Visual Cortical Processing in Children with Early Bilateral Cochlear Implants: A VEP Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Procedures
Speech Perception Measures
2.3. EEG Recording
2.3.1. Data Recording and Analysis
2.3.2. Preprocessing
2.3.3. EEG Data Analysis
2.4. Statistic Analysis
3. Results
3.1. Group Differences in VEP Components in the Occipital ROI
3.2. Group-Specific Variations in Visual Evoked Potential Components Across Occipital Electrode Sites
3.2.1. Amplitude Analysis
3.2.2. Latency Analysis
3.3. Speech-in-Noise Performance Between Groups
3.4. VEP Components and Speech-in-Noise Correlations
3.5. Group Differences in VEP Components in the Right Temporal ROI
3.6. Age-Related Changes in Visual Processing
4. Discussion
4.1. Preserved Global Visual Processing
4.2. Cross-Modal Reorganization and Temporal Processing
4.3. Localized Adaptations in Visual Processing and Association with Speech Perception in Noise
4.4. Developmental Trajectory of VEP Amplitudes
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pisoni, D.B.; Kronenberger, W.G.; Harris, M.S.; Moberly, A.C. Three challenges for future research on cochlear implants. World J. Otorhinolaryngol. Head Neck Surg. 2018, 3, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Svirsky, M.A.; Robbins, A.M.; Kirk, K.I.; Pisoni, D.B.; Miyamoto, R.T. Language development in profoundly deaf children with cochlear implants. Psychol. Sci. 2000, 11, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Geers, A.E.; Moog, J.S.; Biedenstein, J.; Brenner, C.; Hayes, H. Spoken language scores of children using cochlear implants compared to hearing age-mates at school entry. J. Deaf. Stud. Deaf. Educ. 2009, 14, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Peterson, N.R.; Pisoni, D.B.; Miyamoto, R.T. Cochlear implants and spoken language processing abilities: Review and assessment of the literature. Restor. Neurol. Neurosci. 2010, 28, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Stropahl, M.; Chen, L.C.; Debener, S. Cortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations. Hear. Res. 2017, 343, 128–137. [Google Scholar] [CrossRef]
- Kral, A.; Sharma, A. Crossmodal plasticity in hearing loss. Trends Neurosci. 2023, 46, 377–393. [Google Scholar] [CrossRef]
- Kral, A.; Kronenberger, W.G.; Pisoni, D.B.; O’Donoghue, G.M. Neurocognitive factors in sensory restoration of early deafness: A connectome model. Lancet Neurol. 2016, 15, 610–621. [Google Scholar] [CrossRef]
- Campbell, J.; Sharma, A. Cross-modal re-organization in adults with early-stage hearing loss. PLoS ONE 2014, 9, e90594. [Google Scholar] [CrossRef]
- Glick, H.; Sharma, A. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications. Hear. Res. 2017, 343, 191–201. [Google Scholar] [CrossRef]
- Land, R.; Baumhoff, P.; Tillein, J.; Lomber, S.G.; Hubka, P.; Kral, A. Cross-Modal Plasticity in Higher-Order Auditory Cortex of Congenitally Deaf Cats Does Not Limit Auditory Responsiveness to Cochlear Implants. J. Neurosci. 2016, 36, 6175–6185. [Google Scholar] [CrossRef]
- Moskowitz, A.; Sokol, S. Developmental changes in the human visual system as reflected by the latency of the pattern reversal VEP. Electroencephalogr. Clin. Neurophysiol. 1983, 56, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Di Russo, F.; Martínez, A.; Sereno, M.I.; Pitzalis, S.; Hillyard, S.A. Cortical sources of the early components of the visual evoked potential. Hum. Brain Mapp. 2002, 15, 95–111. [Google Scholar] [CrossRef]
- Mangun, G.R.; Hillyard, S.A. Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual-spatial priming. J. Exp. Psychol. Hum. Percept. Perform. 1991, 17, 1057–1074. [Google Scholar] [CrossRef] [PubMed]
