Closed-Loop Automated Oxygen Control in Preterm Infants Receiving Non-Invasive Respiratory Support
Highlights
- •
- Closed-loop automated oxygen control (CLAC) systems improve the achievement of oxygen saturation targets in preterm infants on non-invasive ventilation.
- •
- The evidence regarding prolonged use of CLAC is limited, and there are no reports on clinical outcomes.
- •
- Future studies should explore the effect of the prolonged use of CLAC with different modes of non-invasive ventilation on oxygen saturation targeting and long-term outcomes.
Abstract
1. Introduction
2. Methods
3. Results
3.1. Current Evidence for the Use of Automated Oxygen Control in Preterm Infants on Non-Invasive Respiratory Support
3.1.1. CLAC with Non-Invasive Respiratory Support
3.1.2. High- or Low-Flow Nasal Cannula Oxygen
3.1.3. CLAC with Mechanical Ventilation or Continuous Positive Airway Pressure (CPAP)
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BPD | Bronchopulmonary dysplasia |
| CLAC | Closed-loop automated oxygen control |
| CPAP | Continuous positive airway pressure |
| FiO2 | Fraction of inspired oxygen |
| HFNC | High-flow nasal cannula |
| MV | Mechanical ventilation |
| RCT | Randomised controlled trial |
| RDS | Respiratory distress syndrome |
| ROP | Retinopathy of prematurity |
| SpO2 | Peripheral oxygen saturation |
| VLBW | Very low birth weight |
References
- Perrone, S.; Bracciali, C.; Di Virgilio, N.; Buonocore, G. Oxygen Use in Neonatal Care: A Two-edged Sword. Front. Pediatr. 2016, 4, 143. [Google Scholar] [CrossRef]
- Baba, L.; McGrath, J.M. Oxygen free radicals: Effects in the newborn period. Adv. Neonatal Care 2008, 8, 256–264. [Google Scholar] [CrossRef]
- Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: Primary outcomes. Pediatrics 2000, 105, 295–310. [CrossRef]
- Askie, L.M.; Henderson-Smart, D.J.; Irwig, L.; Simpson, J.M. Oxygen-saturation targets and outcomes in extremely preterm infants. N. Engl. J. Med. 2003, 349, 959–967. [Google Scholar] [CrossRef] [PubMed]
- The BOOST-II Australia; United Kingdom Collaborative Groups; Tarnow-Mordi, W.; Stenson, B.; Kirby, A.; Juszczak, E.; Donoghoe, M.; Deshpande, S.; Morley, C.; King, A.; et al. Outcomes of Two Trials of Oxygen-Saturation Targets in Preterm Infants. N. Engl. J. Med. 2016, 374, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D.; Aune, D. In search of the optimal oxygen saturation for extremely low birth weight infants: A systematic review and meta-analysis. Neonatology 2011, 100, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hagadorn, J.I.; Furey, A.M.; Nghiem, T.H.; Schmid, C.H.; Phelps, D.L.; Pillers, D.A.; Cole, C.H.; Group, A.V.S. Achieved versus intended pulse oximeter saturation in infants born less than 28 weeks’ gestation: The AVIOx study. Pediatrics 2006, 118, 1574–1582. [Google Scholar] [CrossRef]
- Dani, C. Automated control of inspired oxygen (FiO2) in preterm infants: Literature review. Pediatr. Pulmonol. 2019, 54, 358–363. [Google Scholar] [CrossRef]
- Sturrock, S.; Williams, E.; Dassios, T.; Greenough, A. Closed loop automated oxygen control in neonates-A review. Acta Paediatr. 2020, 109, 914–922. [Google Scholar] [CrossRef]
