Missed or Delayed Diagnosis of Heart Disease by the General Pediatrician
Abstract
:1. Introduction
2. Congenital Cardiac Disorders Prone to Delayed or Missed Diagnosis
2.1. Critical CHD
2.2. Coarctation of the Aorta
2.3. Secundum Atrial and Ventricular Septal Defects
3. Acquired Cardiac Disorders Associated with Delayed or Missed Diagnosis
3.1. Myocarditis
3.2. Kawasaki Disease
3.3. Heart Failure
3.4. Pulmonary Arterial Hypertension
3.5. Chemotherapy-Induced Cardiotoxicity
4. Alarming Symptoms and Signs
5. Implementing Structured Screening
- (1)
- Chest pain, discomfort, tightness, or pressure during exercise;
- (2)
- Unexplained syncope or near-syncope not attributed to a vasovagal cause;
- (3)
- Excessive or unexplained dyspnea, fatigue, or palpitations during exercise;
- (4)
- Personal history of heart murmur;
- (5)
- Elevated arterial blood pressure;
- (6)
- History of sports participation restrictions due to medical concerns;
- (7)
- Previous cardiac testing ordered by a physician;
- (8)
- Family history of premature cardiac-related death before age 50;
- (9)
- Disability due to heart disease in a close relative under age 50;
- (10)
- Family history of hypertrophic or dilated cardiomyopathy, long QT syndrome, other ion channelopathies, Marfan syndrome, clinically significant arrhythmias, or known genetic cardiac conditions;
- (11)
- Identification of a heart murmur, not felt to be innocent;
- (12)
- Unpalpable, decreased or delayed femoral pulses;
- (13)
- Physical stigmata of Marfan syndrome;
- (14)
- Increased brachial artery blood pressure (sitting position, both arms).
- (1)
- If they have ever fainted, passed out, or experienced an unexplained seizure suddenly and without warning, particularly during exercise or in response to sudden loud noises, such as doorbells, alarm clocks, or ringing telephones;
- (2)
- If they have ever experienced chest pain or shortness of breath during exercise;
- (3)
- If they have anyone in their immediate family (parents, grandparents, or siblings) or in the extended family (aunts, uncles, or cousins) who died from heart problems or suffered an unexpected sudden death before the age of 50;
- (4)
- If they have relatives with hypertrophic obstructive cardiomyopathy, Marfan syndrome, arrhythmogenic cardiomyopathy, long QT syndrome, short QT syndrome, Brugada syndrome or polymorphic ventricular tachycardia, or relatives under the age of 50 who have a pacemaker or implantable defibrillator.
6. Improving Pediatric Training
7. Limitations
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, W.; He, J.; Shao, X. Incidence and mortality trend of congenital heart disease at the global, regional, and national level, 1990–2017. Medicine 2020, 99, e20593. [Google Scholar] [CrossRef]
- Tennant, P.W.G.; Pearce, M.S.; Bythell, M.; Rankin, J. 20-year survival of children born with congenital anomalies: A population-based study. Lancet 2020, 375, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.U.; Peddy, S.B. Heart disease in children. Prim. Care Clin. Off. Pract. 2018, 45, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Mandalenakis, Z.; Giang, K.W.P.; Liden, H.; Synnergren, M.; Wåhlander, H.; Fechenko, M.; Rosengren, A.; Dellborg, M. Survival in children with congenital heart disease: Have we reached a peak at 97%? J. Am. Heart Assoc. 2020, 22, e017704. [Google Scholar] [CrossRef] [PubMed]
- Nappi, F.; Avtaar Singh, S.S.; de Siena, P.M. Bicuspid aortic valve in children and young adults for cardiologists and cardiac surgeons: State-of-the-art of literature review. J. Cardiovasc. Dev. Dis. 2024, 11, 317. [Google Scholar] [CrossRef]
- Bouma, B.J.; Mulder, B.J. Changing landscape of congenital heart disease. Circ. Res. 2017, 120, 908–922. [Google Scholar] [CrossRef]
