Neurodevelopmental Impact of Maternal Postnatal Depression: A Systematic Review of EEG Biomarkers in Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Study Selection
2.4. Quality Assessment and Interrater Reliability
2.5. Data Extraction and Analysis
3. Results
3.1. Overview and Sample Characteristics of Included Studies
3.2. Exposure to Maternal Depression
3.3. Neurophysiological EEG Metrics
4. Discussion
4.1. EEG Asymmetry
4.2. EEG Power and Connectivity
4.3. Clinical Implications
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brummelte, S.; Galea, L.A.M. Postpartum depression: Etiology, treatment and consequences for maternal care. Horm. Behav. 2016, 77, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, V.; Altshuler, L.L.; Suri, R. Hormonal Changes in the Postpartum and Implications for Postpartum Depression. Psychosomatics 1998, 39, 93–101. [Google Scholar] [CrossRef]
- Payne, J.L.; Maguire, J. Pathophysiological mechanisms implicated in postpartum depression. Front. Neuroendocrinol. 2019, 52, 165–180. [Google Scholar] [CrossRef]
- Tebeka, S.; Le Strat, Y.; De Premorel Higgons, A.; Benachi, A.; Dommergues, M.; Kayem, G.; Lepercq, J.; Luton, D.; Mandelbrot, L.; Ville, Y.; et al. Prevalence and incidence of postpartum depression and environmental factors: The IGEDEPP cohort. J. Psychiatr. Res. 2021, 138, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Brain, U.; Grunau, R.E.; Diamond, A.; Oberlander, T.F. Maternal depression trajectories from pregnancy to 3 years postpartum are associated with children’s behavior and executive functions at 3 and 6 years. Arch. Women’s Ment. Health 2018, 21, 353–363. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Shuai, H.; Cai, Z.; Fu, X.; Liu, Y.; Xiao, X.; Zhang, W.; Krabbendam, E.; Liu, S. Mapping global prevalence of depression among postpartum women. Transl. Psychiatry 2021, 11, 543. [Google Scholar]
- Liu, X.; Wang, S.; Wang, G. Prevalence and Risk Factors of Postpartum Depression in Women: A Systematic Review and Meta-analysis. J. Clin. Nurs. 2022, 31, 2665–2677. [Google Scholar] [CrossRef]
- Lagercrantz, H. Infant Brain Development; Springer: Cham, Switzerland, 2016; ISBN 3-319-44843-9. [Google Scholar]
- Murray, L.; Arteche, A.; Fearon, P.; Halligan, S.; Goodyer, I.; Cooper, P. Maternal postnatal depression and the development of depression in offspring up to 16 years of age. J. Am. Acad. Child Adolesc. Psychiatry 2011, 50, 460–470. [Google Scholar] [PubMed]
- Pearson, R.M.; Evans, J.; Kounali, D.; Lewis, G.; Heron, J.; Ramchandani, P.G.; O’Connor, T.G.; Stein, A. Maternal depression during pregnancy and the postnatal period: Risks and possible mechanisms for offspring depression at age 18 years. JAMA Psychiatry 2013, 70, 1312–1319. [Google Scholar]
- Diego, M.A.; Field, T.; Hernandez-Reif, M.; Cullen, C.; Schanberg, S.; Kuhn, C. Prepartum, Postpartum, and Chronic Depression Effects on Newborns. Psychiatry 2004, 67, 63–80. [Google Scholar] [CrossRef]
- Lundy, B.L.; Jones, N.A.; Field, T.; Nearing, G.; Davalos, M.; Pietro, P.A.; Schanberg, S.; Kuhn, C. Prenatal depression effects on neonates. Infant Behav. Dev. 1999, 22, 119–129. [Google Scholar] [CrossRef]
- Hollanders, J.J.; van der Voorn, B.; Kieviet, N.; Dolman, K.M.; de Rijke, Y.B.; van den Akker, E.L.; Rotteveel, J.; Honig, A.; Finken, M.J. Interpretation of glucocorticoids in neonatal hair: A reflection of intrauterine glucocorticoid regulation? Endocr. Connect. 2017, 6, 692–699. [Google Scholar] [CrossRef]
- Lester, B.M.; Conradt, E.; Marsit, C.J. Epigenetic Basis for the Development of Depression in Children. Clin. Obstet. Gynecol. 2013, 56, 556–565. [Google Scholar] [CrossRef]
- Christian, L.M.; Mitchell, A.M.; Gillespie, S.L.; Palettas, M. Serum brain-derived neurotrophic factor (BDNF) across pregnancy and postpartum: Associations with race, depressive symptoms, and low birth weight. Psychoneuroendocrinology 2016, 74, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, M.C.; Graczyk, P.A.; O’Hare, E.; Neuman, G. Maternal depression and parenting behavior: A meta-analytic review. Clin. Psychol. Rev. 2000, 20, 561–592. [Google Scholar] [CrossRef]
