A Combined Physical Activity and Multi-Micronutrient Supplementation Intervention in South African Primary Schools: Effects on Physical Activity, Fitness, and Cardiovascular Disease Risk Factors
Abstract
Highlights
- School-based physical activity (PA) interventions, alone or combined with multi-micronutrient supplementation (MMNS), did not increase daily PA and showed mixed effects on cardiometabolic health in South African children aged 6–12 years.
- The MMNS improved cardiorespiratory fitness (CRF) and reduced blood pressure but was linked to adverse metabolic changes (triglycerides and high-density lipo-protein).
- Nutritional supplementation may hold potential for improving CRF and blood pressure in school-age children, though possible metabolic trade-offs require careful consideration.
- PA interventions alone may be insufficient to change activity patterns in marginalised settings, highlighting the role of broader environmental and contextual barriers.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Sampling
2.3. Randomization to Intervention Arms
2.4. Measures
2.4.1. Socioeconomic Status
2.4.2. Anthropometric Measurements
2.4.3. Device-Based Physical Activity
2.4.4. Cardiorespiratory Fitness
2.4.5. CVD Risk Factors
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Dropout
3.3. First Intervention Year Effects on Outcome Variables (T1–T2)
3.4. Second Intervention Year Effects on Outcome Variables (T2–T3)
4. Discussion
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body mass index |
zBMI | Body mass index z-score |
CAPS | Curriculum and assessment policy statement |
COVID-19 | Coronavirus disease 2019 |
CVD | Cardiovascular disease |
Fit4Life | Fit for Life Program of UNESCO |
HAKSA | Healthy active kids South Africa |
HbA1c | Glycated hemoglobin |
HDL | High-density lipoprotein cholesterol |
LDL-C | Low-density lipoprotein cholesterol |
LMICs | Low- and middle-income countries |
M | Means |
MVPA | Moderate-to-vigorous intensity physical activity |
SD | Standard deviation |
SES | Socioeconomic status |
T1 | Baseline measurement |
T2 | Follow-up measurement |
T3 | End-line measurement |
QPE | Quality Physical Education Progamme of UNESCO |
VO2max | Maximal oxygen uptake |
WHO | World Health Organization |
References
- Aubert, S.; Barnes, J.D.; Demchenko, I.; Hawthorne, M.; Abdeta, C.; Abi Nader, P.; Adsuar Sala, J.C.; Aguilar-Farias, N.; Aznar, S.; Bakalár, P.; et al. Global Matrix 4.0 Physical Activity Report Card Grades for Children and Adolescents: Results and Analyses From 57 Countries. J. Phys. Act. Health 2022, 19, 700–728. [Google Scholar] [CrossRef] [PubMed]
- Reilly, J.J.; Aubert, S.; Brazo-Sayavera, J.; Liu, Y.; Cagas, J.Y.; Tremblay, M.S. Surveillance to improve physical activity of children and adolescents. Bull. World Health Organ. 2022, 100, 815. [Google Scholar] [CrossRef]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Andersen, L.B.; Sardinha, L.B.; Froberg, K.; Riddoch, C.J.; Page, A.S.; Anderssen, S.A. Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal: The European Youth Heart Study. Int. J. Pediatr. Obes. 2008, 3 (Suppl. S1), 58–66. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.B.; Harro, M.; Sardinha, L.B.; Froberg, K.; Ekelund, U.; Brage, S.; Anderssen, S.A. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (The European Youth Heart Study). Lancet 2006, 368, 299–304. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1· 6 million participants. Lancet Child. Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Rendo-Urteaga, T.; de Moraes, A.C.; Collese, T.S.; Manios, Y.; Hagströmer, M.; Sjöström, M.; Kafatos, A.; Widhalm, K.; Vanhelst, J.; Marcos, A.; et al. The combined effect of physical activity and sedentary behaviors on a clustered cardio-metabolic risk score: The Helena study. Int. J. Cardiol. 2015, 186, 186–195. [Google Scholar] [CrossRef]
- Demetriou, Y.; Höner, O. Physical activity interventions in the school setting: A systematic review. Psychol. Sport. Exerc. 2012, 13, 186–196. [Google Scholar] [CrossRef]
- CDC. School-based Programs to Increase Physical Activity. Available online: https://archive.cdc.gov/www_cdc_gov/policy/hi5/physicalactivity/index.html (accessed on 3 January 2024).