- Moore, J.P.; Khairy, P. Adults with congenital heart disease and arrhythmia management. Cardiol. Clin. 2020, 38, 417–434. [Google Scholar] [CrossRef]
- Marelli, A.; Beauchesne, L.; Colman, J.; Ducas, R.; Grewal, J.; Keir, M.; Khairy, P.; Oechslin, E.; Therrien, J.; Vonder Muhll, I.F.; et al. Canadian Cardiovascular Society 2022 guidelines for cardiovascular interventions in adults with congenital heart disease. Can. J. Cardiol. 2021, 38, 862–896. [Google Scholar] [CrossRef]
- McBride, M.G.; Burstein, D.S.; Edelson, J.B.; Paridon, S.M. cardiopulmonary rehabilitation in pediatric patients with congenital and acquired heart disease. J. Cardiopulm. Rehabil. Prev. 2020, 40, 370–377. [Google Scholar] [CrossRef]
- Dorfman, A.L.; Geva, T.; Samyn, M.M.; Greil, G.; Krishnamurthy, R.; Messroghli, D.; Festa, P.; Secinaro, A.; Soriano, B.; Taylor, A.; et al. SCMR expert consensus statement for cardiovascular magnetic resonance of acquired and non-structural pediatric heart disease. J. Cardiovasc. Magn. Reson. 2022, 24, 4. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.I.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in children: Classification and diagnosis: A scientific statement from the American Heart Association. Circulation 2019, 140, e9–e68. [Google Scholar] [CrossRef] [PubMed]
- Arvind, B.; Ramakrishnan, S. Rheumatic fever and rheumatic heart disease in children. Indian J. Pediatr. 2020, 87, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Banday, A.Z.; Mondal, S.; Barman, P.; Sil, A.; Kumrah, R.; Vignesh, P.; Singh, S. What lies ahead for young hearts in the 21(st) century—Is it double trouble of acute rheumatic fever and Kawasaki disease in developing countries? Front. Cardiovasc. Med. 2021, 8, 694393. [Google Scholar] [CrossRef]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, treatment, and long-term management of Kawasaki disease: A scientific statement for health professionals from the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef] [PubMed]
- Musa, N.L.; Hjortdal, V.; Zheleva, B.; Murni, I.K.; Sano, S.; Schwartz, S.; Staveski, S.L. The global burden of paediatric heart disease. Cardiol. Young 2017, 27, S3–S8. [Google Scholar] [CrossRef]
- Michelson, K.A.; McGarghan, F.L.E.; Patterson, E.E.; Samuels-Kalow, M.E.; Waltzman, M.L.; Greco, K.F. Delayed diagnosis of serious paediatric conditions in 13 regional emergency departments. BMJ Qual. Saf. 2024, 33, 293–300. [Google Scholar] [CrossRef]
- Michelson, K.A.; Rees, C.A.; Florin, T.A.; Bachur, R.G. emergency department volume and delayed diagnosis of serious pediatric conditions. JAMA Pediatr. 2024, 178, 362–368. [Google Scholar] [CrossRef]
- Marshall, T.L.; Rinke, M.L.; Olson, A.P.J.; Brady, P.W. Diagnostic error in Pediatrics: A narrative review. Pediatrics 2022, 149 (Suppl. S3), e2020045948D. [Google Scholar] [CrossRef]
- Puri, K.; Singh, H.; Denfield, S.W.; Cabrera, A.G.; Dreyer, W.J.; Tunuguntla, H.P.; Price, J.F. Missed diagnosis of new-onset systolic heart failure at first presentation in children with no known heart disease. J. Pediatr. 2019, 208, 258–264.e3. [Google Scholar] [CrossRef]
- Li, Y.D.; Meng, H.; Pang, K.J.; Li, M.Z.; Xu, N.; Wang, H.; Shou-Lun, L.; Yan, J. Echocardiography in the diagnosis of Shone’s complex and analysis of the causes for missed diagnosis and misdiagnosis. World J. Clin. Cases 2022, 10, 3369–3378. [Google Scholar] [CrossRef]
- Harahsheh, A.S.; Dahdah, N.; Newburger, J.W.; Portman, M.A.; Piram, M.; Tulloh, R.; McCrindle, B.W.; de Ferranti, S.D.; Cimaz, R.; Truong, D.T.; et al. Missed or delayed diagnosis of Kawasaki disease during the 2019 novel coronavirus disease (COVID-19) pandemic. J. Pediatr. 2020, 222, 261–262. [Google Scholar] [CrossRef] [PubMed]
- Keuffer, A.; Pfammatter, J. Timely diagnosis of congenital heart disease—Did we improve? Cardiovasc. Med. 2015, 18, 1282–1284. [Google Scholar]