- Ferber, S.G.; Feldman, R.; Makhoul, I.R. The development of maternal touch across the first year of life. Early Hum. Dev. 2008, 84, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Beebe, B.; Lachmann, F.; Jaffe, J.; Markese, S.; Buck, K.A.; Chen, H.; Cohen, P.; Feldstein, S.; Andrews, H. Maternal postpartum depressive symptoms and 4-month mother–infant interaction. Psychoanal. Psychol. 2012, 29, 383. [Google Scholar] [CrossRef]
- Hakanen, H.; Flykt, M.; Sinervä, E.; Nolvi, S.; Kataja, E.-L.; Pelto, J.; Karlsson, H.; Karlsson, L.; Korja, R. How maternal pre-and postnatal symptoms of depression and anxiety affect early mother-infant interaction? J. Affect. Disord. 2019, 257, 83–90. [Google Scholar] [CrossRef]
- Fan, X.; Wu, N.; Tu, Y.; Zang, T.; Bai, J.; Peng, G.; Liu, Y. Perinatal depression and infant and toddler neurodevelopment: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2024, 159, 105579. [Google Scholar] [CrossRef]
- Liu, Y.; Kaaya, S.; Chai, J.; McCoy, D.C.; Surkan, P.J.; Black, M.M.; Sutter-Dallay, A.-L.; Verdoux, H.; Smith-Fawzi, M.C. Maternal depressive symptoms and early childhood cognitive development: A meta-analysis. Psychol. Med. 2017, 47, 680–689. [Google Scholar] [CrossRef]
- Wiggins, J.L.; Schwartz, K.T.G.; Kryza-Lacombe, M.; Spechler, P.A.; Blankenship, S.L.; Dougherty, L.R. Neural reactivity to reward in school-age offspring of depressed mothers. J. Affect. Disord. 2017, 214, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Farah, R.; Greenwood, P.; Dudley, J.; Hutton, J.; Ammerman, R.T.; Phelan, K.; Holland, S.; Horowitz-Kraus, T. Maternal depression is associated with altered functional connectivity between neural circuits related to visual, auditory, and cognitive processing during stories listening in preschoolers. Behav. Brain Funct. 2020, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.K.; Shaw, D.S.; Forbes, E.E. Maternal Depression and Warmth During Childhood Predict Age 20 Neural Response to Reward. J. Am. Acad. Child Adolesc. Psychiatry 2014, 53, 108–117.e1. [Google Scholar] [CrossRef]
- Olino, T.M.; Mattoni, M. Neural activation and connectivity in offspring of depressed mothers during monetary and social reward tasks. Biol. Psychol. 2024, 185, 108724. [Google Scholar] [CrossRef]
- Towers, D.N.; Allen, J.J. A better estimate of the internal consistency reliability of frontal EEG asymmetry scores. Psychophysiology 2009, 46, 132–142. [Google Scholar]
- Fox, N.A.; Calkins, S.D.; Bell, M.A. Neural plasticity and development in the first two years of life: Evidence from cognitive and socioemotional domains of research. Dev. Psychopathol. 1994, 6, 677–696. [Google Scholar]
- Harmon-Jones, E.; Allen, J.J. Behavioral activation sensitivity and resting frontal EEG asymmetry: Covariation of putative indicators related to risk for mood disorders. J. Abnorm. Psychol. 1997, 106, 159. [Google Scholar] [CrossRef]
- Field, T.; Diego, M.; Hemandez-Reif, M. Prenatal depression effects on the fetus and newborn: A review. Infant Behav. Dev. 2006, 29, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Diaz, A.; Day, K.L.; Bell, M.A. Infant frontal electroencephalogram asymmetry and negative emotional reactivity as predictors of toddlerhood effortful control. J. Exp. Child Psychol. 2016, 142, 262–273. [Google Scholar] [CrossRef]
- Thibodeau, R.; Jorgensen, R.S.; Kim, S. Depression, anxiety, and resting frontal EEG asymmetry: A meta-analytic review. J. Abnorm. Psychol. 2006, 115, 715–729. [Google Scholar] [CrossRef]
- Perone, S.; Gartstein, M.A.; Anderson, A.J. Dynamics of frontal alpha asymmetry in mother-infant dyads: Insights from the Still Face Paradigm. Infant Behav. Dev. 2020, 61, 101500. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L.; Bell, M.A. Stability in infant frontal asymmetry as a predictor of toddlerhood internalizing and externalizing behaviors. Dev. Psychobiol. 2010, 52, 158–167. [Google Scholar] [CrossRef]
- Diane Santesso, L.; Reker Dana, L.; Schmidt, L.A.; Segalowitz, S.J. Frontal Electroencephalogram Activation Asymmetry, Emotional Intelligence, and Externalizing Behaviors in 10-Year-Old Children. Child Psychiatry Hum. Dev. 2006, 36, 311–328. [Google Scholar] [CrossRef]