- Ritter, W.; Simson, R.; Vaughan, H.G., Jr. Event-related potential correlates of two stages of information processing in physical and semantic discrimination tasks. Psychophysiology 1983, 20, 168–179. [Google Scholar] [CrossRef]
- Vogel, E.K.; Luck, S.J. The visual N1 component as an index of a discrimination process. Psychophysiology 2000, 37, 190–203. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; McCulloch, D.L. Visual evoked potentials in infants and children. J. Clin. Neurophysiol. 1992, 9, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Tsuneishi, S.; Casaer, P.; Fock, J.M.; Hirano, S. Establishment of normal values for flash visual evoked potentials (VEPs) in preterm infants: A longitudinal study with special reference to two components of the N1 wave. Electroencephalogr. Clin. Neurophysiol. 1995, 96, 291–299. [Google Scholar] [CrossRef]
- Crowley, K.E.; Colrain, I.M. A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clin. Neurophysiol. 2004, 115, 732–744. [Google Scholar] [CrossRef]
- Di Russo, F.; Aprile, T.; Spitoni, G.; Spinelli, D. Impaired visual processing of contralesional stimuli in neglect patients: A visual-evoked potential study. Brain 2008, 131 Pt 3, 842–854. [Google Scholar] [CrossRef]
- Freunberger, R.; Klimesch, W.; Doppelmayr, M.; Höller, Y. Visual P2 component is related to theta phase-locking. Neurosci. Lett. 2007, 426, 181–186. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.D.; Liang, M.J.; Cai, Y.X.; Zheng, Y.Q. Brain Network Regional Synchrony Analysis in Deafness. BioMed Res. Int. 2018, 2018, 6547848. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, L.; Sun, N.; Li, S. Modulation of similarity on the distraction resistance of visual working memory representation. Psychophysiology 2023, 60, e14153. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Sharma, A. Visual Cross-Modal Re-Organization in Children with Cochlear Implants. PLoS ONE 2016, 11, e0147793. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Feng, M.; Hu, Y.; Zhang, C.; Zhang, Q.; Luo, X.; Yuan, W. The Effects of Cortical Reorganization and Applications of Functional Near-Infrared Spectroscopy in Deaf People and Cochlear Implant Users. Brain Sci. 2022, 12, 1150. [Google Scholar] [CrossRef]
- Rouger, J.; Lagleyre, S.; Fraysse, B.; Deneve, S.; Deguine, O.; Barone, P. Evidence that cochlear-implanted deaf patients are better multisensory integrators. Proc. Natl. Acad. Sci. USA 2007, 104, 7295–7300. [Google Scholar] [CrossRef]
- Doucet, M.E.; Bergeron, F.; Lassonde, M.; Ferron, P.; Lepore, F. Cross-modal reorganization and speech perception in cochlear implant users. Brain 2006, 129 Pt 12, 3376–3383. [Google Scholar] [CrossRef]
- Strelnikov, K.; Rouger, J.; Demonet, J.-F.; Lagleyre, S.; Fraysse, B.; Deguine, O.; Barone, P. Visual activity predicts auditory recovery from deafness after adult cochlear implantation. Brain 2013, 136 Pt 12, 3682–3695. [Google Scholar] [CrossRef]
- Buckley, K.A.; Tobey, E.A. Cross-modal plasticity and speech perception in pre- and postlingually deaf cochlear implant users. Ear Hear. 2011, 32, 2–15. [Google Scholar] [CrossRef]
- Sandmann, P.; Dillier, N.; Eichele, T.; Meyer, M.; Kegel, A.; Pascual-Marqui, R.D.; Marcar, V.L.; Jäncke, L.; Debener, S. Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain 2012, 135 Pt 2, 555–568. [Google Scholar] [CrossRef]
- Schierholz, I.; Finke, M.; Schulte, S.; Hauthal, N.; Kantzke, C.; Rach, S.; Büchner, A.; Dengler, R.; Sandmann, P. Enhanced audio-visual interactions in the auditory cortex of elderly cochlear-implant users. Hear. Res. 2015, 328, 133–147. [Google Scholar] [CrossRef]