- Rashid, U.; Qureshi, A.; Hyder, S.; Sadiq, M. Pattern of congenital heart disease in a developing country tertiary care center: Factors associated with delayed diagnosis. Ann. Pediatr. Cardiol. 2016, 9, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Murni, I.K.; Wirawan, M.T.; Patmasari, L.M.; Sativa, E.R.; Sasmito, A.A.; Arafuri, N.; Nugroho, S.; Noormanto. Delayed diagnosis in children with congenital heart disease: A mixed-method study. BMC Pediatr. 2021, 21, 191. [Google Scholar] [CrossRef]
- GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef]
- Singh, Y.; Chen, S.E. Impact of pulse oximetry screening to detect congenital heart defects: 5 years’ experience in a UK regional neonatal unit. Eur. J. Pediatr. 2022, 181, 813–821. [Google Scholar] [CrossRef]
- Martin, G.R.; Jonas, R.A. Surgery for congenital heart disease: Improvements in outcomes. Am. J. Perinatol. 2018, 35, 557–560. [Google Scholar]
- McConnell, E.; Elixson, E.M. The neonate with suspected congenital heart disease. Crit. Care Nurs. Q. 2002, 25, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Eckersley, L.; Sadler, L.; Parry, E.; Finucane, K.; Gentles, T. Timing of diagnosis affects mortality in critical congenital heart disease. Arch. Dis. Child. 2016, 101, 516–520. [Google Scholar] [CrossRef]
- van Velzen, C.L.; Ket, J.C.F.; van de Ven, P.M.; Blom, N.A.; Haak, M.C. Systematic review and meta-analysis of the performance of second-trimester screening for prenatal detection of congenital heart defects. Int. J. Gynaecol. Obstet. 2018, 140, 137–145. [Google Scholar] [CrossRef]
- CDC Critical Congenital Heart Defects Screening Methods. Source: National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/ncbddd/heartdefects/hcp.html (accessed on 3 February 2023).
- Cloete, E.; Bloomfield, F.H.; Sadler, L.; de Laat, M.W.M.; Finucane, A.K.; Gentles, T.L. Antenatal detection of treatable critical congenital heart disease is associated with lower morbidity and mortality. J. Pediatr. 2019, 204, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Ossa Galvis, M.M.; Bhakta, R.T.; Tarmahomed, A.; Mendez, M.D. Cyanotic Heart Disease. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Plana, M.N.; Zamora, J.; Suresh, G.; Fernandez-Pineda, L.; Thangaratinam, S.; Ewer, A.K. Pulse oximetry screening for critical congenital heart defects. Cochrane Database Syst. Rev. 2018, 3, CD011912. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics: Critical Congenital Heart Defects Screening Resource for Primary Care Providers. Available online: https://www.aap.org/en/patient-care/congenital-heart-defects/newborn-screening-for-critical-congenital-heart-defect-cchd/ (accessed on 3 February 2023).
- Arya, B.; Maskatia, S.A. Coarctation of the aorta: Prenatal assessment, postnatal management and neonatal outcomes. Semin. Perinatol. 2022, 46, 151584. [Google Scholar] [CrossRef]
- Hoffman, J.I. The challenge in diagnosing coarctation of the aorta. Cardiovasc. J. Afr. 2018, 29, 252–255. [Google Scholar] [CrossRef]
- Lannering, K.; Bartos, M.; Mellander, M. Late diagnosis of coarctation despite prenatal ultrasound and postnatal pulse oximetry. Pediatrics 2015, 136, e406–e412. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Andrade, L.; Cook, S.C. Aortic coarctation. Cardiol. Clin. 2020, 38, 337–351. [Google Scholar] [CrossRef]
- Teitel, D. Recognition of undiagnosed neonatal heart disease. Clin. Perinatol. 2016, 43, 81–98. [Google Scholar] [CrossRef]
- Sorensen, M.W.; Sadiq, I.; Clifford, G.D.; Maher, K.O.; Oster, M.E. Using pulse oximetry waveforms to detect coarctation of the aorta. Biomed. Eng. Online 2020, 19, 31. [Google Scholar] [CrossRef]
- Geggel, R.L. Coarctation of the aorta: Delay in diagnosis and referral basis from infancy to adulthood. J. Pediatr. 2022, 242, 57–62. [Google Scholar] [CrossRef]