- Thatcher, R.W.; Walker, R.A.; Giudice, S. Human cerebral hemispheres develop at different rates and ages. Science 1987, 236, 1110–1113. [Google Scholar]
- Schmidt, L.A.; Poole, K.L. Positive shyness and frontal EEG alpha/delta ratio in children: A pilot study. Personal. Individ. Differ. 2021, 170, 110423. [Google Scholar]
- Schleiger, E.; Sheikh, N.; Rowland, T.; Wong, A.; Read, S.; Finnigan, S. Frontal EEG delta/alpha ratio and screening for post-stroke cognitive deficits: The power of four electrodes. Int. J. Psychophysiol. 2014, 94, 19–24. [Google Scholar]
- Anaya, B.; Ostlund, B.; LoBue, V.; Buss, K.; Pérez-Edgar, K. Psychometric properties of infant electroencephalography: Developmental stability, reliability, and construct validity of frontal alpha asymmetry and delta–beta coupling. Dev. Psychobiol. 2021, 63, e22178. [Google Scholar] [CrossRef]
- Schmidt, L.A.; Poole, K.L.; Hassan, R.; Willoughby, T. Frontal EEG alpha-delta ratio and social anxiety across early adolescence. Int. J. Psychophysiol. 2022, 175, 1–7. [Google Scholar] [CrossRef]
- Phelps, R.A.; Brooker, R.J.; Buss, K.A. Toddlers’ dysregulated fear predicts delta–beta coupling during preschool. Dev. Cogn. Neurosci. 2016, 17, 28–34. [Google Scholar]
- Harrewijn, A.; van der Molen, M.J.; van Vliet, I.M.; Houwing-Duistermaat, J.J.; Westenberg, P.M. Delta-beta correlation as a candidate endophenotype of social anxiety: A two-generation family study. J. Affect. Disord. 2018, 227, 398–405. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. Cochrane Handbook for Systematic Reviews of Interventions Version 6.4. 2023. Available online: www.training.cochrane.org/handbook (accessed on 21 February 2024).
- Connell, A.M.; Danzo, S.; Magee, K.; Uhlman, R. Children’s appraisals of maternal depression and responses to emotional faces in early-adolescence: An Event Related Potential (ERP) study. J. Affect. Disord. 2019, 250, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Pratt, M.; Goldstein, A.; Levy, J.; Feldman, R. Maternal Depression Across the First Years of Life Impacts the Neural Basis of Empathy in Preadolescence. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 20–29. [Google Scholar] [CrossRef]
- Field, T.; Diego, M.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C. Right frontal EEG and pregnancy/neonatal outcomes. Psychiatry 2002, 65, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Field, T.; Diego, M.; Hernandez-Reif, M.; Schanberg, S.; Kuhn, C. Relative right versus left frontal EEG in neonates. Dev. Psychobiol. 2002, 41, 147–155. [Google Scholar] [CrossRef]
- Field, T.; Diego, M.; Hernandez-Reif, M.; Figueiredo, B.; Deeds, O.; Ascencio, A.; Schanberg, S.; Kuhn, C. Comorbid depression and anxiety effects on pregnancy and neonatal outcome. Infant Behav. Dev. 2010, 33, 23–29. [Google Scholar] [CrossRef]
- Gustafsson, H.; Grieve, P.; Werner, E.; Desai, P.; Monk, C. Newborn electroencephalographic correlates of maternal prenatal depressive symptoms. J. Dev. Orig. Health Dis. 2018, 9, 381–385. [Google Scholar] [CrossRef]
- Luotonen, S.; Railo, H.; Acosta, H.; Huotilainen, M.; Lavonius, M.; Karlsson, L.; Karlsson, H.; Tuulari, J.J. Auditory Mismatch Responses to Emotional Stimuli in 3-Year-Olds in Relation to Prenatal Maternal Depression Symptoms. Front. Neurosci. 2022, 16, 868270. [Google Scholar] [CrossRef]
- Brandes-Aitken, A.; Hume, A.; Braren, S.; Werchan, D.; Zhang, M.; Brito, N. Maternal heart rate variability at 3-months postpartum is associated with maternal mental health and infant neurophysiology. Sci. Rep. 2024, 14, 18766. [Google Scholar] [CrossRef]
- Nance, M.; Landsman, Z.; Gerling, G.; Puglia, M. Infant neural sensitivity to affective touch is associated with maternal postpartum depression. Infant Behav. Dev. 2024, 76, 101980. [Google Scholar] [CrossRef]
- Field, T.; Diego, M. Maternal depression effects on infant frontal EEG asymmetry. Int. J. Neurosci. 2008, 118, 1081–1108. [Google Scholar] [CrossRef]
- Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ott. Ott. Hosp. Res. Inst. 2011, 2, 1–12. [Google Scholar]
