Preliminary Case–Control Study of Antibody Response to Vaccines in Children on bDMARDs
Highlights
- A subset of patients exhibited low baseline hepatitis B and measles antibody titers even before the initiation of bDMARD therapy.
- During follow-up, a measurable decline in measles antibody levels was observed in a small number of patients, while protective titers for pneumococcus and hepatitis B were largely preserved.
- The study highlights the importance of screening vaccine antibody levels before and during bDMARD therapy to detect children at risk of waning immunity.
- Implementing tailored vaccination and timely booster strategies—particularly for measles and hepatitis B—may enhance long-term protection in immunosuppressed pediatric patients.
- This work contributes novel pediatric data on vaccine responsiveness under biologic therapy, emphasizing the need for routine immunological monitoring in clinical practice.
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Detection of PCP–Measles–Hepatitis B Specific IgG Antibodies
2.2. Statistical Analysis
2.3. Ethics Committee Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| bDMARD | biological disease-modifying antirheumatic drug |
| PCP | Pneumococcal capsular polysaccharide antigen |
| EULAR | The European League Against Rheumatism |
| MMR | Measles, Mumps, Rubella |
| WHO | World Health Organization |
| JIA | Juvenile idiopathic arthritis |
| PCV13 | Pneumococcal 13-valent conjugate vaccine |
| MTX | Methotrexate |
| Anti-TNF | Anti-Tumor Necrosis Factor |
| PRES | Pediatric Rheumatology European Society |
References
- Sepriano, A.; Kerschbaumer, A.; Bergstra, S.A.; Smolen, J.S.; van der Heijde, D.; Caporali, R.; Edwards, C.J.; Verschueren, P.; de Souza, S.; Pope, J.; et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2022 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2023, 82, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, O.; Goyal, A.; Lappin, S.L. Disease-Modifying Antirheumatic Drugs (DMARD) [Updated 3 July 2023]. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507863/ (accessed on 10 August 2023).
- Furer, V.; Rondaan, C.; Heijstek, M.W.; Agmon-Levin, N.; van Assen, S.; Bijl, M.; Breedveld, F.C.; D’Amelio, R.; Dougados, M.; Kapetanovic, M.C.; et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 39–52. [Google Scholar] [CrossRef]
- Jansen, M.H.A.; Rondaan, C.; Legger, G.E.; Minden, K.; Uziel, Y.; Toplak, N.; Maritsi, D.; van den Berg, L.; Berbers, G.A.M.; Bruijning, P.; et al. EULAR/PRES recommendations for vaccination of paediatric patients with autoimmune inflammatory rheumatic diseases: Update 2021. Ann. Rheum. Dis. 2023, 82, 35–47. [Google Scholar] [CrossRef]
- Kostik, M.M.; Lubimova, N.A.; Fridman, I.V.; Goleva, O.V.; Kharit, S.M. The vaccine coverage and vaccine immunity status and risk factors of non-protective levels of antibodies against vaccines in children with juvenile idiopathic arthritis: Cross-sectional Russian tertiary Centre study. Pediatr. Rheumatol. Online J. 2021, 19, 108. [Google Scholar] [CrossRef]
- Heijstek, M.W.; van Gageldonk, P.G.; Berbers, G.A.; Wulffraat, N.M. Differences in persistence of measles, mumps, rubella, diphtheria and tetanus antibodies between children with rheumatic disease and healthy controls: A retrospective cross-sectional study. Ann. Rheum. Dis. 2012, 71, 948–954. [Google Scholar] [CrossRef]
- Alyasin, S.; Adab, M.; Hosseinpour, A.; Amin, R.; Babaei, M. Immunogenicity of 23-Valent Pneumococcal Vaccine in Children with Systemic Lupus Erythematosus. Iran. J. Immunol. 2016, 13, 204–219. [Google Scholar]
- Beukelman, T.; Xie, F.; Baddley, J.W.; Chen, L.; Delzell, E.; Grijalva, C.G.; Mannion, M.L.; Patkar, N.M.; Saag, K.G.; Winthrop, K.L.; et al. Brief report: Incidence of selected opportunistic infections among children with juvenile idiopathic arthritis. Arthritis Rheum. 2013, 65, 1384–1389. [Google Scholar] [CrossRef]
- Quach, H.Q.; Ovsyannikova, I.G.; Grill, D.E.; Warner, N.D.; Poland, G.A.; Kennedy, R.B. Seroprevalence of Measles Antibodies in a Highly MMR-Vaccinated Population. Vaccines 2022, 10, 1859. [Google Scholar] [CrossRef] [PubMed]
- WHO. Manual for the Laboratory-Based Surveillance of Measles, Rubella, and Congenital Rubella Syndrome. Chapter 9. Laboratory Testing for Determination of Population Immune Status. Available online: https://cdn.who.int/media/docs/default-source/immunization/vpd_surveillance/lab_networks/measles_rubella/manual/chapter-9.pdf (accessed on 10 February 2023).