- Pandey, N.N.; Veettil, S.T.; Kumar, S. Collateral circulation in coarctation. Radiol. Cardiothorac. Imaging 2024, 6, e240250. [Google Scholar] [CrossRef]
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- Shehab, M.; Kosykh, S.; Wolf, A.; Haddad, M.; Fajer, S.; Hoffman, R.S.; Bachar, A.R. Aberrant right subclavian artery: Demographics, morphological features and follow up CT scans dynamics. Vasc. Endovascular. Surg. 2024, 58, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Strafford, M.A.; Griffiths, S.P.; Gersony, W.M. Coarctation of the aorta: A study in delayed detection. Pediatrics 1982, 69, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Ing, F.F.; Starc, T.J.; Griffiths, S.P.; Gersony, W.M. Early diagnosis of coarctation of the aorta in children: A continuing dilemma. Pediatrics 1996, 98, 378–382. [Google Scholar] [CrossRef]
- Reller, M.D.; Strickland, M.J.; Riehle-Colarusso, T.; Mahle, W.T.; Correa, A. Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J. Pediatr. 2008, 153, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Menillo, A.M.; Lee, L.S.; Pearson-Shaver, A.L. Atrial septal defect. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Geggel, R.L.J. Clinical detection of hemodynamically significant isolated secundum atrial septal defect. Pediatrics 2017, 190, 261–264.e1. [Google Scholar] [CrossRef]
- Amaral, F.; Granzotti, J.A. Initial diagnostic errors in children suspected of having heart disease. prevalence and long-term consequences. Arq. Bras. Cardiol. 2003, 81, 152–155. [Google Scholar] [CrossRef]
- Spicer, D.E.; Hsu, H.H.; Co-Vu, J.; Anderson, R.; Fricker, F.J. Ventricular septal defect. Orphanet J. Rare Dis. 2014, 9, 144. [Google Scholar] [CrossRef]
- Miyake, T. A review of isolated muscular ventricular septal defect. World J. Pediatr. 2020, 16, 120–128. [Google Scholar] [CrossRef]
- Dakkak, W.; Alahmadi, M.H.; Oliver, T.I. Ventricular septal defect. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Pavlicek, J.; Klaskova, E.; Kapralova, S.; Palatova, A.M.; Piegzova, A.; Spacek, R.; Gruszka, T. Major heart defects: The diagnostic evaluations of first-year-olds. BMC Pediatr. 2021, 21, 528. [Google Scholar] [CrossRef]
- Adan, A.; Eleyan, L.; Zaidi, M.; Ashry, A.; Dhannapuneni, R.; Harky, A. Ventricular septal defect: Diagnosis and treatments in the neonates: A systematic review. Cardiol. Young 2021, 31, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Bejiqi, R.; Retkoceri, R.; Maloku, A.; Mustafa, A.; Bejiqi, H.; Bejiqi, R. The diagnostic and clinical approach to pediatric myocarditis: A review of the current literature. Maced. J. Med. Sci. 2019, 7, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.J.; Jacobs, H.M.; Lee, S. Pediatric myocarditis. Cardiol. Ther. 2023, 2, 243–260. [Google Scholar] [CrossRef]
- Law, Y.M.; Lal, A.K.; Chen, S.; Čiháková, D.; Cooper, L.T., Jr.; Deshpande, S.; Godown, J.; Grosse-Wortmann, L.; Robinson, J.D.; Towbin, J.A.; et al. Diagnosis and management of myocarditis in children: A scientific statement from the American Heart Association. Circulation 2021, 144, e123–e135. [Google Scholar] [CrossRef]
- Pillay, J.; Gaudet, L.; Wingert, A.; Bialy, L.; Mackie, A.S.; Paterson, D.I.; Hartling, L. Incidence, risk factors, natural history, and hypothesized mechanisms of myocarditis and pericarditis following covid-19 vaccination: Living evidence syntheses and review. BMJ 2022, 378, e069445. [Google Scholar] [CrossRef]
- Albuali, W. Predicting factors and outcomes of acute myocarditis in children—A 5-year experience in a teaching hospital from the Eastern province of Saudi Arabia. J. Med. Life 2022, 15, 1229–1233. [Google Scholar] [CrossRef] [PubMed]