- Jones, N.A.; McFall, B.A.; Diego, M.A. Patterns of brain electrical activity in infants of depressed mothers who breastfeed and bottle feed: The mediating role of infant temperament. Biol. Psychol. 2004, 67, 103–124. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013; ISBN 0-203-77158-3. [Google Scholar]
- Lusby, C.M.; Goodman, S.H.; Bell, M.A.; Newport, D.J. Electroencephalogram patterns in infants of depressed mothers. Dev. Psychobiol. 2014, 56, 459–473. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.H.; Liu, R.; Lusby, C.M.; Park, J.S.; Bell, M.A.; Newport, D.J.; Stowe, Z.N. Consistency of EEG asymmetry patterns in infants of depressed mothers. Dev. Psychobiol. 2021, 63, 768–781. [Google Scholar] [CrossRef] [PubMed]
- Diego, M.; Field, T.; Jones, N.; Hernandez-Reif, M. Withdrawn and intrusive maternal interaction style and infant frontal EEG asymmetry shifts in infants of depressed and non-depressed mothers. Infant Behav. Dev. 2006, 29, 220–229. [Google Scholar] [CrossRef]
- Hardin, J.; Jones, N.; Mize, K.; Platt, M. Affectionate Touch in the Context of Breastfeeding and Maternal Depression Influences Infant Neurodevelopmental and Temperamental Substrates. Neuropsychobiology 2021, 80, 158–175. [Google Scholar] [CrossRef]
- Kling, J.; Mistry-Patel, S.; Peoples, S.; Caldera, D.; Brooker, R. Prenatal maternal depression predicts neural maturation and negative emotion in infants. Infant Behav. Dev. 2023, 70, 101802. [Google Scholar] [CrossRef]
- Krzeczkowski, J.E.; Schmidt, L.A.; Van Lieshout, R.J. Changes in infant emotion regulation following maternal cognitive behavioral therapy for postpartum depression. Depress Anxiety 2021, 38, 412–421. [Google Scholar] [CrossRef]
- Lusby, C.; Goodman, S.; Yeung, E.; Bell, M.; Stowe, Z. Infant EEG and temperament negative affectivity: Coherence of vulnerabilities to mothers’ perinatal depression. Dev. Psychopathol. 2016, 28, 895–911. [Google Scholar] [CrossRef]
- Marino, C.; Riva, V.; Mornati, G.; Piazza, C.; del Giudice, R.; Dionne, G.; Molteni, M.; Cantiani, C. Postnatal maternal symptoms of depression and child emotion dysregulation: The mediation role of infant EEG alpha asymmetry. Infant Behav. Dev. 2019, 57, 101321. [Google Scholar] [CrossRef] [PubMed]
- Soe, N.N.; Wen, D.J.; Poh, J.S.; Li, Y.; Broekman, B.F.P.; Chen, H.; Chong, Y.S.; Kwek, K.; Saw, S.-M.; Gluckman, P.D.; et al. Pre- and post-natal maternal depressive symptoms in relation with infant frontal function, connectivity, and behaviors. PLoS ONE 2016, 11, e0152991. [Google Scholar] [CrossRef]
- Wen, D.J.; Soe, N.N.; Sim, L.W.; Sanmugam, S.; Kwek, K.; Chong, Y.-S.; Gluckman, P.D.; Meaney, M.J.; Rifkin-Graboi, A.; Qiu, A. Infant frontal EEG asymmetry in relation with postnatal maternal depression and parenting behavior. Transl. Psychiatry 2017, 7, e1057. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Zhang, Y.; Li, R.; Wu, H.; Li, C.; Wu, Y.; Tao, Q. The Reliability and Validity of the Center for Epidemiologic Studies Depression Scale (CES-D) for Chinese University Students. Front. Psychiatry 2019, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Ilic, I.; Babic, G.; Dimitrijevic, A.; Ilic, M.; Sipetic Grujicic, S. Reliability and validity of the Center for Epidemiologic Studies Depression (CES-D) scale in Serbian women with abnormal Papanicolaou smear results. Int. J. Gynecol. Cancer 2019, 29, 996–1002. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Gorenstein, C. Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Braz. J. Psychiatry 2013, 35, 416–431. [Google Scholar] [CrossRef] [PubMed]
- Vieira Da Silva Magalhães, P.; Tavares Pinheiro, R.; Lessa Horta, B.; Amaral Tavares Pinheiro, K.; Azevedo Da Silva, R. Validity of the Beck Depression Inventory in the postpartum period. Int. J. Psychiatry Clin. Pract. 2008, 12, 81–84. [Google Scholar] [CrossRef]
- Heller, H.M.; Draisma, S.; Honig, A. Construct validity and responsiveness of instruments measuring depression and anxiety in pregnancy: A comparison of EPDS, HADS-A and CES-D. Int. J. Environ. Res. Public Health 2022, 19, 7563. [Google Scholar] [CrossRef] [PubMed]
- Levis, B.; Negeri, Z.; Sun, Y.; Benedetti, A.; Thombs, B.D. Accuracy of the Edinburgh Postnatal Depression Scale (EPDS) for screening to detect major depression among pregnant and postpartum women: Systematic review and meta-analysis of individual participant data. BMJ 2020, 371, m4022. [Google Scholar] [CrossRef]