- Morozoff, E.P.; Smyth, J.A. Evaluation of three automatic oxygen therapy control algorithms on ventilated low birth weight neonates. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 2009, 3079–3082. [Google Scholar] [CrossRef]
- Mitra, S.; Singh, B.; El-Naggar, W.; McMillan, D.D. Automated versus manual control of inspired oxygen to target oxygen saturation in preterm infants: A systematic review and meta-analysis. J. Perinatol. 2018, 38, 351–360. [Google Scholar] [CrossRef]
- Hallenberger, A.; Poets, C.F.; Horn, W.; Seyfang, A.; Urschitz, M.S.; Group, C.S. Closed-loop automatic oxygen control (CLAC) in preterm infants: A randomized controlled trial. Pediatrics 2014, 133, e379–e385. [Google Scholar] [CrossRef] [PubMed]
- Hutten, M.C.; Goos, T.G.; Ophelders, D.; Nikiforou, M.; Kuypers, E.; Willems, M.; Niemarkt, H.J.; Dankelman, J.; Andriessen, P.; Mohns, T.; et al. Fully automated predictive intelligent control of oxygenation (PRICO) in resuscitation and ventilation of preterm lambs. Pediatr. Res. 2015, 78, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Beddis, I.R.; Collins, P.; Levy, N.M.; Godfrey, S.; Silverman, M. New technique for servo-control of arterial oxygen tension in preterm infants. Arch. Dis. Child. 1979, 54, 278–280. [Google Scholar] [CrossRef]
- Claure, N.; Bancalari, E. Closed-loop control of inspired oxygen in premature infants. Semin. Fetal Neonatal Med. 2015, 20, 198–204. [Google Scholar] [CrossRef]
- Claure, N.; Gerhardt, T.; Everett, R.; Musante, G.; Herrera, C.; Bancalari, E. Closed-loop controlled inspired oxygen concentration for mechanically ventilated very low birth weight infants with frequent episodes of hypoxemia. Pediatrics 2001, 107, 1120–1124. [Google Scholar] [CrossRef]
- Urschitz, M.S.; Horn, W.; Seyfang, A.; Hallenberger, A.; Herberts, T.; Miksch, S.; Popow, C.; Muller-Hansen, I.; Poets, C.F. Automatic control of the inspired oxygen fraction in preterm infants: A randomized crossover trial. Am. J. Respir. Crit. Care Med. 2004, 170, 1095–1100. [Google Scholar] [CrossRef]
- Claure, N.; D’Ugard, C.; Bancalari, E. Automated adjustment of inspired oxygen in preterm infants with frequent fluctuations in oxygenation: A pilot clinical trial. J. Pediatr. 2009, 155, 640–645.e2. [Google Scholar] [CrossRef]
- Claure, N.; Bancalari, E.; D’Ugard, C.; Nelin, L.; Stein, M.; Ramanathan, R.; Hernandez, R.; Donn, S.M.; Becker, M.; Bachman, T. Multicenter crossover study of automated control of inspired oxygen in ventilated preterm infants. Pediatrics 2011, 127, e76–e83. [Google Scholar] [CrossRef]
- Waitz, M.; Schmid, M.B.; Fuchs, H.; Mendler, M.R.; Dreyhaupt, J.; Hummler, H.D. Effects of automated adjustment of the inspired oxygen on fluctuations of arterial and regional cerebral tissue oxygenation in preterm infants with frequent desaturations. J. Pediatr. 2015, 166, 240–244.e241. [Google Scholar] [CrossRef]
- Van Zanten, H.A.; Kuypers, K.; Stenson, B.J.; Bachman, T.E.; Pauws, S.C.; Te Pas, A.B. The effect of implementing an automated oxygen control on oxygen saturation in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F395–F399. [Google Scholar] [CrossRef]
- Plottier, G.K.; Wheeler, K.I.; Ali, S.K.; Fathabadi, O.S.; Jayakar, R.; Gale, T.J.; Dargaville, P.A. Clinical evaluation of a novel adaptive algorithm for automated control of oxygen therapy in preterm infants on non-invasive respiratory support. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F37–F43. [Google Scholar] [CrossRef]
