The Use of Sternum and Sacrum Angles in the Assessment of Sitting Posture in Adolescents: A Cross-Sectional Comparison of Cohorts Assessed Before and After the COVID-19 Pandemic
Highlights
- In two cross-sectional cohorts assessed before and after the COVID-19 pandemic, standardized sitting spinal alignment parameters showed no large between-group differences.
- The sternal angle correlated with thoracic kyphosis, and the sacral angle with lumbar lordosis, indicating their consistent geometric association within the postural chain.
- A sternal angle of approximately 65° was consistently associated with thoracic and lumbar curvatures considered physiologically favorable; this may serve as a practical reference value rather than a prescriptive “optimal” posture.
- Angle-based assessment offers a simple, measurable approach that can support posture education and screening in schools without the need for specialized equipment.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- A score of 0 or 1 on the WHO ECOG scale, indicating normal systemic health;
- Normal thoracic and spinal structures as verified by an experienced physical therapist.
- Spinal pain within the past 3 months;
- Difficulty identifying the sacrococcygeal joint due to deformities of the sacrum or coccyx;
- Neuromuscular disorders affecting posture correction or maintenance;
- Participation in specialized postural disorder therapy;
- Clinically diagnosed scoliosis;
- History of spinal or chest surgery, analgesic treatment affecting posture, or deformities of the sternum or thoracic cage.
2.2. Procedure
- (1)
- Passive sitting—a habitual posture without instruction or correction.
- (2)
- Forced sitting—maximal voluntary extension posture based on verbal instruction from the examiner.
- (3)
- Corrected sitting—corrected posture to optimize alignment based on the examiner’s handling.
2.3. Measures
2.3.1. Saunders Digital Inclinometer
2.3.2. DIERS Formetric 4D Rasterstereographic System for Spinal Alignment
2.4. Analysis
3. Results
3.1. Spinal Alignment
3.2. Correlation Analysis by Posture
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Abbreviation | Full Term |
| BMI | Body Mass Index |
| COVID-19 | Coronavirus Disease 2019 |
| DIERS | DIERS Formetric 4D rasterstereographic system |
| ECOG | Eastern Cooperative Oncology Group performance scale |
| SD | Standard Deviation |
| WHO | World Health Organization |
References
- Lazzeri, M.; Lanza, A.; Bellini, R.; Bellofiore, A.; Cecchetto, S.; Colombo, A.; D’Abrosca, F.; Del Monaco, C.; Gaudellio, G.; Paneroni, M.; et al. Respiratory physiotherapy in patients with COVID-19 infection in acute setting: A Position Paper of the Italian Association of Respiratory Physiotherapists (ARIR). Monaldi Arch. Chest Dis. 2020, 90, 163–168. [Google Scholar] [CrossRef]
- The Polish Government Online Legal Acts System. Regulation of the Minister of Health of 20 March 2020 on the declaration of an epidemic in the territory of the Republic of Poland. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200000491 (accessed on 12 November 2025).
- Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef] [PubMed]
- Giordano, L.; Cipollaro, L.; Migliorini, F.; Maffulli, N. Impact of COVID-19 on undergraduate and residency training. Surgeon 2021, 19, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Zhu, Z.; Zhu, L.; Wang, W.; Guo, L.; Ru, S.; Chen, X.; Yang, L.; Lu, C.; Yan, B. Academic-related factors and daily lifestyle habits associated with adolescent idiopathic scoliosis: A case-control study. Environ. Health Prev. Med. 2023, 28, 23. [Google Scholar] [CrossRef] [PubMed]