- Anderson, C.A.; Wiggins, I.M.; Kitterick, P.T.; Hartley, D.E.H. Adaptive benefit of cross-modal plasticity following cochlear implantation in deaf adults. Proc. Natl. Acad. Sci. USA 2017, 114, 10256–10261. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Campbell, J.; Cardon, G. Developmental and cross-modal plasticity in deafness: Evidence from the P1 and N1 event related potentials in cochlear implanted children. Int. J. Psychophysiol. 2015, 95, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Fullerton, A.M.; Vickers, D.A.; Luke, R.; Billing, A.N.; McAlpine, D.; Hernandez-Perez, H.; E Peelle, J.E.; Monaghan, J.J.M.; McMahon, C.M. Cross-modal functional connectivity supports speech understanding in cochlear implant users. Cereb. Cortex 2023, 33, 3350–3371. [Google Scholar] [CrossRef] [PubMed]
- Kral, A.; Sharma, A. Developmental neuroplasticity after cochlear implantation. Trends Neurosci. 2012, 35, 111–122. [Google Scholar] [CrossRef]
- Sharma, A.; Campbell, J. A sensitive period for cochlear implantation in deaf children. J. Matern. Fetal Neonatal Med. 2011, 24 (Suppl. S1), 151–153. [Google Scholar] [CrossRef]
- Deroche, M.L.D.; Wolfe, J.; Neumann, S.; Manning, J.; Hanna, L.; Towler, W.; Wilson, C.; Bien, A.G.; Miller, S.; Schafer, E.; et al. Cross-modal plasticity in children with cochlear implant: Converging evidence from EEG and functional near-infrared spectroscopy. Brain Commun. 2024, 6, fcae175. [Google Scholar] [CrossRef]
- Qiao, X.F.; Liu, L.D.; Han, L.Y.; Chen, Y.; Li, X. Exploring cross-modal plasticity in the auditory-visual cortex post cochlear implantation: Implications for auditory and speech function recovery and mechanisms. Front. Neurosci. 2024, 18, 1411058. [Google Scholar] [CrossRef]
- Kral, A.; Dorman, M.F.; Wilson, B.S. Neuronal Development of Hearing and Language: Cochlear Implants and Critical Periods. Annu. Rev. Neurosci. 2019, 42, 47–65. [Google Scholar] [CrossRef]
- Stroh, A.; Grin, K.; Rösler, F.; Bottari, D.; Ossandón, J.; Rossion, B.; Röder, B. Developmental experiences alter the temporal processing characteristics of the visual cortex: Evidence from deaf and hearing native signers. Eur. J. Neurosci. 2022, 55, 1629–1644. [Google Scholar] [CrossRef]
- Liang, M.; Chen, Y.; Zhao, F.; Zhang, J.; Liu, J.; Zhang, X.; Cai, Y.; Chen, S.; Li, X.; Chen, L.; et al. Visual Processing Recruits the Auditory Cortices in Prelingually Deaf Children and Influences Cochlear Implant Outcomes. Otol. Neurotol. 2017, 38, 1104–1111. [Google Scholar] [CrossRef]
- Liang, M.; Zhang, J.; Liu, J.; Chen, Y.; Cai, Y.; Wang, X.; Wang, J.; Zhang, X.; Chen, S.; Li, X.; et al. Visually Evoked Visual-Auditory Changes Associated with Auditory Performance in Children with Cochlear Implants. Front. Hum. Neurosci. 2017, 11, 510. [Google Scholar] [CrossRef] [PubMed]
- Corina, D.P.; Blau, S.; LaMarr, T.; Lawyer, L.A.; Coffey-Corina, S. Auditory and visual electrophysiology of deaf children with cochlear implants: Implications for cross-modal plasticity. Front. Psychol. 2017, 8, 59. [Google Scholar] [CrossRef] [PubMed]
- Corina, D.P.; Coffey-Corina, S.; Pierotti, E.; Mankel, K.; Miller, L.M. Electrophysiological study of visual processing in children with cochlear implants. Neuropsychologia 2024, 194, 108774. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, F.; Wiggins, I.M.; Kitterick, P.T.; Anderson, C.A.; Hartley, D.E.H. The Benefit of Cross-Modal Reorganization on Speech Perception in Pediatric Cochlear Implant Recipients Revealed Using Functional Near-Infrared Spectroscopy. Front. Hum. Neurosci. 2020, 14, 308. [Google Scholar] [CrossRef] [PubMed]
