10.3390/children12050645