- Roux, K.C. The delivery of primary school physical education in South African public schools: The perceptions of educators. S. Afr. J. Child. Educ. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Stroebel, L. Opportunities for all? The impact of resources on the implementation of Physical Education in Free State schools. Afr. J. Phys. Act. Health Sci. (AJPHES) 2020, 26, 67–81. [Google Scholar] [CrossRef]
- Burnett, C. A national study on the state and status of physical education in South African public schools. Phys. Educ. Sport. Pedagog. 2021, 26, 179–196. [Google Scholar] [CrossRef]
- Skrede, T.; Stavnsbo, M.; Aadland, E.; Aadland, K.N.; Anderssen, S.A.; Resaland, G.K.; Ekelund, U. Moderate-to-vigorous physical activity, but not sedentary time, predicts changes in cardiometabolic risk factors in 10-y-old children: The Active Smarter Kids Study. Am. J. Clin. Nutr. 2017, 105, 1391–1398. [Google Scholar] [CrossRef]
- Sedumedi, C.M.; Janssen, X.; Reilly, J.J.; Kruger, H.S.; Monyeki, M.A. Association between Objectively Determined Physical Activity Levels and Body Composition in 6-8-Year-Old Children from a Black South African Population: BC-IT Study. Int. J. Environ. Res. Public Health 2021, 18, 6453. [Google Scholar] [CrossRef]
- Nyawose, Z.Z.; Naidoo, R.; Christie, C.; Bassett, S.; Coetzee, D.; Van Gent, M.; Monyeki, A.; Gradidge, P.; van Rensburg, C.J.; Cozett, C. Results From South Africa’s 2022 Healthy Active Kids’ Report Card on Physical Activity, Body Composition Proxies, and Nutritional Status in Children and Adolescents. J. Phys. Act. Health 2024, 21, 861–871. [Google Scholar] [CrossRef]
- Naidoo, R.; Chetty, V.; Draper, C.; Cook, C.; Wadende, P.; Alaba, O.; Buck, R.; Smith, B.; Sissing, N.; Lambert, E. Policy Brief: Physical Activity for Health in Children and Adolescents in Africa: COVID-19 and Beyond-Home, School and Communities. Available online: https://www.sasma.org.za/wp-content/uploads/2020/10/Policy-Brief-Physical-activity-for-children-during-COVID-19-WEB2.pdf (accessed on 17 November 2022).
- WHO. Global Status Report on Physical Activity 2022. Available online: https://www.who.int/teams/health-promotion/physical-activity/global-status-report-on-physical-activity-2022 (accessed on 9 January 2023).
- Kriemler, S.; Zahner, L.; Schindler, C.; Meyer, U.; Hartmann, T.; Hebestreit, H.; Brunner-La Rocca, H.; van Mechelen, W.; Puder, J. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: Cluster randomised controlled trial. BMJ 2010, 340, c785–c792. [Google Scholar] [CrossRef] [PubMed]
- Kolle, E.; Solberg, R.B.; Säfvenbom, R.; Dyrstad, S.M.; Berntsen, S.; Resaland, G.K.; Ekelund, U.; Anderssen, S.A.; Steene-Johannessen, J.; Grydeland, M. The effect of a school-based intervention on physical activity, cardiorespiratory fitness and muscle strength: The School in Motion cluster randomized trial. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 154. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-H.; Lin, S.; Guo, H.; Huang, Y.; Wu, L.; Zhang, Z.; Ma, J.; Wang, H.-J. Effectiveness of a school-based physical activity intervention on obesity in school children: A nonrandomized controlled trial. BMC Public Health 2014, 14, 1282. [Google Scholar] [CrossRef]
- Bugge, A.; El-Naaman, B.; Dencker, M.; Froberg, K.; Holme, I.M.; McMurray, R.G.; Andersen, L.B. Effects of a three-year intervention: The Copenhagen School Child Intervention Study. Med. Sci. Sports Exerc. 2012, 44, 1310–1317. [Google Scholar] [CrossRef]