- de Schonen, S.; Bertoncini, J.; Petroff, N.; Couloigner, V.; Van Den Abbeele, T. Visual cortical activity before and after cochlear implantation: A follow up ERP prospective study in deaf children. Int. J. Psychophysiol. 2018, 123, 88–102. [Google Scholar] [CrossRef]
- Gabr, T.A.; Hassaan, M.R.; Abdelsalam, E.M. Visual evoked potentials in cochlear implant users: Effect of duration of deafness and rehabilitation. Int. J. Pediatr. Otorhinolaryngol. 2022, 152, 111005. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Wechsler, D. Wechsler Intelligence Scale for Children, 4th ed.; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Merchán-Naranjo, J.; Mayoral, M.; Rapado-Castro, M.; Llorente, C.; Boada, L.; Arango, C.; Parellada, M. Estimation of the intelligence quotient using Wechsler Intelligence Scales in children and adolescents with Asperger syndrome. J. Autism Dev. Disord. 2012, 42, 116–122. [Google Scholar] [CrossRef]
- Forli, F.; Bruschini, L.; Franciosi, B.; Berrettini, S.; Lazzerini, F. Sequential bilateral cochlear implant: Long-term speech perception results in children first implanted at an early age. Eur. Arch. Otorhinolaryngol. 2023, 280, 1073–1080. [Google Scholar] [CrossRef]
- Gordon, K.A.; Papsin, B.C. Benefits of short interimplant delays in children receiving bilateral cochlear implants. Otol. Neurotol. 2009, 30, 319–331. [Google Scholar] [CrossRef]
- Hsu, C.-W.; Ho, P.-H.; Chu, C.-H.; Chen, P.-Y.; Hsu, H.-M.; Cheng, Y.-L.; Chen, X.-X.; Chen, I.-H.; Sun, Y.-C.; Lin, H.-C. Timing of bilateral sequential cochlear implantation for children: Determination of its benefit. Eur. Arch. Otorhinolaryngol. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tzvi-Minker, E.; Keck, A. How can we compare cochlear implant systems across manufacturers? A scoping review of recent literature. Audiol. Res. 2023, 13, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.L.; Gibson, W.P.R.; Johnson, M.; Brew, J.; Bray, M.; Psarros, C. Intra-individual assessment of speech and music perception in cochlear implant users with contralateral CochlearTM and MED-ELTM systems. Acta Otolaryngol. 2011, 131, 1270–1278. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.A. Sentence recognition in noise for children from severe to profound hearing impairment. J. Speech Lang. Hear. Res. 2002, 45, 1127–1141. [Google Scholar]
- Shpak, T.; Koren, L.; Tzach, N.; Most, T.; Luntz, M. Perception of speech by prelingual pre-adolescent and adolescent cochlear implant users. Int. J. Audiol. 2009, 48, 775–783. [Google Scholar] [CrossRef]
- Davis, H.; Silverman, S.R. Hearing and Deafness; Holt, Rinehart & Winston: New York, NY, USA, 1970. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open-source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Luck, S.J. An Introduction to the Event-Related Potential Technique, 2nd ed.; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Widmann, A.; Schröger, E.; Maess, B. Digital filter design for electrophysiological data—A practical approach. J. Neurosci. Methods. 2015, 250, 34–46. [Google Scholar] [CrossRef]
- Hipp, J.F.; Hawellek, D.J.; Corbetta, M.; Siegel, M.; Engel, A.K. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat. Neurosci. 2012, 15, 884–890. [Google Scholar] [CrossRef]
- Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 2011, 48, 229–240. [Google Scholar] [CrossRef]
- Chaumon, M.; Bishop, D.V.; Busch, N.A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods 2015, 250, 47–63. [Google Scholar] [CrossRef]