- Singh, J.A.; Cameron, C.; Noorbaloochi, S.; Cullis, T.; Tucker, M.; Christensen, R.; Ghogomu, E.T.; Coyle, D.; Clifford, T.; Tugwell, P. Risk of serious infection in biological treatment of patients with rheumatoid arthritis: A systematic review and meta-analysis. Lancet 2015, 386, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Bizjak, M.; Heshin-Bekenstein, M.; Jansen, M.H.A.; Ziv, A.; Angevare, S.; Uziel, Y.; Wulffraat, N.M.; Toplak, N.; PReS Vaccination Working Party. Vaccinology in pediatric rheumatology: Past, present and future. Front. Pediatr. 2023, 10, 1098332. [Google Scholar] [CrossRef]
- Minden, K.; Niewerth, M.; Borte, M.; Singendonk, W.; Haas, J.P. Impfungen bei rheumatischen Erkrankungen des Kindes- und Jugendalters [Immunization in children and adolescents with rheumatic diseases]. Z. Fur Rheumatol. 2007, 66, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Morin, M.P.; Quach, C.; Fortin, E.; Chédeville, G. Vaccination coverage in children with juvenile idiopathic arthritis followed at a paediatric tertiary care centre. Rheumatology 2012, 51, 2046–2050. [Google Scholar] [CrossRef]
- Gisbert, J.P.; Villagrasa, J.R.; Rodríguez-Nogueiras, A.; Chaparro, M. Efficacy of hepatitis B vaccination and revaccination and factors impacting on response in patients with inflammatory bowel disease. Am. J. Gastroenterol. 2012, 107, 1460–1466. [Google Scholar] [CrossRef]
- Friedman, M.A.; Curtis, J.R.; Winthrop, K.L. Impact of disease-modifying antirheumatic drugs on vaccine immunogenicity in patients with inflammatory rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 1255–1265. [Google Scholar] [CrossRef]
- van Aalst, M.; Langedijk, A.C.; Spijker, R.; de Bree, G.J.; Grobusch, M.P.; Goorhuis, A. The effect of immunosuppressive agents on immunogenicity of pneumococcal vaccination: A systematic review and meta-analysis. Vaccine 2018, 36, 5832–5845. [Google Scholar] [CrossRef]
- Banaszkiewicz, A.; Targońska, B.; Kowalska-Duplaga, K.; Karolewska-Bochenek, K.; Sieczkowska, A.; Gawrońska, A.; Grzybowska-Chlebowczyk, U.; Krzesiek, E.; Łazowska-Przeorek, I.; Kotowska, M.; et al. Immunogenicity of 13-Valent Pneumococcal Conjugate Vaccine in Pediatric Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 1607–1614. [Google Scholar] [CrossRef]
- Farmaki, E.; Kanakoudi-Tsakalidou, F.; Spoulou, V.; Trachana, M.; Pratsidou-Gertsi, P.; Tritsoni, M.; Theodoridou, M. The effect of anti-TNF treatment on the immunogenicity and safety of the 7-valent conjugate pneumococcal vaccine in children with juvenile idiopathic arthritis. Vaccine 2010, 28, 5109–5113. [Google Scholar] [CrossRef]