- Resaland, G.K.; Aadland, E.; Nilsen, A.K.O.; Bartholomew, J.B.; Andersen, L.B.; Anderssen, S.A. The effect of a two-year school-based daily physical activity intervention on a clustered CVD risk factor score-The Sogndal school-intervention study. Scand. J. Med. Sci. Sports 2018, 28, 1027–1035. [Google Scholar] [CrossRef]
- Naidoo, R.; Coopoo, Y.; Lambert, E.; Draper, C. Impact of a primary school-based nutrition and physical activity intervention on learners in KwaZulu-Natal, South Africa: A pilot study. S. Afr. J. Sports Med. 2009, 21, 7–12. [Google Scholar] [CrossRef]
- Draper, C.; de Villiers, A.; Lambert, E.; Fourie, J.; Hill, J.; Dalais, L.; Abrahams, Z.; Steyn, N. HealthKick: A nutrition and physical activity intervention for primary schools in low-income settings. BMC Public Health 2010, 10, 398–409. [Google Scholar] [CrossRef]
- Jacobs, K.; Mash, B. Evaluation of a school-based nutrition and physical activity programme for Grade 4 learners in the Western Cape province. S. Afr. Fam. Pract. 2013, 55, 391–397. [Google Scholar] [CrossRef]
- Müller, I.; Schindler, C.; Adams, L.; Endes, K.; Gall, S.; Gerber, M.; Htun, N.S.N.; Nqweniso, S.; Joubert, N.; Probst-Hensch, N.; et al. Effect of a Multidimensional Physical Activity Intervention on Body Mass Index, Skinfolds and Fitness in South African Children: Results from a Cluster-Randomised Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 232. [Google Scholar] [CrossRef]
- van der Beek, E.J.; van Dokkum, W.; Wedel, M.; Schrijver, J.; van den Berg, H. Thiamin, riboflavin and vitamin B6: Impact of restricted intake on physical performance in man. J. Am. Coll. Nutr. 1994, 13, 629–640. [Google Scholar] [CrossRef]
- Troesch, B.; van Stuijvenberg, M.E.; Smuts, C.M.; Kruger, H.S.; Biebinger, R.; Hurrell, R.F.; Baumgartner, J.; Zimmermann, M.B. A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age Z-scores in South African children. J. Nutr. 2011, 141, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Pauline, M.; Unni, U.S.; Parikh, P.; Thomas, T.; Bharathi, A.V.; Avadhany, S.; Muthayya, S.; Mehra, R.; Kurpad, A.V. Micronutrient supplementation improves physical performance measures in Asian Indian school-age children. J. Nutr. 2011, 141, 2017–2023. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Eiden, M.; Morin-Rivron, D.; Christinat, N.; Monteiro, J.P.; Kaput, J.; Masoodi, M. Impact of multi-micronutrient supplementation on lipidemia of children and adolescents. Clin. Nutr. 2020, 39, 2211–2219. [Google Scholar] [CrossRef] [PubMed]
- Mukamana, O.; Johri, M. What is known about school-based interventions for health promotion and their impact in developing countries? A scoping review of the literature. Health Educ. Res. 2016, 31, 587–602. [Google Scholar] [CrossRef]
- Gerber, M.; Ayekoé, S.A.; Beckmann, J.; Bonfoh, B.; Coulibaly, J.T.; Daouda, D.; du Randt, R.; Finda, L.; Gall, S.; Mollel, G.J. Effects of school-based physical activity and multi-micronutrient supplementation intervention on growth, health and well-being of schoolchildren in three African countries: The KaziAfya cluster randomised controlled trial protocol with a 2 × 2 factorial design. Trials 2020, 21, 22. [Google Scholar] [CrossRef]
- South African Department of Basic Education. Curriculum and Assessment Policy Statement (CAPS): Life Skills Intermediate Phase Grades 4–6; Department of Basic Education: Pretoria, South Africa, 2011. [Google Scholar]
- WHO. Helminth Control in School-Age Children: A Guide for Managers of Control Programmes. Available online: https://apps.who.int/iris/handle/10665/44671 (accessed on 15 November 2021).