- Gajdos, M.; Waitz, M.; Mendler, M.R.; Braun, W.; Hummler, H. Effects of a new device for automated closed loop control of inspired oxygen concentration on fluctuations of arterial and different regional organ tissue oxygen saturations in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F360–F365. [Google Scholar] [CrossRef]
- Reynolds, P.R.; Miller, T.L.; Volakis, L.I.; Holland, N.; Dungan, G.C.; Roehr, C.C.; Ives, K. Randomised cross-over study of automated oxygen control for preterm infants receiving nasal high flow. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F366–F371. [Google Scholar] [CrossRef]
- Kaltsogianni, O.; Dassios, T.; Jenkinson, A.; Ikeda, K.; Sugino, M.; Greenough, A. Optimising ventilation in preterms with closed-loop oxygen control: A randomised controlled trial. In Proceedings of the Neonatal Society Summer Meeting, Birmingham, UK, 19–20 June 2025. [Google Scholar]
- Sweet, D.G.; Carnielli, V.P.; Greisen, G.; Hallman, M.; Klebermass-Schrehof, K.; Ozek, E.; Te Pas, A.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 2023, 120, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.E.; Kidszun, A.; Bieder, N.S.; Franz, A.R.; Konig, J.; Mildenberger, E.; Poets, C.F.; Seyfang, A.; Urschitz, M.S. Is faster better? A randomised crossover study comparing algorithms for closed-loop automatic oxygen control. Arch. Dis. Child. Fetal Neonatal Ed. 2020, 105, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Dargaville, P.A.; Marshall, A.P.; Ladlow, O.J.; Bannink, C.; Jayakar, R.; Eastwood-Sutherland, C.; Lim, K.; Ali, S.K.M.; Gale, T.J. Automated control of oxygen titration in preterm infants on non-invasive respiratory support. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Schouten, T.M.R.; Abu-Hanna, A.; van Kaam, A.H.; van den Heuvel, M.E.N.; Bachman, T.E.; van Leuteren, R.W.; Hutten, G.J.; Onland, W. Prolonged use of closed-loop inspired oxygen support in preterm infants: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2024, 109, 221–226. [Google Scholar] [CrossRef]
- Zapata, J.; Gomez, J.J.; Araque Campo, R.; Matiz Rubio, A.; Sola, A. A randomised controlled trial of an automated oxygen delivery algorithm for preterm neonates receiving supplemental oxygen without mechanical ventilation. Acta Paediatr. 2014, 103, 928–933. [Google Scholar] [CrossRef]
- Dijkman, K.P.; Mohns, T.; Dieleman, J.P.; van Pul, C.; Goos, T.G.; Reiss, I.K.; Andriessen, P.; Niemarkt, H.J. Predictive Intelligent Control of Oxygenation (PRICO) in preterm infants on high flow nasal cannula support: A randomised cross-over study. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Kannan Loganathan, P.; Lal, M.K.; Bachman, T.E.; Fantl, R. Randomised control trial of oxygen assist module in preterm infants on high-flow nasal cannula support. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 109, 65–69. [Google Scholar] [CrossRef] [PubMed]