- Samji, H.; Wu, J.; Ladak, A.; Vossen, C.; Stewart, E.; Dove, N.; Long, D.; Snell, G. Review: Mental health impacts of the COVID-19 pandemic on children and youth—A systematic review. Child Adolesc. Ment. Health 2022, 27, 173–189. [Google Scholar] [CrossRef]
- Migliorini, F.; Vaishya, R.; Eschweiler, J.; Oliva, F.; Hildebrand, F.; Maffulli, N. Vitamins C and D and COVID-19 Susceptibility, Severity and Progression: An Evidence Based Systematic Review. Medicina 2022, 58, 941. [Google Scholar] [CrossRef]
- Pagoto, S.L.; Conroy, D.E. Revitalizing Adolescent Health Behavior After the COVID-19 Pandemic. JAMA Pediatr. 2021, 175, 677–679. [Google Scholar] [CrossRef]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Kolarova, M.; Kutiš, P.; Rusnak, R.; Hrčková, Z.; Hudáková, Z.; Lysá, Ľ.; Luliak, M.; Babela, R. Analysis of body segments and postural state in school children. Neuro Endocrinol. Lett. 2019, 40, 17–23. [Google Scholar]
- Rusnak, R.; Potasova, M.; Littva, V.; Kutis, P.; Komar, M.; Macej, P. World’s COVID-19 anti-pandemic measures in the context of postural and spine disorders in primary school children in Slovakia. Bratisl. Lek. Listy 2022, 123, 555–559. [Google Scholar]
- Yang, L.; Lu, X.; Yan, B.; Huang, Y. Prevalence of Incorrect Posture among Children and Adolescents: Finding from a Large Population-Based Study in China. iScience 2020, 23, 101043. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Aparicio-Ugarriza, R.; Castillo, A.; Ruiz, E.; Avila, J.M.; Aranceta-Bartrina, J.; Gil, A.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; et al. Sedentary behavior among Spanish children and adolescents: Findings from the ANIBES study. BMC Public Health 2017, 17, 94. [Google Scholar] [CrossRef]
- Harrison, D.D.; Harrison, S.O.; Croft, A.C.; Harrison, D.E.; Troyanovich, S.J. Sitting biomechanics: Review of the literature. J. Manip. Physiol. Ther. 1999, 22, 594–609. [Google Scholar] [CrossRef]
- Scannell, J.P.; McGill, S.M. Lumbar posture-should it, and can it, be modified? A study of passive tissue stiffness and lumbar position during activities of daily living. Phys Ther. 2003, 83, 907–917. [Google Scholar]
- O’Sullivan, P.B.; Dankaerts, W.; Burnett, A.F.; Farrell, G.T.; Jefford, E.; Naylor, C.S.; O’sUllivan, K.J. Effect of different upright sitting postures on spinal-pelvic curvature and trunk muscle activation in a pain-free population. Spine 2006, 31, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Czaprowski, D.; Pawłowska, P.; Stoliński, L.; Kotwicki, T. Active self-correction of back posture in children instructed with ‘straighten your back’ command. Man. Ther. 2014, 19, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Kiebzak, W.P.; Żurawski, A.Ł.; Kosztołowicz, M. Alignment of the Sternum and Sacrum as a Marker of Sitting Body Posture in Children. Int. J. Environ. Res. Public Health 2022, 19, 16287. [Google Scholar] [CrossRef]
- Żurawski, A.Ł.; Ha, S.Y.; Świercz, G.; Adamczyk Gruszka, O.; Kiebzak, W.P. Targeted Motor Control Considering Sternal Position Improves Spinal Alignment in Pregnant Women at Risk for Preterm Birth with Low Back Pain. J. Clin. Med. 2024, 13, 7661. [Google Scholar] [CrossRef]
- Kiebzak, W.P.; Ha, S.-Y.; Kosztołowicz, M.; Żurawski, A. Forced Straightening of the Back Does Not Improve Body Shape. Diagnostics 2024, 14, 250. [Google Scholar] [CrossRef]