- Intartaglia, B.; Zeitnouni, A.G.; Lehmann, A. Recording EEG in cochlear implant users: Guidelines for experimental design and data analysis for optimizing signal quality and minimizing artifacts. J. Neurosci. Methods 2022, 375, 109592. [Google Scholar] [CrossRef] [PubMed]
- Gilley, P.M.; Sharma, A.; Dorman, M.; Martin, K. Developmental changes in refractoriness of the cortical auditory evoked potential. Clin. Neurophysiol. 2005, 116, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Debener, S.; Hine, J.; Bleeck, S.; Eyles, J. Source localization of auditory evoked potentials after cochlear implantation. Psychophysiology 2008, 45, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Viola, F.C.; De Vos, M.; Hine, J.; Sandmann, P.; Bleeck, S.; Eyles, J.; Debener, S. Semi-automatic attenuation of cochlear implant artifacts for the evaluation of late auditory evoked potentials. Hear. Res. 2012, 284, 6–15. [Google Scholar] [CrossRef]
- Sandmann, P.; Eichele, T.; Buechler, M.; Debener, S.; Jäncke, L.; Dillier, N.; Hugdahl, K.; Meyer, M. Evaluation of evoked potentials to dyadic tones after cochlear implantation. Brain 2009, 132 Pt 7, 1967–1979. [Google Scholar] [CrossRef]
- Schierholz, I.; Schönermark, C.; Ruigendijk, E.; Kral, A.; Kopp, B.; Büchner, A. An event-related brain potential study of auditory attention in cochlear implant users. Clin. Neurophysiol. 2021, 132, 2290–2305. [Google Scholar] [CrossRef]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef]
- Chlubnová, J.; Kremlácek, J.; Kubová, Z.; Kuba, M. Visual evoked potentials and event related potentials in congenitally deaf subjects. Physiol. Res. 2005, 54, 577–583. [Google Scholar] [CrossRef]
- Gilley, P.M.; Sharma, A.; Dorman, M.F. Cortical reorganization in children with cochlear implants. Brain Res. 2008, 1239, 56–65. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Hubert, M. Anomaly detection by robust statistics. WIREs Data Min. Knowl. Discov. 2018, 8, e1236. [Google Scholar] [CrossRef]
- Lomber, S.G.; Meredith, M.A.; Kral, A. Adaptive crossmodal plasticity in deaf auditory cortex: Areal and laminar contributions to supranormal vision in the deaf. Prog. Brain Res. 2011, 191, 251–270. [Google Scholar] [CrossRef] [PubMed]
- Lomber, S.G.; Meredith, M.A.; Kral, A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci. 2010, 13, 1421–1427. [Google Scholar] [CrossRef] [PubMed]
- Bell, L.; Wagels, L.; Neuschaefer-Rube, C.; Fels, J.; Gur, R.E.; Konrad, K. The Cross-Modal Effects of Sensory Deprivation on Spatial and Temporal Processes in Vision. and Audition: A Systematic Review on Behavioral and Neuroimaging Research since 2000. Neural Plast. 2019, 2019, 9603469. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 2001, 11, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.K.; McGettigan, C. Do temporal processes underlie left hemisphere dominance in speech perception? Brain Lang. 2013, 127, 36–45. [Google Scholar] [CrossRef]
- Giraud, A.L.; Lee, H.J. Predicting cochlear implant outcome from brain organization in the deaf. Restor. Neurol. Neurosci. 2007, 25, 381–390. [Google Scholar]
- Lazard, D.S.; Lee, H.J.; Gaebler, M.; Kell, C.A.; Truy, E.; Giraud, A.L. Phonological processing in post-lingual deafness and cochlear implant outcome. Neuroimage 2010, 49, 3443–3451. [Google Scholar] [CrossRef]
- Smith, G.N.L.; Pisoni, D.B.; Kronenberger, W.G. High-Variability Sentence Recognition in Long-Term Cochlear Implant Users: Associations with Rapid Phonological Coding and Executive Functioning. Ear Hear. 2019, 40, 1149–1161. [Google Scholar] [CrossRef]
VEP Component | CI (n = 25) Mean (SD) | NH (n = 28) Mean (SD) | t Value(df) | p-Value | 95% CI | Effect Size (Cohen d) |