- van Kaam, A.H.; Hummler, H.D.; Wilinska, M.; Swietlinski, J.; Lal, M.K.; te Pas, A.B.; Lista, G.; Gupta, S.; Fajardo, C.A.; Onland, W.; et al. Automated versus Manual Oxygen Control with Different Saturation Targets and Modes of Respiratory Support in Preterm Infants. J. Pediatr. 2015, 167, 545–550.e42. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.; Loganathan, P.K.; Lal, M.K.; Pringleton, H.; Bachman, T.E.; Brodlie, M.; Dixon, P. Automatic oxygen control for reducing extremes of oxygen saturation: A randomised controlled trial. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 136–141. [Google Scholar] [CrossRef]
- Rocha, G.; Soares, P.; Flor-de-Lima, F.; Amaral, R. Automated Adjustment of the Fraction of Inspired Oxygen (FiO2) and the Time Spent in Normoxemia in Preterm Infants. Acta Med. Port. 2025, 38, 208–216. [Google Scholar] [CrossRef]
- Dijkman, K.P.; Delbressine, J.J.; Dieleman, J.P.; Mohns, T.; Andriessen, P.; Pul, C.V.; Reiss, I.K.M.; Franz, A.R.; Niemarkt, H.J. Continuous Application of Closed-Loop FiO2-Control in Extremely Preterm Infants: A Matched Cohort Single-Center Study. Pediatr. Pulmonol. 2025, 60, e71122. [Google Scholar] [CrossRef]
- Stafford, I.G.; Lai, N.M.; Tan, K. Automated oxygen delivery for preterm infants with respiratory dysfunction. Cochrane Database Syst. Rev. 2023, 11, CD013294. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Shi, Y. The effectiveness of automated adjustment of inspired oxygen in preterm infants receiving respiratory support compared with manual: A systematic review and meta-analysis. Pediatr. Discov. 2024, 2, e57. [Google Scholar] [CrossRef]
- Salverda, H.H.; Cramer, S.J.E.; Witlox, R.; Gale, T.J.; Dargaville, P.A.; Pauws, S.C.; Te Pas, A.B. Comparison of two devices for automated oxygen control in preterm infants: A randomised crossover trial. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 20–25. [Google Scholar] [CrossRef]
- Kaltsogianni, O.; Dassios, T.; Harris, C.; Jenkinson, A.; Lee, R.A.; Sugino, M.; Greenough, A. Closed-loop oxygen system in late preterm/term, ventilated infants with different severities of respiratory disease. Acta Paediatr. 2023, 112, 1185–1189. [Google Scholar] [CrossRef]
- Kaltsogianni, O.; Dassios, T.; Lee, R.; Harris, C.; Greenough, A. Closed-loop automated oxygen control in ventilated infants born at or near term: A crossover trial. Acta Paediatr. 2023, 112, 246–251. [Google Scholar] [CrossRef]
- Kaltsogianni, O.; Jenkinson, A.; Harris, C.; Jeffreys, E.; Sikdar, O.; Greenough, A.; Dassios, T. Closed-loop automated oxygen control in late preterm and term, ventilated infants: A randomised controlled trial. Acta Paediatr. 2025, 114, 1222–1228. [Google Scholar] [CrossRef]
| Author (Year) | Type of Study | Population | Respiratory Support | Sample Size | Algorithm/Controller | Results |
|---|---|---|---|---|---|---|
| Urschitz (2004) [17] | Randomised crossover | <34 weeks GA | CPAP and FiO2 > 0.21 | 12 | Rule-based, non-fuzzy (CLAC; Leoni plus; Lowenstein Medical GmbH; Bad Ems, Germany) | Increased time spent in target SpO2 range (87–96%) (median (range): 90.5 (59–99.4)% vs. 81.7 (39–99.8)%, p = 0.01). Reduced manual FiO2 adjustments. Reduced frequency and duration of hyperoxic episodes. |
| Plottier (2017) [22] | Randomised crossover | <37 weeks GA and if ≤ 4 months, with oxygen requirement | CPAP/nasal HF | 20 | VDL 1.0 Proportional integral derivative | Increase in time spent within SpO2 target range (91–95%) (median (range): 81 (76–90)% vs. 56 (48–63)%, p < 0.001). Reduced prolonged hypoxemic and hyperoxemic episodes. Reduced manual FiO2 adjustments. |