- Rroku, A.; Kottwitz, J.; Heidecker, B. Update on myocarditis—What we know so far and where we may be heading. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 455–467. [Google Scholar] [CrossRef]
- Newburger, J.W.; Takahashi, M.; Burns, J.C. Kawasaki disease. J. Am. Coll. Cardiol. 2016, 67, 1738–1749. [Google Scholar] [CrossRef]
- Li, T.; Feng, J.; Li, N.; Liu, T. Correct identification of incomplete Kawasaki disease. J. Int. Med. Res. 2021, 49, 03000605211001712. [Google Scholar] [CrossRef]
- Rennert-May, E.; Leal, J.; Thanh, N.X.; Lang, E.; Dowling, S.; Manns, B.; Wasylak, T.; Ronksley, P.E. The impact of COVID 19 on hospital admissions and emergency department visits: A population-based study. PLoS ONE 2021, 16, 0252441. [Google Scholar] [CrossRef]
- Rowley, A.H. The complexities of the diagnosis and management of Kawasaki disease. Infect. Dis. Clin. N. Am. 2015, 29, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, G.; Cimaz, R.; Calabri, G.B.; Simonini, G.; Lasagni, D.; Resti, M.; Trapani, S. Kawasaki disease in infants less than one year of age: An Italian cohort from a single center. BMC Pediatr. 2019, 19, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Shaddy, R.E.; George, A.T.; Jaecklin, T.; Lochlainn, E.N.; Thakur, L.; Agrawal, R. Systematic literature review on the incidence and prevalence of heart failure in children and adolescents. Pediatr. Cardiol. 2018, 39, 415–436. [Google Scholar] [CrossRef]
- Mille, F.; Burstein, D. Diagnosis and management of pediatric heart failure. Indian J. Pediatr. 2023, 90, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Romer, A.J.; Rajagopal, S.K.; Kameny, R.J. Initial presentation and management of pediatric heart failure. Curr. Opin. Pediatr. 2018, 30, 319–325. [Google Scholar]
- Nakano, S.J.; Miyamoto, S.D.; Price, J.F.; Rossano, J.W.; Cabrera, A.G. Pediatric heart failure: An evolving public health concern. J. Pediatr. 2020, 218, 217–221. [Google Scholar]
- Porter, P.; Brisbane, J.; Tan, J.; Bear, N.; Choveaux, J.; Della, P.; Abeyratne, U. Diagnostic errors are common in acute pediatric respiratory disease: A prospective, single-blinded multicenter diagnostic accuracy study in Australian emergency departments. Front. Pediatr. 2021, 9, 736018. [Google Scholar] [CrossRef]
- Li, X.; Tuo, H.; Huang, Y.; Li, Y.; Zhao, N.; Wang, J.; Liu, Y.; Peng, H.; Xu, X.; Peng, Q.; et al. The diagnosis and treatment of pediatric clinical myocarditis in China: A multicenter retrospective study. Eur. J. Pediatr. 2024, 183, 1233–1244. [Google Scholar] [CrossRef]
- Price, J.F. Congestive heart failure in children. Pediatr. Rev. 2019, 40, 60–70. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badaglacia, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. ESC/ERS Scientific Document Group. ESC/ERS 2022 Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Respir. J. 2023, 61, 2200879. [Google Scholar] [CrossRef]
- Ivy, D. Pulmonary hypertension in children. Cardiol. Clin. 2016, 34, 451–472. [Google Scholar] [CrossRef]
- Hansmann, G.; Koestenberger, M.; Alastalo, T.P.; Apitz, C.; Austin, E.D.; Bonnet, D.; Budts, W.; D’Alto, M.; Gatzoulis, M.A.; Hasan, B.S.; et al. 2019 updated consensus statement on the diagnosis and treatment of pediatric pulmonary hypertension: The European Pediatric Pulmonary Vascular Disease Network (EPPVDN), endorsed by AEPC, ESPR and ISHLT. J. Heart Lung Transplant. 2019, 38, 879–901. [Google Scholar] [CrossRef] [PubMed]
- Hopper, R.K.; Abman, S.H.; Ivy, D.D. Persistent Challenges in Pediatric Pulmonary Hypertension. Chest 2016, 150, 226–236. [Google Scholar] [CrossRef]
- Frank, S.B.; Ivy, D.D. Pediatric pulmonary arterial hypertension. Pediatr. Clin. N. Am. 2020, 67, 903–921. [Google Scholar] [CrossRef] [PubMed]