- Rocha, N.A.C.F.; dos Santos Silva, F.P.; Dos Santos, M.M.; Dusing, S.C. Impact of mother–infant interaction on development during the first year of life: A systematic review. J. Child Health Care 2020, 24, 365–385. [Google Scholar] [CrossRef]
- Poobalan, A.S.; Aucott, L.S.; Ross, L.; Smith, W.C.S.; Helms, P.J.; Williams, J.H. Effects of treating postnatal depression on mother-infant interaction and child development: Systematic review. Br. J. Psychiatry 2007, 191, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Tsivos, Z.-L.; Calam, R.; Sanders, M.R.; Wittkowski, A. Interventions for postnatal depression assessing the mother–infant relationship and child developmental outcomes: A systematic review. Int. J. Women’s Health 2015, 7, 429–447. [Google Scholar]
- Lahat, A.; Tang, A.; Tanaka, M.; Van Lieshout, R.J.; MacMillan, H.L.; Schmidt, L.A. Longitudinal Associations Among Child Maltreatment, Resting Frontal Electroencephalogram Asymmetry, and Adolescent Shyness. Child Dev. 2018, 89, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Metzen, D.; Genç, E.; Getzmann, S.; Larra, M.F.; Wascher, E.; Ocklenburg, S. Frontal and parietal EEG alpha asymmetry: A large-scale investigation of short-term reliability on distinct EEG systems. Brain Struct. Funct. 2022, 227, 725–740. [Google Scholar] [CrossRef]
- Shankman, S.A.; Tenke, C.E.; Bruder, G.E.; Durbin, C.E.; Hayden, E.P.; Klein, D.N. Low positive emotionality in young children: Association with EEG asymmetry. Dev. Psychopathol. 2005, 17, 85–98. [Google Scholar]
- Raju, T.N. Breastfeeding is a dynamic biological process—Not simply a meal at the breast. Breastfeed. Med. 2011, 6, 257–259. [Google Scholar]
- Nelson, C.A. Hazards to Early Development: The Biological Embedding of Early Life Adversity. Neuron 2017, 96, 262–266. [Google Scholar] [CrossRef]
- Alvarez, S.L.; Meltzer-Brody, S.; Mandel, M.; Beeber, L. Maternal Depression and Early Intervention: A Call for an Integration of Services. Infants Young Child. 2015, 28, 72–87. [Google Scholar] [CrossRef]
No. | Author, Date | Country | Study Type | Group | Sample Size | Mean Maternal Age (SD) | Married (%) | Primiparity N (%) | Mean Infant Age (SD) | Infant Gender Male N (%) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Diego et al., 2004 [11] | USA | Cohort | Total sample | n = 80 mother–infant dyads | 27 years (6.5) | 63.75% | N/A | 1.7 weeks (0.8) | 43.00% |
2 | Diego et al., 2006 [59] | USA | Cohort * | Total sample | n = 66 mother–infant dyads | 28 (6.8) | 68% | N/A | 17 weeks (3.3) | 32% |
3 | Goodman et al., 2021 [58] | USA | Cohort | Total sample | n = 132 women; n = 136 infants | 33.75 years (4.35) | 91.70% | 46% | 12 months at enrollment | 72 (52.9%) |
4 | Hardin et al., 2021 [60] | USA | Cohort * | Total sample | n = 113 mother–infant dyads | 31 years (4.74) | 106 (93.8%) at 1 mo assessment; 78 (96.4%) at 3 mo assessment | 43 (38.1%) at 1 mo assessment; 26 (32.1%) at 3 mo assessment | 37.14 days (5.88) at 1 mo assessment; 95.36 days (11.39) at 3 mo assessment | 45.00% |
5 | Jones et al., 2004 [55] | USA | Case–control * | Case | n = 31 depressed mother–infant dyads | 32.37 years (6.26) | 29 (93.5%) | 9 (29.03%) | 35.99 days (5.7) at 1 mo assessment; 92.66 days (9.19) at 3 mo assessment; reported for total sample | 39 (50%) at 1 mo assessment; 34 (54.83%) at 3 mo assessment; reported for total sample |
Control | n = 47 non-depressed mother–infant dyads | 32.14 years (5.03) | 45 (94.75%) | 16 (34.04%) | ||||||
6 | Kling et al., 2023 [61] | USA | Cohort * | Total sample | n = 92 pregnant women | 30.49 (4.22) | N/A | N/A | 4.27 months (1.47) | N/A |
7 | Krzeczkowski et al., 2021 [62] | Canada | Case–control * | Case | n = 40 mother–infant dyads | 32.3 years (4.1) | 26 (68%) | 21 (53%) | 5.6 months (2.7) | 16 (40%) |
Control | n = 40 mother–infant dyads | 32.7 years (5.1) | 30 (75%) | 22 (55%) | 5.9 months (2.6) | 16 (40%) | ||||
8 | Lusby et al., 2014 [57] | USA | Cohort * | Total sample | n = 65 mother–infant dyads | 33.8 (4.35) | 88% | 43.40% | 3 months at enrollment | N/A |