- Gerber, M.; Lang, C.; Beckmann, J.; Degen, J.; du Randt, R.; Gall, S.; Long, K.Z.; Müller, I.; Nienaber, M.; Steinmann, P.; et al. Associations Between Household Socioeconomic Status, Car Ownership, Physical Activity, and Cardiorespiratory Fitness in South African Primary Schoolchildren Living in Marginalized Communities. J. Phys. Act. Health 2021, 18, 883–894. [Google Scholar] [CrossRef]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data—Or tears: An application to educational enrollments in states of India. Demography 2001, 38, 115–132. [Google Scholar] [CrossRef]
- Ogden, C.L.; Flegal, K.M.; Carroll, M.D.; Johnson, C.L. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 2002, 288, 1728–1732. [Google Scholar] [CrossRef]
- Freedson, P.S.; Melanson, E.; Sirard, J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med. Sci. Sports Exerc. 1998, 30, 777–781. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef]
- Nqweniso, S.; Walter, C.; du Randt, R.; Adams, L.; Beckmann, J.; Degen, J.; Gall, S.; Joubert, N.; Lang, C.; Long, K.Z.; et al. Physical Activity, Cardiorespiratory Fitness and Clustered Cardiovascular Risk in South African Primary Schoolchildren from Disadvantaged Communities: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 2080. [Google Scholar] [CrossRef] [PubMed]
- Wushe, S.N.; Moss, S.J.; Monyeki, M.A. Objectively determined habitual physical activity in South African adolescents: The PAHL study. BMC Public Health 2014, 14, 471. [Google Scholar] [CrossRef]
- Hanson, S.K.; Munthali, R.J.; Micklesfield, L.K.; Lobelo, F.; Cunningham, S.A.; Hartman, T.J.; Norris, S.A.; Stein, A.D. Longitudinal patterns of physical activity, sedentary behavior and sleep in urban South African adolescents, Birth-To-Twenty Plus cohort. BMC Pediatr. 2019, 19, 241. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, T.B.; Sanders, T.; Vasconcellos, D.; Noetel, M.; Parker, P.D.; Lubans, D.R.; Andrade, S.; Ávila-García, M.; Bartholomew, J.; Belton, S.; et al. School-based interventions modestly increase physical activity and cardiorespiratory fitness but are least effective for youth who need them most: An individual participant pooled analysis of 20 controlled trials. Br. J. Sports Med. 2021, 55, 721–729. [Google Scholar] [CrossRef]
- García, O.P.; Long, K.Z.; Rosado, J.L. Impact of micronutrient deficiencies on obesity. Nutr. Rev. 2009, 67, 559–572. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Zhu, K.; Feng, R.N.; Sun, C.H. Effects of multivitamin and mineral supplementation on adiposity, energy expenditure and lipid profiles in obese Chinese women. Int. J. Obes. (Lond.) 2010, 34, 1070–1077. [Google Scholar] [CrossRef]
- Bugge, A.; El-Naaman, B.; McMurray, R.G.; Froberg, K.; Andersen, L.B. Tracking of clustered cardiovascular disease risk factors from childhood to adolescence. Pediatr. Res. 2013, 73, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Cavero-Redondo, I.; Ortega, F.B.; Welk, G.J.; Andersen, L.B.; Martinez-Vizcaino, V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 1451–1458. [Google Scholar] [CrossRef]
- Hurtig-Wennlöf, A.; Ruiz, J.R.; Harro, M.; Sjöström, M. Cardiorespiratory fitness relates more strongly than physical activity to cardiovascular disease risk factors in healthy children and adolescents: The European Youth Heart Study. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 575–581. [Google Scholar] [CrossRef]
- O’Donovan, G.; Hillsdon, M.; Ukoumunne, O.C.; Stamatakis, E.; Hamer, M. Objectively measured physical activity, cardiorespiratory fitness and cardiometabolic risk factors in the Health Survey for England. Prev. Med. 2013, 57, 201–205. [Google Scholar] [CrossRef]