- Uziel, Y.; Moshe, V.; Onozo, B.; Kulcsár, A.; Tróbert-Sipos, D.; Akikusa, J.D.; Salviato Pileggi, G.; Maritsi, D.; Kasapcopur, O.; Rodrigues, M.; et al. Live attenuated MMR/V booster vaccines in children with rheumatic diseases on immunosuppressive therapy are safe: Multicenter, retrospective data collection. Vaccine 2020, 38, 2198–2201. [Google Scholar] [CrossRef] [PubMed]
- Maritsi, D.N.; Kopsidas, I.; Vartzelis, G.; Spyridis, N.; Tsolia, M.N. Long-term preservation of measles and rubella specific-IgG antibodies in children with enthesitis related arthritis on anti-TNFα treatment: A prospective controlled study. Rheumatology 2019, 58, 1686–1688. [Google Scholar] [CrossRef]
- Maritsi, D.N.; Vartzelis, G.; Kopsidas, J.; Spyridis, N.; Tsolia, M.N. Antibody status against measles in previously vaccinated childhood systemic lupus erythematosus patients: A prospective case-control study. Rheumatology 2018, 57, 1491–1493. [Google Scholar] [CrossRef] [PubMed]
- Ingelman-Sundberg, H.M.; Laestadius, Å.; Chrapkowska, C.; Mördrup, K.; Magnusson, B.; Sundberg, E.; Nilsson, A. Diverse effects on vaccine-specific serum IgG titres and memory B cells upon methotrexate and anti-TNF-α therapy in children with rheumatic diseases: A cross-sectional study. Vaccine 2016, 34, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Ovsyannikova, I.G.; Pankratz, V.S.; Vierkant, R.A.; Jacobson, R.M.; Poland, G.A. Consistency of HLA associations between two independent measles vaccine cohorts: A replication study. Vaccine 2012, 30, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Hamad Saied, M.; van Straalen, J.W.; de Roock, S.; de Joode-Smink, G.C.J.; Verduyn Lunel, F.M.; Swart, J.F.; Wulffraat, N.M.; Jansen, M.H.A. Long-term immunoprotection after live attenuated measles-mumps-rubella booster vaccination in children with juvenile idiopathic arthritis. Vaccine 2023, 41, 5477–5482. [Google Scholar] [CrossRef] [PubMed]

| Characteristics | Patients No. (%) | Control No. (%) | p |
|---|---|---|---|
| Age (y) | |||
| 5–11 | 8 (50) | 11 (55) | |
| 12–18 | 8 (50) | 9 (45) | 0.76 |
| Sex | |||
| Female | 8 (50) | 10 (50) | 1.00 |
| Male | 8 (50) | 10 (50) | |
| Diagnosis | |||
| Jia | 11 (68.8) | ||
| Uveitis | 5 (31.3) | ||
| Pre-treatment | |||
| Mix ^ | 8 (50) | ||
| Mtx | 4 (25) | ||
| Other * | 4(25) | ||
| Treatment Adalimumab | 7 (43.8) | ||
| Etanercept | 9 (56.3) | ||
| Anti-HbsAg (mIU/mL) | |||
| ≥10 | 11 (68.8) | 10 (50) | |
| <10 | 5 (31.3) | 10 (50) | 0.257 |
| Anti-PCP(Mg/dL) 3.3–270 | 16 (100) | 20 (100) | |
| Anti-Measles (mIU/mL) | |||
| <150 | 4 (25) | 6 (30) | |
| 150–200 | 3 (18.8) | 1 (5) | |
| >200 | 9 (56.3) | 13 (65) | 0.21 |
| Susceptible (according to WHO) | 2 (12.5) | 5 (25) | |
| Duration of diseases (y, mean) | 2.57 ± 2.26(0.25–7) | ||
| Mean antibody titers (mean ± SD [95% CI]) | |||
| Anti-HbsAg | 125.14 ± 290.56 [–29.66–279.94] | 67.90 ± 124 [9.87–125.93] | 0.74 |
| Anti-PCP | 59.10 ± 49.91 [32.51–85.69] | 97.01 ± 93.01 [53.48–140.54] | 0.178 |