- Yadav, R.; Basista, R. Effect of prolonged sitting on hamstring muscle flexibility and lumbar lordosis in collegiate student. Int. J. Health Sci. Res. 2020, 10, 280–289. [Google Scholar]
- Zwierzchowska, A.; Tuz, J.; Grabara, M. Is BAI better than BMI in estimating the increment of lumbar lordosis for the Caucasian population? J. Back Musculoskelet. Rehabil. 2020, 33, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Grabara, M.; Witkowska, A. Sagittal spinal curvatures of young adults in the context of their self-reported physical activity and somatic parameters. Sci. Rep. 2024, 14, 12221. [Google Scholar] [CrossRef] [PubMed]
- Kargarfard, M.K.; Mahdavi-Nejad, R.; Ghasemi, G.A.; Rouzbehani, R.; Ghias, M.; Mahdavi-Jafari, Z. Assessment of spinal curvature in Isfahan University students. J. Isfahan Med. Sch. 2010, 27, 762–776. [Google Scholar]
- Mei, Y.; Lin, Y.F.; Gong, Z.; Yan, B.; Liang, Q. Prevalence of incorrect posture among school adolescents after the COVID-19 pandemic: A large population-based scoliosis screening in China. J. Orthop. Surg. Res. 2025, 20, 156. [Google Scholar] [CrossRef]
- Roussouly, P.; Gollogly, S.; Berthonnaud, E.; Dimnet, J. Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 2005, 30, 346–353. [Google Scholar] [CrossRef]
- Gonen, T.; Kratel, M.; Yakut, Y. Comparison of before and after the pandemic: School screening for scoliosis in a district in southeast Turkey. In Proceedings of the 3rd International Symposium Current Trends in the Study of Scoliosis and Other Deformities of the Spinal Column, Athens, Greece, 17–18 September 2022. [Google Scholar]
- Driscoll, C.R.; Aubin, C.E.; Canet, F.; Dansereau, J.; Labelle, H. The impact of intra-operative sternum vertical displacement on the sagittal curves of the spine. Eur. Spine J. 2010, 19, 421–426. [Google Scholar] [CrossRef]
- Vaz, G.; Roussouly, P.; Berthonnaud, E.; Dimnet, J. Sagittal morphology and equilibrium of pelvis and spine. Eur. Spine J. 2002, 11, 80–87. [Google Scholar] [CrossRef]
- Kiebzak, W.P. Application of Euclidean geometry in the assessment of body posture in a sitting position. Pol. Ann. Med. 2022, 29, 167–171. [Google Scholar] [CrossRef]
- Lee, C.H.; Hwang, S. Diagnostic values of abdominal muscles thickness and sterno-costal angle for young adults with rounded shoulders. Phys. Ther. Rehabil. Sci. 2020, 9, 49–54. [Google Scholar] [CrossRef]


| 2017 (n = 158) | 2024 (n = 198) | p | |
|---|---|---|---|
| Sex (male/female) | 60 (37.97%)/98 (62.03%) | 83 (41.92%)/115 (58.05%) | |
| Age | 11.65 ± 1.19 | 11.59 ± 1.18 | 0.661 |
| Weight | 56.89 ± 8.45 | 56.44 ± 8.10 | 0.615 |
| Height | 164.63 ± 8.29 | 164.67 ±7.88 | 0.969 |
| BMI | 20.90 ± 2.06 | 20.75 ± 2.16 | 0.496 |
| Variables | Year | Passive a | Forced b | Corrected c | p Value |
|---|---|---|---|---|---|
| Sternal angle (°) | 2017 | 79.50 ± 8.69 a | 70.11 ± 11.16 b | 63.68 ± 2.15 c | 0.000 * |
| 2024 | 80.98 ± 8.90 a | 71.54 ± 10.97 b | 63.66 ± 2.19 c | 0.000 * | |
| p Value | 0.117 | 0.226 | 0.913 | ||
| Sacral angle (°) | 2017 | 83.62 ± 9.96 a | 91.58 ± 8.78 b | 113.28 ± 5.60 c | 0.000 * |
| 2024 | 82.00 ± 10.26 a | 90.95 ± 8.75 b | 112.45 ± 5.77 c | 0.000 * | |
| p Value | 0.137 | 0.499 | 0.178 | ||
| Thoracic kyphosis (°) | 2017 | 61.00 ± 12.25 a | 43.15 ± 13.65 b,c | 43.45 ± 3.30 b,c | 0.000 * |
| 2024 | 62.34 ± 12.62 a | 44.66 ± 13.49 b | 43.38 ± 3.22 c | 0.000 * | |
| p Value | 0.318 | 0.298 | 0.912 | ||
| Lumbar lordosis (°) | 2017 | 0.49 ± 15.96 a | 12.28 ± 12.45 b | 38.36 ± 4.34 c | 0.000 * |
| 2024 | −1.12 ± 16.43 a | 12.46 ± 12.62 b | 38.02 ± 4.48 c | 0.000 * | |