- Ploegstra, M.J.; Ivy, D.D.; Beghetti, M.; Bonnet, D.; Alehan, D.; Ablonczy, L.; Mattos, S.; Bowers, D.; Humpl, T.; Berger, R.M.F.; et al. Long-term outcome of children with newly diagnosed pulmonary arterial hypertension: Results from the global TOPP registry. Eur. Heart J. Qual. Care Clin. Outcomes 2024, 10, 66–76. [Google Scholar] [CrossRef]
- Ezekian, J.E.; Hill, K.D. Management of pulmonary arterial hypertension in the pediatric patient. Curr. Cardiol. Rep. 2019, 21, 162. [Google Scholar] [CrossRef]
- Meinel, K.; Koestenberger, M.; Sallmon, H.; Hansmann, G.; Pieles, G.E. Echocardiography for the assessment of pulmonary hypertension and congenital heart disease in the young. Diagnostics 2021, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.A. Revised definition of pulmonary hypertension and approach to management: A clinical primer. J. Am. Heart Assoc. 2023, 12, e029024. [Google Scholar] [CrossRef]
- Frank, B.S.; Ivy, D.D. Diagnosis, evaluation, and treatment of pulmonary arterial hypertension in children. Children 2018, 5, 44. [Google Scholar] [CrossRef]
- Loar, R.W.; Noel, C.V.; Tunuguntla, H.; Colquitt, J.L.; Pignatelli, R.H. State of the art review: Chemotherapy-induced cardiotoxicity in children. Congenit. Heart Dis. 2018, 13, 5–15. [Google Scholar] [CrossRef]
- Youlden, D.R.; Baade, P.D.; Moore, A.S.; Pole, J.D.; Valery, P.C.; Aitken, J.F. Childhood cancer survival and avoided deaths in Australia, 1983–2016. Paediatr. Perinat. Epidemiol. 2023, 37, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Tonorezos, E.S.; Landier, W. Clinical care for people who survive childhood cancer: A review. JAMA 2023, 330, 1175–1186. [Google Scholar] [CrossRef]
- Boudreau, A.; Hamling, A.; Pont, E.; Pendergrass, T.W.; Richerson, J.; Committee on Pediatric Workforce; Committee on Practice and Ambulatory Medicine. Pediatric primary health care: The central role of pediatricians in maintaining children’s health in evolving health care models. Pediatrics 2022, 149, e2021055553. [Google Scholar] [CrossRef]
- Daniels, E.W.; Onks, C.A.; Gallo, R.A.; Silvis, M.L. Is the preparticipation physical examination replacing the annual well child examination among student athletes? Perm. J. 2021, 25, 20.298. [Google Scholar] [CrossRef] [PubMed]
- Jain, S. Congenital heart disease: Saving lives and securing liveliness with early primary care and expert family care. J. Family Med. Prim. Care 2021, 10, 3178–3184. [Google Scholar] [CrossRef]
- Scott, M.; Neal, A.E. Congenital heart disease. Prim. Care 2021, 48, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Dotson, A.; Covas, T.; Halstater, B.; Ragsdale, J. Congenital heart disease. J. Prim. Care 2024, 51, 125–142. [Google Scholar] [CrossRef]
- Saxena, A. Status of pediatric cardiac care in developing countries. Children 2019, 6, 34. [Google Scholar] [CrossRef]
- Geggel, R.L. Conditions leading to pediatric cardiology consultation in a tertiary academic hospital. Pediatrics 2004, 114, e409–e417. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Dimitriou, G.; Karatza, A. Cardiac murmurs in children: A challenge for the primary care physician. Curr. Pediatr. Rev. 2019, 5, 131–138. [Google Scholar] [CrossRef]
- Ford, B.; Sebastian, L.; Parks, J. Heart murmurs in children: Evaluation and management. Am. Fam. Physician 2022, 105, 250–261. [Google Scholar] [PubMed]
- Newman, D.B.; Miranda, W.R.; Geske, J.B.; Nishimura, R.A. Dynamic auscultation in hypertrophic obstructive cardiomyopathy: What can we learn from a murmur? Eur. Heart J. 2016, 37, 498. [Google Scholar] [CrossRef]
- Sumski, D.O.; Goot, M. Evaluating chest pain and heart murmurs in pediatric and adolescent patients. Pediatr. Clin. N. Am. 2020, 67, 783–799. [Google Scholar] [CrossRef] [PubMed]