| Schwarz (2020) [27] | Two-centre randomised crossover | ≤34 weeks GA and frequent hypoxemic episodes | CPAP/MV | 19 | Rule-based, non-fuzzy Revised and faster algorithm (CLAC; Leoni plus; Lowenstein Medical GmbH; Bad Ems, Germany) | Increased time spent in target SpO2 range (90–95%) (mean (SD): 68 (11)% CLACfast vs. 65 (11)% CLACslow vs. 58 (11) manual control, p < 0.001). Non-inferiority of fast versus slow algorithm. |
| Dargaville (2022) [28] | Randomised crossover study | <32 weeks gestation and if ≤4 months, with FiO2 > 0.21 or hypoxic/apnoeic episodes | Bubble CPAP/HFNC | 35 | VDL 1.1 Adaptive proportional integral derivative | Increased time spent in target SpO2 range (90–94%) (median (range): 81 (72–85)% vs. 58 (51–64)%, p < 0.001). Reduced prolonged hypoxemic and hyperoxemic episodes. Reduced manual FiO2 adjustments. |
| Schouten (2024) [29] | Randomised controlled | <28 weeks GA and frequent desaturations and/or FiO2 > 0.25 | CPAP/NIPPV | 23 | Rule-based, adaptive CLiO2; AVEA ventilator (Vyaire Medical, Mettawa, IL, USA) | Increased time spent in target SpO2 range (88–94% and 90–95%) (median (range): 68.7 (59.6–78.6)% vs. 48 (43–56.5)% p < 0.001). Reduced time spent in hyperoxia. Varied effect on hypoxia over time. |
| Zapata (2014) [30] | Randomised controlled | <30 weeks GA and <1000 g | High- or low-flow nasal cannula oxygen | 20 | Rule-based, fuzzy Automixer (Centro Medico, Imbanaco, Cali, Colombia) | Improved time spent in target SpO2 range (85–93%) (mean (SD): 5 (4)% vs. 33.7 (4.7)%, p < 0.01). Reduced time spent in hyperoxia. Reduced manual FiO2 adjustments. Increased time with SpO2: 80–85%. |
| Reynolds (2019) [24] | Randomised crossover | <37 weeks GA and FiO2 ≥ 0.25 with frequent adjustments | HFNC | 30 | Adaptive (IntellO2, Vapotherm precision flow) | Increase in time spent in target SpO2 range (90–95%) (median (IQR): 80 (70–87)% vs. 49 (40–57)%, p < 0.001). Reduced incidence and duration of prolonged hypoxemic episodes. Increased frequency and reduced duration of hyperoxemic episodes. |
| Dijkman (2021) [31] | Randomised crossover | <30 weeks GA and FIO2 > 0.25 | HFNC with Optiflow interface | 27 | Rule-based algorithm PRICO; Fabian ventilator (Vyaire Medical, Mettawa, IL, USA) | Improved time spent in target SpO2 range (88–95%) (mean: 79.5% (95% CI: 76.6–82.5) vs. 68.8% (65.8–71.7), p < 0.001). Reduced time spent above and below target range and in severe hypoxia (SpO2 < 80%). Higher mean FiO2. |
| Nair (2023) [32] | Randomised controlled | <33 weeks GA | HFNC | 60 | Adaptive (Oxygen Assist Module, Vapotherm precision flow) | Reduced time in extremes of SpO2 (<80% and >98%). Increased time in target SpO2 range (90–95%) (median (range): 81 (74–93)% vs. 55 (48–72)%, p < 0.001). |
| Hallenberger (2014) [12] | Multi-centre randomised crossover | <37 weeks GA and FiO2 > 0.25 | Nasal CPAP/MV | 34 | Rule-based, non-fuzzy CLAC; Leoni plus (Lowenstein Medical GmbH; Bad Ems, Germany) | Increase in time spent in target SpO2 range (centre 1: 90–95%, centre 2: 80–92%, centre 3: 83–93%, centre 4: 85–94%) (median (range): 71.2 (44–95.4)% s 61.4 (31.5–99.5)%, p < 0.001). Reduced manual FiO2 adjustments. |