---|---|---|---|---|---|---|
P1 Amplitude (μV) | 8.35 (3.86) | 10.41 (4.61) | −1.73 (50) | 0.089 | [−4.309, 0.369] | −0.47 |
N1 Amplitude (μV) | 4.04 (2.32) | 4.76 (1.95) | −1.21 (50) | 0.231 | [−1.77, 0.509] | −0.309 |
P1 Latency (ms) | 143.00 (18.99) | 146.00 (18.45) | −0.45 (51) | 0.657 | [−12.63, 8.03] | −0.12 |
N1 Latency (ms) | 284.27 (26.96) | 270.35 (20.06) | −1.832 (51) | 0.3 | [−0.994, 23.509] | 0.513 |
Amplitude (μV) | Effect Type | Source | CI (n = 25) Mean (SD) | NH (n = 28) Mean (SD) | F/t (dfh, dfe) | p-Value | Effect Size η2p |
---|---|---|---|---|---|---|---|
P1 | Within-Subjects | Electrode | - | 0.157 (2, 48) | 0.855 | 0.006 | |
Between-Subjects | Group (CI vs. NH) | - | - | 2.681 (2, 48) | 0.079 | 0.100 | |
Interaction | Electrode × Group | - | - | 2.056 (1, 48) | 0.158 | 0.040 | |
Pairwise Comparisons | CI vs. NH at O1 | 7.65 (4.22) | 10.60 (4.75) | - | 0.035 * | - | |
CI vs. NH at O2 | 8.82 (4.18) | 9.47 (4.17) | - | 0.755 | - | ||
CI vs. NH at OZ | 8.65 (4.02) | 10.73 (5.53) | - | 0.133 | - | ||
NI | Within-Subjects | Electrode | - | - | 0.00 (2, 50) | 0.99 | 0.000 |
Between-Subjects | Group (CI vs. NH) | - | - | 0.48 (2, 50) | 0.618 | 0.010 | |
Interaction | Electrode × Group | - | - | 1.74 (1, 50) | 0.193 | 0.034 | |
Pairwise Comparisons | CI vs. NH at O1 | 4.18 (2.38) | 4.85 (2.23) | - | 0.301 | - | |
CI vs. NH at O2 | 4.18 (2.65) | 4.63 (2.16) | - | 0.338 | - | ||
CI vs. NH at O2 | 3.78 (2.33) | 4.81 (2.27) | - | 0.112 | - |
Latency (ms) | Effect Type | Source | CI (n = 25) Mean (SD) | NH (n = 28) Mean (SD) | F/t (dfh, dfe) | p-Value | Effect Size η2p |
---|---|---|---|---|---|---|---|
P1 | Within-Subjects | Electrode | - | 0.00 (2, 50) | 0.996 | 0.00 | |
Between-Subjects | Group (CI vs. NH) | - | 0.08 (1, 50) | 0.771 | 0.002 | ||
Interaction | Electrode × Group | - | 1.23 (2, 50) | 0.295 | 0.024 | ||
Pairwise Comparisons | CI vs. NH at O1 | 147.66 (24.69) | 148.44 (24.35) | - | 0.91 | - | |
CI vs. NH at O2 | 142.34 (19.74) | 150.46 (26.01) | - | 0.38 | - | ||
CI vs. NH at OZ | 141.72 (20.60) | 139.72 (18.96) | - | 0.7 | - | ||
NI | Within-Subjects | Electrode | - | - | 0.020 (2, 49) | 0.965 | 0.001 |
Between-Subjects | Group (CI vs. NH) | - | - | 0.590 (1, 50) | 0.446 | 0.012 | |
Interaction | Electrode × Group | - | - | 4.169 (2, 49) | 0.021 * | 0.146 | |
Pairwise Comparisons | CI vs. NH at O1 | 284.92 (29.16) | 262.56 (33.51) | - | 0.025 * | - | |
CI vs. NH at O2 | 287.27 (30.83) | 273.37 (27.00) | - | 0.129 | - | ||
CI vs. NH at O2 | 277.67 (24.15) | 275.11 (23.44) | - | 0.700 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badarni-Zahalka, O.; Dakwar-Kawar, O.; Adelman, C.; Khoury-Shoufani, S.; Attias, J. Visual Cortical Processing in Children with Early Bilateral Cochlear Implants: A VEP Analysis. Children 2025, 12, 278. https://doi.org/10.3390/children12030278
Badarni-Zahalka O, Dakwar-Kawar O, Adelman C, Khoury-Shoufani S, Attias J. Visual Cortical Processing in Children with Early Bilateral Cochlear Implants: A VEP Analysis. Children. 2025; 12(3):278. https://doi.org/10.3390/children12030278
Chicago/Turabian StyleBadarni-Zahalka, Ola, Ornella Dakwar-Kawar, Cahtia Adelman, Salma Khoury-Shoufani, and Josef Attias. 2025. "Visual Cortical Processing in Children with Early Bilateral Cochlear Implants: A VEP Analysis" Children 12, no. 3: 278. https://doi.org/10.3390/children12030278
APA StyleBadarni-Zahalka, O., Dakwar-Kawar, O., Adelman, C., Khoury-Shoufani, S., & Attias, J. (2025). Visual Cortical Processing in Children with Early Bilateral Cochlear Implants: A VEP Analysis. Children, 12(3), 278. https://doi.org/10.3390/children12030278