- Alsabri, M.; Elshanbary, A.A.; Nourelden, A.Z.; Fathallah, A.H.; Zaazouee, M.S.; Pincay, J.; Nakadar, Z.; Wasem, M.; Aeder, L. Chest pain in pediatric patients in the emergency department- Presentation, risk factors and outcomes-A systematic review and meta-analysis. PLoS ONE 2024, 19, e0294461. [Google Scholar] [CrossRef]
- Danon, S. Chest Pain, palpitations, and syncope: Preventing sudden cardiac death in children. Adv. Pediatr. 2023, 70, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Sanghera, G.; Hormaz, V.; Gul, H.; Dadlani, G.H. Progress in pediatric cardiology chest pain for the pediatric primary care provider. Progr. Pediatr. Cardiol. 2024, 75, 101791. [Google Scholar] [CrossRef]
- Fisher, J.D.; Warren, B. Pediatric chest pain: Using evidence to reduce diagnostic testing in the emergency department. Pediatr. Emerg. Med. Pract. 2022, 19, 1–24. [Google Scholar]
- Zavala, R.; Metais, B.; Tuckfield, L.; DelVecchio, M.; Aronoff, S. Pediatric syncope: A systematic review. Pediatr. Emerg. Care 2020, 36, 442–445. [Google Scholar] [CrossRef]
- von Alvensleben, J.C. Syncope and palpitations: A review. Pediatr. Clin. N. Am. 2020, 67, 801–810. [Google Scholar] [CrossRef]
- Li, H.X.; Gao, L.; Yuan, Y. Advance in the understanding of vasovagal syncope in children and adolescents. World. J. Pediatr. 2021, 17, 58–62. [Google Scholar] [CrossRef]
- Harris, M.; Bu’Lock, F. Fifteen-minute consultation on limiting investigations in the fainting child. Arch. Dis. Child. Educ. Pract. Ed. 2016, 101, 26–30. [Google Scholar] [CrossRef]
- Stewart, J.M.; Boris, J.R.; Chelimsky, G.; Fischer, P.R.; Fortunato, J.E.; Grubb, B.P.; Heyer, G.L.; Jarjour, I.T.; Medow, M.S.; Numann, M.T.; et al. Pediatric Disorders of Orthostatic Intolerance. Pediatrics 2018, 141, e20171673. [Google Scholar] [CrossRef] [PubMed]
- Monda, E.; Lioncino, M.; Rubino, M.; Caiazza, M.; Cirillo, A.; Fusco, A.; Pacileo, R.; Fimiani, F.; Amodio, F.; Borrelli, N.; et al. The risk of sudden unexpected cardiac death in children: Epidemiology, clinical causes, and prevention. Heart Fail. Clin. 2022, 18, 115–123. [Google Scholar] [CrossRef]
- Sarto, P.; Zorzi, A.; Merlo, L.; Vessella, T.; Pegoraro, C.; Giorgiano, F.; Graziano, F.; Basso, C.; Drezner, J.A.; Corrado, D. Value of screening for the risk of sudden cardiac death in young competitive athletes. Eur. Heart J. 2023, 44, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Erickson, C.C.; Salerno, J.C.; Berger, S.; Campbell, R.; Cannon, B.; Christiansen, J.; Moffatt, K.; Pflaumer, A.; Snyder, C.; Srinivasan, C.; et al. Sudden Death in the Young: Information for the Primary Care Provider. Pediatrics 2021, 148, e2021052044. [Google Scholar] [CrossRef] [PubMed]
- Maron, B.J.; Friedman, R.A.; Kligfield, P.; Levine, B.D.; Viskin, S.; Chaitman, B.R.; Okin, P.M.; Saul, J.P.; Salberg, L.; Van Hare, G.F.; et al. Assessment of the 12-lead electrocardiogram as a screening test for detection of cardiovascular disease in healthy general populations of young people 12–25 years of age: A scientific statement from the American Heart Association and the American College of Cardiology. J. Am. Coll. Cardiol. 2014, 64, 1479–1514. [Google Scholar]
- Winkelmann, Z.K.; Crossway, A.K. Optimal screening methods to detect cardiac disorders in athletes: An evidence-based review. J. Athl. Train. 2017, 52, 1168–1170. [Google Scholar] [CrossRef]
- Goff, N.K.; Hutchinson, A.; Koek, W.; Kamat, D. Meta-analysis on the effectiveness of ECG screening for conditions related to sudden cardiac death in young athletes. Clin. Pediatr. 2023, 62, 1158–1168. [Google Scholar] [CrossRef]
- Tabbutt, S.; Krawczeski, C.; McBride, M.; Amirnovin, R.; Owens, G.; Smith, A.; Wolf, M.; Rhodes, L.; Hehir, D.; Asija, R.; et al. Standardized training for physicians practicing pediatric cardiac critical care. Pediatr. Crit. Care Med. 2022, 23, 60–64. [Google Scholar] [CrossRef]