9 | Lusby et al., 2016 [63] | USA | Cohort * | Total sample | n = 234 mother–infant dyads (242 infants) | 33.84 (4.49) | 88% | 43% | 3 months at enrollment | 126 (52%) |
10 | Marino et al., 2019 [64] | Italy | Cohort * | Total sample | n = 104 mother–infant dyads | N/A | N/A | N/A | 6 months at enrollment | 53 (50.96%) |
11 | Soe et al., 2016 [65] | Singapore | Cohort * | Total sample | n = 258 mother–infant dyads | 30.4 (5.1) | N/A | 37% | 184.5 weeks (6.6) at 6 mo visit; 553.8 weeks (13.7) at 18 mo visit | 82 (47.12%) at 6 assessment; 77 (49.04%) at 18 months; 33 (45.2%) for the overlapped sample |
12 | Wen et al., 2017 [66] | Singapore | Cohort | Total sample | n = 111 mother–infant dyads | 30.27 years (4.71) | N/A | N/A | 26.39 weeks (0.95) | 49 (44.1%) |
No. | Author, Date | Depression Measure | Mean Depression Score (SD) | Exposure (Time of Assessment) |
---|---|---|---|---|
1 | Diego et al., 2004 [11] | CES-D (Center for Epidemiologic Studies Depression Scale) | a. prepartum–postpartum group: 25.75 (9.19) at prepartum, 23.30 (10.21 at postpartum); b. prepartum only group: 21.9 (6.34) at prepartum, 7.5 (3.36) at postpartum; c. postpartum only group: 9.7 (4.21) at prepartum, 19.05 (10.43) at postpartum; d. non-depressed group 7.25 (3.02) at prepartum, 5.25 (3.48) at postpartum. | Prenatal and postnatal |
2 | Diego et al., 2006 [59] | CES-D | N/A; | Postnatal |
3 | Goodman et al., 2021 [58] | Beck Depression Inventory (BDI); Beck Depression Inventory—Second Edition (BDI-II) | 8.13 (7.25) at 12 mo infant age | Prenatal and postnatal |
4 | Hardin et al., 2021 [60] | CES-D | a. 21.5 (6.6) and 9.56 (5.74) for depressed group at 1 mo and 3 mo, respectively; b. 6.57 (1.4) and 4.48 (3.73) for the non-depressed group at 1 mo and 3 mo, respectively. | Postnatal |
5 | Jones et al., 2004 [55] | CES-D | a. 19 (2.53) and 7.5 (4.32) for breastfed infants at 1 mo and 3 mo, respectively; b. 19.27 (6.11) and 16.9 (6.48) for bottle-fed infants at 1 mo and 3 mo. | Postnatal |
a. 5.07 (3.28) and 4.54 (3.44) for breastfed infants at 1 mo and 3 mo, respectively; b. 6.5 (3.45) and 3.73 (3.39) for bottlefed infants at 1 mo andd 3 mo, respectively. | ||||
6 | Kling et al., 2023 [61] | EPDS (Edinburgh Postnatal Depression Scale) | a. 2nd trimester depressive symptoms (n = 77): M = 6.39 (4.12); b. 3rd trimester depressive symptoms (n = 82): M = 5.46 (4.74); c. postnatal depression symptoms (n = 67): M = 5.30 (4.26). | Prenatal and postnatal |
7 | Krzeczkowski et al., 2021 [62] | EPDS | 14.7 (5.4) | Prenatal and postnatal |
4.6 (3.4) | ||||
8 | Lusby et al., 2014 [57] | BDI, BDI-II | N/A; | Prenatal and postnatal |
9 | Lusby et al., 2016 [63] | BDI | a. prenatal maternal depressive symptoms: M = 9.01 (6.41); b. postpartum maternal depressive symptoms: 8.68 (6.77). | Prenatal and postnatal |
10 | Marino et al., 2019 [64] | Adult Self-Report, Achenbach System of Empirically Based Assessment | 7.26 (4.89) | Postnatal |
11 | Soe et al., 2016 [65] | EPDS | a. prenatal maternal depressive symptoms: 7.6 (4.4) at 6 mo assessment, 7.9 (4.4) at 18 mo assessment; 7.6 (4.2) for the overlapped sample; b. postnatal maternal depressive symptoms: 6.8 (4.8) at 6 mo; 6.4 (4.5) at 18 mo; 6.6 (4.6) for the overlapped sample. | Prenatal and postnatal |
12 | Wen et al., 2017 [66] | EPDS | 7.29 (4.42) prenatal score; 6.59 (4.75) postnatal score | Prenatal and postnatal |
Nr | Author, Date | Acquisition | Reference | Epoch Duration | EEG Metric | Results |
---|---|---|---|---|---|---|
1 | Diego et al., 2004 [11] | 3 min, baseline recording; 4 channels | Cz | N/A | EEG asymmetry | The 1-week-old offspring of prepartum–postpartum depressed mothers, t (33) = 4.14, p < 0.01, and prepartum depressed mothers, t (33) = 2.91, p < 0.05, exhibited greater relative right frontal EEG asymmetry than the infants of non-depressed mothers. The 1-week-old offspring of prepartum–postpartum depressed mothers, t (32) = 3.06, p < 0.05, exhibited greater relative right frontal EEG asymmetry than the infants of postpartum depressed mothers. |