| p Value | 0.356 | 0.750 | 0.465 | ||
| Trunk inclination (°) | 2017 | 14.67 ± 7.09 a | 2.22 ± 6.35 b,c | 3.36 ± 1.59 b,c | 0.000 * |
| 2024 | 15.30 ± 7.06 a | 2.69 ± 6.31 b,c | 3.40 ± 1.64 b,c | 0.000 * | |
| p Value | 0.403 | 0.485 | 0.812 | ||
| Lateral deviation (mm) | 2017 | 6.63 ± 3.62 a | 4.03 ± 1.88 b | 2.11 ± 1.27 c | 0.000 * |
| 2024 | 6.71 ± 3.55 a | 4.07 ± 1.93 b | 2.14 ± 1.26 c | 0.000 * | |
| p Value | 0.825 | 0.824 | 0.854 |
| Variables | Sternal Angle | Sacral Angle | Thoracic Kyphosis | Lumbar Lordosis | Trunk Inclination | Lateral Deviation | |
|---|---|---|---|---|---|---|---|
| Passive sitting | Sternal angle | 1.000 | |||||
| Sacral angle | −0.257 *** (p = 0.000) | 1.000 | |||||
| Thoracic kyphosis | 0.667 *** (p = 0.000) | −0.213 *** (p = 0.000) | 1.000 | ||||
| Lumbar lordosis | −0.171 ** (p = 0.001) | 0.679 *** (p = 0.000) | −0.284 *** (p = 0.000) | 1.000 | |||
| Trunk inclination | 0.218 *** (p = 0.000) | −0.296 *** (p = 0.000) | 0.216 *** (p = 0.000) | −0.407 (p = 0.000) | 1.000 | ||
| Lateral deviation | 0.212 *** (p =0.000) | −0.117 * (p = 0.028) | 0.215 *** (p = 0.000) | −0.112 * (p = 0.035) | 0.103 (p = 0.053) | 1.000 | |
| Forced sitting | Sternal angle | 1.000 | |||||
| Sacral angle | −0.280 *** (p = 0.000) | 1.000 | |||||
| Thoracic kyphosis | 0.695 *** (p = 0.000) | −0.270 *** (p = 0.000) | 1.000 | ||||
| Lumbar lordosis | −0.145 ** (p = 0.006) | 0.743 *** (p = 0.000) | −0.204 *** (p = 0.000) | 1.000 | |||
| Trunk inclination | 0.202 *** (p = 0.000) | −0.269 *** (p = 0.000) | 0.196 *** (p = 0.000) | −0.194 *** (p = 0.000) | 1.000 | ||
| Lateral deviation | −0.047 (p = 0.374) | 0.111 * (p = 0.037) | −0.065 (p = 0.222) | 0.169 ** (p = 0.001) | 0.078 (p = 0.141) | 1.000 | |
| Corrected sitting | Sternal angle | 1.000 | |||||
| Sacral angle | 0.078 (p = 0.143) | 1.000 | |||||
| Thoracic kyphosis | 0.119 * (p = 0.025) | 0.082 (p = 0.121) | 1.000 | ||||
| Lumbar lordosis | 0.130 (p = 0.014) | 0.308 *** (p = 0.000) | 0.028 (p = 0.604) | 1.000 | |||
| Trunk inclination | −0.186 *** (p = 0.000) | −0.119 * (p = 0.025) | −0.166 ** (p = 0.002) | 0.023 (p = 0.661) | 1.000 | ||
| Lateral deviation | −0.008 (p = 0.887) | 0.080 (p = 0.135) | 0.010 (p = 0.135) | 0.057 (p = 0.284) | −0.014 (p = 0.794) | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, S.-Y.; Żurawski, A.; Kiebzak, W. The Use of Sternum and Sacrum Angles in the Assessment of Sitting Posture in Adolescents: A Cross-Sectional Comparison of Cohorts Assessed Before and After the COVID-19 Pandemic. Children 2025, 12, 1547. https://doi.org/10.3390/children12111547
Ha S-Y, Żurawski A, Kiebzak W. The Use of Sternum and Sacrum Angles in the Assessment of Sitting Posture in Adolescents: A Cross-Sectional Comparison of Cohorts Assessed Before and After the COVID-19 Pandemic. Children. 2025; 12(11):1547. https://doi.org/10.3390/children12111547
Chicago/Turabian StyleHa, Sun-Young, Arkadiusz Żurawski, and Wojciech Kiebzak. 2025. "The Use of Sternum and Sacrum Angles in the Assessment of Sitting Posture in Adolescents: A Cross-Sectional Comparison of Cohorts Assessed Before and After the COVID-19 Pandemic" Children 12, no. 11: 1547. https://doi.org/10.3390/children12111547
APA StyleHa, S.-Y., Żurawski, A., & Kiebzak, W. (2025). The Use of Sternum and Sacrum Angles in the Assessment of Sitting Posture in Adolescents: A Cross-Sectional Comparison of Cohorts Assessed Before and After the COVID-19 Pandemic. Children, 12(11), 1547. https://doi.org/10.3390/children12111547