| Van Kaam (2015) [33] | Randomised crossover | <33 weeks GA | MV/non-invasive respiratory support | 80 | Adaptive A-FiO2; AVEA ventilator (Vyaire Medical, Mettawa, IL, USA) | Increased time spent in target SpO2 range (89–93% or 91–95%) (mean (SD): 62 (17)% vs. 54 (16)%, p < 0.001 in lower range and 62 (17)% vs. 58 (15)%, p < 0.001 in higher range). Reduced time spent in hypoxemia and hyperoxemia. |
| Waitz (2015) [20] | Randomised crossover | <30 weeks GA and frequent hypoxemic episodes | MV/CPAP/NIPPV | 15 | Rule-based, adaptive CLiO2; AVEA ventilator (Vyaire Medical, Mettawa, IL, USA) | Increased time in target SpO2 range (88–96%) (mean (SD): 76.3 (9.2)% vs. 69.1 (8.2)%, p < 0.01). Reduced incidence of prolonged hypoxemic episodes. No effect on cerebral tissue oxygenation. |
| Gajdos (2019) [23] | Randomised crossover | <30 weeks GA and frequent hypoxemic episodes | MV/CPAP/NIPPV | 12 | Proportional integral derivative SPO2C; Sophie infant ventilator (Fritz Stephan Gackenbach, Germany) | Increased time in target SpO2 range (88–96%) (mean (SD): 77.8 (7.1)% vs. 68.5 (7.7)%, p < 0.001). No effect on oxygen tissue saturation. |
| Nair (2023) [34] | Randomised controlled | <33 weeks GA, within 72 h of life | Nasal CPAP/MV | 44 | Rule-based, adaptive CLiO2; AVEA ventilator (Vyaire Medical, Mettawa, IL, USA) | Reduced time spent in hypoxemia (SpO2 < 80%) (median (IQR): 0.1 (0.07–0.7)% vs. 0.6 (0.2–2)%, p = 0.03). Reduced incidence of prolonged hypoxemic episodes. |
| Rocha (2025) [35] | Randomised controlled | <33 weeks GA, within 24 h of life | Nasal CPAP/MV | 89 | Rule-based PRICO; Fabian ventilator (Acutronic, Hirzel, Switzerland) | Increased time spent in target SpO2 range (90–94%) β = 81.5; 95%CI: 47.9–115.2, p < 0.001. Reduced number of manual adjustments to the FiO2. Reduced frequency of hypoxemic and hyperoxemic episodes. |
| Dijkman (2025) [36] | Matched cohort | <28 weeks GA | CPAP, MV, HFOV | 25 | Rule-based PRICO; Fabian ventilator; Vyaire Medical, Mettawa, IL, USA | Increased time spent in target SpO2 range during the first two weeks of life (88–95%). 1st week: mean difference: 9.9 (95% CI: 3.1–16.7)%, p = 0.01) 2nd week: mean difference: 9.5 (95% CI: 1.4, 17.6)%; p = 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaltsogianni, O.; Dassios, T.; Greenough, A. Closed-Loop Automated Oxygen Control in Preterm Infants Receiving Non-Invasive Respiratory Support. Children 2025, 12, 1528. https://doi.org/10.3390/children12111528
Kaltsogianni O, Dassios T, Greenough A. Closed-Loop Automated Oxygen Control in Preterm Infants Receiving Non-Invasive Respiratory Support. Children. 2025; 12(11):1528. https://doi.org/10.3390/children12111528
Chicago/Turabian StyleKaltsogianni, Ourania, Theodore Dassios, and Anne Greenough. 2025. "Closed-Loop Automated Oxygen Control in Preterm Infants Receiving Non-Invasive Respiratory Support" Children 12, no. 11: 1528. https://doi.org/10.3390/children12111528
APA StyleKaltsogianni, O., Dassios, T., & Greenough, A. (2025). Closed-Loop Automated Oxygen Control in Preterm Infants Receiving Non-Invasive Respiratory Support. Children, 12(11), 1528. https://doi.org/10.3390/children12111528