| Anti-Measles | 641 ± 94 [4.77–1279.11] | 389.63 ± 351.70 [225.03–554.23] | 0.937 |
| Baseline (Mean ± SD [95% CI]) | 3rd Month (Mean ± SD [95% CI]) | 6th Month (Mean ± SD [95% CI]) | p | |
|---|---|---|---|---|
| Anti-HBsAg (mIU/mL) | 125.14 ± 290.56 [–29.66–279.94] | 82.17 ± 166.44 [–6.50–170.84] | 64.66 ± 118.66 [1.44–127.88] | 0.19 |
| Anti-PCP (mg/dL) | 59.10 ± 49.91 [32.51–85.69] | 61.80 ± 52.31 [33.93–89.67] | 60.81 ± 50.43 [33.94–87.68] | 0.61 |
| Anti-Measles (mIU/mL) | 641.94 ± 1196 [4.77–1279.11] | 703.60 ± 1187 [71.23–1335.97] | 585.22 ± 934 [87.63–1082.81] | 0.11 |
| Mean Antibody Titer | Protective Antibody Levels | Patients (No.%) | ||
|---|---|---|---|---|
| Anti-HbsAg (mIU/mL) | Baseline | 125.14 ± 290.56 [−29.66–279.94] | ≥10 | 11 (68.8) |
| <10 | 5 (31.25) | |||
| 3rd * | 82.17 ± 166.44 [−6.50–170.84] | ≥10 | 11 (68.8) | |
| <10 | 5 (31.25) | |||
| 6th | 64.66 ± 118.66 [1.44–127.88] | ≥10 | 11 (68.8) * | |
| <10 | 5 (31.25) | |||
| Anti-PCP (Mg/dL) | Baseline | 59.10 ± 49.91 [32.51–85.69] | 3.3–270 | 16 (100) |
| 3rd | 61.80 ± 52.31 [33.93–89.67] | 3.3–270 | 16 (100) | |
| 6th | 71.44 ± 34.18 [33.94–87.68] | 3.3–270 | 16 (100) | |
| Anti-Measles (mIU/mL) | Baseline | 641.94 ± 1196 [4.77–1279.11] | <150 | 4 (25) |
| 150–200 | 3 (18.75) | |||
| >200 | 9 (56.25) | |||
| 3rd | 703.60 ± 1187 [71.23–1335.97] | Decrease in titer (<200) | 1 (6.25) | |
| 6th | 585.22 ± 934 [87.63–1082.81] | Decreases in titer (<200) | 2 (12.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirbuğa, A.; Dede, E.; Akgün Karapınar, D.B.; Kaba, Ö.; Mete Atasever, N.; Durmuş, M.A.; Önel, M.; Ağaçfidan, A.; Somer, A.; Hançerli Törün, S. Preliminary Case–Control Study of Antibody Response to Vaccines in Children on bDMARDs. Children 2025, 12, 1526. https://doi.org/10.3390/children12111526
Demirbuğa A, Dede E, Akgün Karapınar DB, Kaba Ö, Mete Atasever N, Durmuş MA, Önel M, Ağaçfidan A, Somer A, Hançerli Törün S. Preliminary Case–Control Study of Antibody Response to Vaccines in Children on bDMARDs. Children. 2025; 12(11):1526. https://doi.org/10.3390/children12111526
Chicago/Turabian StyleDemirbuğa, Asuman, Elif Dede, Deniz Bahar Akgün Karapınar, Özge Kaba, Neslihan Mete Atasever, Mehmet Akif Durmuş, Mustafa Önel, Ali Ağaçfidan, Ayper Somer, and Selda Hançerli Törün. 2025. "Preliminary Case–Control Study of Antibody Response to Vaccines in Children on bDMARDs" Children 12, no. 11: 1526. https://doi.org/10.3390/children12111526
APA StyleDemirbuğa, A., Dede, E., Akgün Karapınar, D. B., Kaba, Ö., Mete Atasever, N., Durmuş, M. A., Önel, M., Ağaçfidan, A., Somer, A., & Hançerli Törün, S. (2025). Preliminary Case–Control Study of Antibody Response to Vaccines in Children on bDMARDs. Children, 12(11), 1526. https://doi.org/10.3390/children12111526