2 | Diego et al., 2006 [59] | 3 min resting state, 4 channels | Cz | N/A | EEG asymmetry (FAA, PAA) | Infants exposed to postnatal depression exhibited greater relative right frontal EEG asymmetry than infants of non-depressed mothers (p < 0.06 for all comparisons) at 3–6 mo. Mother–infant interaction played a role, with infants of withdrawn depressed mothers exhibiting greater relative right frontal EEG asymmetry than infants of intrusive depressed mothers (p < 0.06) at 3–6 mo. No significant differences in parietal EEG asymmetry were noted. |
3 | Goodman et al., 2021 [58] | 3 min baseline/bubbles, 2 min peek a-boo, 5 min play, 5 min feeding, and 5 min distract task; 16 channels | Cz | N/A | EEG asymmetry | Infants of mothers who had higher prenatal depression exhibited greater right frontal EEG asymmetry (b = −0.002, p = 0.02) at 12 mo. There was a significant positive effect of postnatal depression on the asymmetry score (b = 0.002, p = 0.05), indicating that infants exposed to higher postnatal depression exhibited more left frontal EEG asymmetry compared to infants of mothers suffering from prenatal or concurrent prenatal-postnatal depressed mothers. |
4 | Hardin et al., 2021 [60] | 5 min, baseline recording; 8 channels | Cz | N/A | EEG asymmetry EEG power | (1) EEG asymmetry: Main effect of depression group on regional EEG asymmetry was noted at 1 month (F(1, 86) = 4.16, p = 0.04, η² = 0.05), with depressed infants showing overall greater relative right asymmetry (M = −0.56, SD = 0.32). Breastfed infants of depressed mothers exhibited left frontal asymmetry while bottle-fed infants exhibited right frontal asymmetry at 3 mo. (2) EEG power: Bottle-fed infants of depressed mothers showed higher right hemisphere and left hemisphere occipital EEG power at 1 mo (M = 4.31, SD = 1.51 for right hemisphere; M = 4.15, SD = 1.19 for left hemisphere) compared to infants of bottle-fed depressed mothers (M = 2.08, SD = 1.43 for right hemisphere; M = 2.61, SD = 1.54 for left hemisphere). Bottle-fed infants of depressed mothers show lower left hemisphere frontal EEG power, as well as greater right hemisphere frontal EEG power, compared to breastfed infants of depressed mothers at 3 mo. No other EEG-power between-group differences were noted. |
5 | Jones et al., 2004 [55] | 5–6 min, resting state, eyes-open; 8 channels | Cz | N/A | EEG asymmetry | Greater relative frontal EEG asymmetry was significantly correlated with depression score (r = −0.299, p = 0.008). Maternal depression was strongly predictive of infant frontal EEG asymmetry (direct effect = −0.30, t = 2.73, p < 0.05) at 1–3 mo. Breastfed infants exposed to maternal postnatal depression and infants from non-depressed mothers did not show differences in frontal EEG asymmetry (p > 0.05). |
6 | Kling et al., 2023 [61] | 5 min resting state, 21 channels; 2048 Hz | average reference | N/A | alpha–delta ratio | Higher depressive symptoms in the second trimester were associated with a smaller alpha–delta ratio at parietal electrodes (B = 0.07, SE(B) = 0.02, 95% CI [0.11, −0.03], p < 0.01) at 4 mo of age; higher depressive symptoms in the third trimester (B = 0.05, SE(B) = 0.02, 95% CI [0.01, 0.10], p = 0.02) were associated with larger alpha–delta ratio scores at parietal electrodes at infant 4 mo of age. Postnatal depressive symptoms (B =0.02, SE(B) = 0.03, 95% CI [0.03, 0.07], p = 0.49) were unrelated to parietal alpha–delta ratio scores. No association between maternal depression (prenatal/postnatal) and alpha–delta ratio at frontal electrodes in infants was noted. |
7 | Krzeczkowski et al., 2021 [62] | 5 min, resting state, eyes-open, 128 channels, 250 Hz | Cz | 2 s | EEG asymmetry (FAA) | Infants of depressed mothers differed significantly in FAA (M = −0.091, SD = 0.31) compared to infants of non-depressed mothers (M = 0.13, SD = 0.35, p = 0.005, d = 0.67) at age of enrollment (<12 months). |
8 | Lusby et al., 2014 [57] | 3 min baseline, 5 min feeding, and 5 min play segment; 16 channels | Cz | N/A | EEG asymmetry | No significant association between infant baseline frontal EEG asymmetry scores and (1) maternal concurrent depression r(65)= −0.06, p = 0.63, (2) maternal postpartum depression r(65) = 0.05, p = 0.71 at 3 mo of age was noted. No significant association between infant baseline frontal EEG asymmetry scores and (1) maternal concurrent depression r(64)= −0.16, p = 0.21, (2) maternal postpartum depression r(66) = 0.01, p = 0.95 at 6 mo of age was noted. Prenatal depressive symptoms and infant EEG asymmetry scores were significantly associated among women with high postpartum depressive symptoms, r(26) = −0.44, p = 0.01 |