- Sakai-Bizmark, R.; Chang, R.K.R.; Martin, G.R.; Hom, L.A.; Marr, E.H.; Ko, J.; Goff, D.A.; Mena, L.A.; von Kohler, C.; Bedel, L.E.M.; et al. Current postlaunch implementation of state mandates of newborn screening for critical congenital heart disease by pulse oxymetry in U.S. states and hospitals. Am. J. Perinatol. 2024, 41 (S 01), e550–e562. [Google Scholar]
- Karim, J.N.; Bradburn, E.; Roberts, N.; Papageorghiou, A.T.; ACCEPTS study. First-trimester ultrasound detection of fetal heart anomalies: Systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2022, 59, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, L.K.; Dole, R.L.; Gibbs, K.C.; Lundeen, H.; Barnhart, R.C.; Farroni, L.; Moore, J.G.; Garcia, M.; Wild, D. Contemporary practice as a board-certified pediatric clinical specialist: A practice analysis. Pediatr. Phys. Ther. 2020, 32, 347–354. [Google Scholar] [CrossRef]
- Schord, S.; Fennell, M.; Sevov, C.; Liao, N. Preparation for PHM: Considerations for pediatric residency programs. Hosp. Pediatr. 2024, 14, e409–e413. [Google Scholar] [CrossRef] [PubMed]
- Ronai, C.; Brown, D.; Breitbart, R. A revamped cardiology curriculum for pediatric residents. Pediatrics 2019, 144, 297. [Google Scholar] [CrossRef]
- Delany, D.R.; Coffman, Z.J.; Shea, J.R.; Jump, C.S. An interactive, multimodal curriculum to teach pediatric cardiology to house staff. Pediatr. Cardiol. 2022, 43, 1359–1364. [Google Scholar] [CrossRef]
- Harris, T.H.; Adler, M.; Unti, S.M.; McBride, M.E. Pediatric heart disease simulation curriculum: Educating the pediatrician. Congenit. Heart Dis. 2017, 12, 546–553. [Google Scholar] [CrossRef]
- Curry, C.; Zuhlke, L.; Mocumbi, A.; Kennedy, N. Acquired heart disease in low-income and middle-income countries. Arch. Dis. Child. 2018, 103, 73–77. [Google Scholar] [CrossRef]
- Zühlke, L.; Lawrenson, J.; Comitis, G.; De Decker, R.; Brooks, A.; Fourie, B.; Swanson, L.; Hugo-Hamman, C. Congenital heart disease in low- and lower-middle-income countries: Current status and new opportunities. Curr. Cardiol. Rep. 2019, 21, 163. [Google Scholar] [CrossRef]
- Murala, J.S.K.; Karl, T.R.; Pezzella, A.T. Pediatric cardiac surgery in low-and middle-income countries: Present status and need for a paradigm shift. Front. Pediatr. 2019, 7, 214. [Google Scholar] [CrossRef]
- Cardarelli, M.; Vaikunth, S.; Mills, K.; DiSessa, T.; Molloy, F.; Sauter, E.; Bowtell, K.; Rivera, R.; Shin, A.; Novick, W. cost-effectiveness of humanitarian pediatric cardiac surgery programs in low- and middle-income countries. JAMA Netw. Open 2018, 1, e184707. [Google Scholar] [CrossRef]
Symptom or Sign | Etiology | Red Flags | Investigations |
---|---|---|---|
Chest pain |
|
|
|
Palpitations |
|
|
|
Syncope |
|
|
|
Heart murmur |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatza, A.A.; Fouzas, S.; Gkentzi, D.; Kostopoulou, E.; Loukopoulou, C.; Dimitriou, G.; Sinopidis, X. Missed or Delayed Diagnosis of Heart Disease by the General Pediatrician. Children 2025, 12, 366. https://doi.org/10.3390/children12030366
Karatza AA, Fouzas S, Gkentzi D, Kostopoulou E, Loukopoulou C, Dimitriou G, Sinopidis X. Missed or Delayed Diagnosis of Heart Disease by the General Pediatrician. Children. 2025; 12(3):366. https://doi.org/10.3390/children12030366
Chicago/Turabian StyleKaratza, Ageliki A., Sotirios Fouzas, Despoina Gkentzi, Eirini Kostopoulou, Christina Loukopoulou, Gabriel Dimitriou, and Xenophon Sinopidis. 2025. "Missed or Delayed Diagnosis of Heart Disease by the General Pediatrician" Children 12, no. 3: 366. https://doi.org/10.3390/children12030366
APA StyleKaratza, A. A., Fouzas, S., Gkentzi, D., Kostopoulou, E., Loukopoulou, C., Dimitriou, G., & Sinopidis, X. (2025). Missed or Delayed Diagnosis of Heart Disease by the General Pediatrician. Children, 12(3), 366. https://doi.org/10.3390/children12030366