9 | Lusby et al., 2016 [63] | 3 min resting state, 16 channels | Cz | N/A | EEG asymmetry (FAA) | Infants of mothers with high prenatal depressive symptoms showed a significant shift in EEG asymmetry over time (β = 0.06, SE = 0.02, p = 0.01): higher negative affect (NA) was associated with greater right frontal EEG asymmetry, with a reversed pattern by 12 months of age. Infants of mothers with depression in either the prenatal or postpartum period showed a shift in EEG asymmetry patterns over time (β = −0.07, SE = 0.04, p = 0.06, marginal significance): lower relative right EEG asymmetry at 3 mo, followed by greater relative right frontal EEG asymmetry at 12 mo. Infants of mothers with depression in both the prenatal and postpartum periods showed the opposite trajectory (β = 0.05, SE = 0.02, p = 0.03). EEG asymmetry trajectories differed depending on whether maternal depression was present in one period (prenatal or postpartum) or in both periods (β = 0.12, SE = 0.04, p = 0.004). |
10 | Marino et al., 2019 [64] | 3 min resting state; 60 channels; 250 Hz | Cz | 1 s | EEG asymmetry (FAA, PAA) | Maternal depression symptoms were significantly positively correlated with higher FAA (r = 0.21, p = 0.04) and PAA (r = 0.23, p = 0.02) at 6 mo. Maternal depression symptoms had a significant indirect effect on child dysregulation via PAA (β = 0.065, SE = 0.033, 95% CI [0.001, 0.139], p = 0.048), but not via FAA (β = −0.008, SE = 0.018, 95% CI [−0.057, 0.042], p = 0.672). |
11 | Soe et al., 2016 [65] | 40 min passive auditory oddball task (at 6 and 18 mo); 99 channels; 250 Hz | Cz | N/A | EEG asymmetry Functional connectivity | No association of postnatal EPDS with either bilateral frontal activity (β = −0.045, p > 0.05 at 6 mo, β = −0.033 p > 0.05 at 18 mo for left hemisphere; β = −0.073, p > 0.05 at 6 mo, β = −0.046, p > 0.05 at 18 mo for right hemisphere) and asymmetry (β = −0.051, p > 0.05 at 6 mo, β = 0.023, p > 0.05 at 18 mo) and frontal connectivity (β = −0.004, p > 0.05 at 6 mo, β = 0.047, p > 0.05 at 18 mo for left hemisphere; β = −0.016, p > 0.05 at 6 mo, β = −0.048, p > 0.05 at 18 mo) was noted at 18 mo in 6-month and 18-month-old infants. No association of prenatal EPDS with either bilateral frontal activity and asymmetry or functional connectivity was noted. An increase in depressive symptoms from the prenatal to postnatal time predicted greater right frontal activity and relative right frontal asymmetry at 6 months of age (β = −0.205, p < 0.01) but not at 18 months of age (β = −0.047, p > 0.05). |
12 | Wen et al., 2017 [66] | 2 min baseline, 38 min passive auditory oddball task; 99 channels; 250 Hz | Cz | 2 s | EEG asymmetry (FAA) | Greater relative right frontal EEG asymmetry was associated with higher levels of postnatal depression (β = −0.283, df = 48, p = 0.04) and lower maternal sensitivity (β = 0.243, df = 48, p = 0.04) in infants aged 6 mo. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Şipoş, R.; Calugar, I.; Predescu, E. Neurodevelopmental Impact of Maternal Postnatal Depression: A Systematic Review of EEG Biomarkers in Infants. Children 2025, 12, 396. https://doi.org/10.3390/children12040396
Şipoş R, Calugar I, Predescu E. Neurodevelopmental Impact of Maternal Postnatal Depression: A Systematic Review of EEG Biomarkers in Infants. Children. 2025; 12(4):396. https://doi.org/10.3390/children12040396
Chicago/Turabian StyleŞipoş, Roxana, Iulia Calugar, and Elena Predescu. 2025. "Neurodevelopmental Impact of Maternal Postnatal Depression: A Systematic Review of EEG Biomarkers in Infants" Children 12, no. 4: 396. https://doi.org/10.3390/children12040396
APA StyleŞipoş, R., Calugar, I., & Predescu, E. (2025). Neurodevelopmental Impact of Maternal Postnatal Depression: A Systematic Review of EEG Biomarkers in Infants. Children, 12(4), 396. https://doi.org/10.3390/children12040396