- Uys, M.; Draper, C.E.; Hendricks, S.; de Villiers, A.; Fourie, J.; Steyn, N.P.; Lambert, E.V. Impact of a South African School-based Intervention, HealthKick, on Fitness Correlates. Am. J. Health Behav. 2016, 40, 55–66. [Google Scholar] [CrossRef]
- Resaland, G.K.; Andersen, L.B.; Mamen, A.; Anderssen, S.A. Effects of a 2-year school-based daily physical activity intervention on cardiorespiratory fitness: The Sogndal school-intervention study. Scand. J. Med. Sci. Sports 2011, 21, 302–309. [Google Scholar] [CrossRef]
- Dobbins, M.; Husson, H.; DeCorby, K.; LaRocca, R.L. School-Based Physical Activity Programs for Promoting Physical Activity and Fitness in Children and Adolescents Aged 6 to 18. Cochrane Database Syst. Rev. 2013, CD007651. [Google Scholar] [CrossRef] [PubMed]
- Long, K.Z.; Beckmann, J.; Lang, C.; Seelig, H.; Nqweniso, S.; Probst-Hensch, N.; Müller, I.; Pühse, U.; Steinmann, P.; du Randt, R.; et al. Impact of a school-based health intervention program on body composition among South African primary schoolchildren: Results from the KaziAfya cluster-randomized controlled trial. BMC Med. 2022, 20, 27. [Google Scholar] [CrossRef]
- Bhutta, Z.A.; Ahmed, T.; Black, R.E.; Cousens, S.; Dewey, K.; Giugliani, E.; Haider, B.A.; Kirkwood, B.; Morris, S.S.; Sachdev, H.P.; et al. What works? Interventions for maternal and child undernutrition and survival. Lancet 2008, 371, 417–440. [Google Scholar] [CrossRef] [PubMed]
- Devakumar, D.; Fall, C.H.; Sachdev, H.S.; Margetts, B.M.; Osmond, C.; Wells, J.C.; Costello, A.; Osrin, D. Maternal antenatal multiple micronutrient supplementation for long-term health benefits in children: A systematic review and meta-analysis. BMC Med. 2016, 14, 90. [Google Scholar] [CrossRef]
School 1 | School 2 | School 3 | School 4 | |
---|---|---|---|---|
Grade 1 | PA + placebo | Placebo | PA + MMNS | MMNS |
Grade 2 | MMNS | PA + placebo | Placebo | PA + MMNS |
Grade 3 | PA + MMNS | MMNS | PA + placebo | Placebo |
Grade 4 | Placebo | PA + MMNS | MMNS | PA + placebo |
Intervention Group | |||||||
---|---|---|---|---|---|---|---|
Overall (n = 1151) | PA + MMNS (n = 258) | PA + Placebo (n = 307) | MMNS (n = 283) | Placebo (n = 303) | F | p-Value | |
Child Characteristics | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | ||
Age (years) | 8.3 (1.4) | 8.4 (1.3) | 8.8 (1.5) | 8.1 (1.5) | 7.9 (1.3) | 23.47 | <0.001 ** |
Sex, girls, n (%) | 561 (49) | 130 (23) | 159 (28) | 129 (23) | 143 (26) | 2.84 | 0.416 |
SES | 0.75 (0.16) | 0.73 (0.15) | 0.77 (0.16) | 0.76 (0.15) | 0.75 (0.16) | 1.61 | 0.187 |
Height (cm) | 124.7 (9.3) | 125.2 (9.1) | 127.5 (9.9) | 123.5 (8.2) | 122.5 (9.0) | 17.40 | <0.001 ** |
Weight (kg) | 25.4 (6.8) | 25.8 (6.8) | 27.4 (8.4) | 24.6 (5.4) | 23.7 (5.5) | 16.82 | <0.001 ** |
Intervention and Control Groups | |||||||||
---|---|---|---|---|---|---|---|---|---|
Overall (n = 1151) | PA + MMNS (n = 258) | PA + Placebo (n = 307) | MMNS (n = 283) | Placebo (n = 303) | Unadjusted Model | Adjusted Model a | |||
Outcome Variables | M (SD) | M (SD) | M (SD) | M (SD) | M (SD) | F | p-Value | F | p-Value |
MVPA (min/day) | 82.37 (28.00) | 82.48 (27.90) | 79.60 (29.24) | 83.69 (28.73) | 83.85 (25.98) | 1.50 | 0.214 | 0.53 | 0.659 |
Estimated VO2max (mL/kg/min) | 47.52 (3.85) | 47.21 (3.65) | 46.89 (4.18) | 47.78 (3.70) | 48.16 (3.70) | 6.44 | <0.001 ** | 0.75 | 0.522 |
BMI (kg/m2) | 16.08 (2.62) | 16.22 (2.61) | 16.47 (3.26) | 16.03 (2.27) | 16.63 (2.12) | 5.44 | <0.001 ** | 5.76 | <0.001 ** |
zBMI | −0.12 (1.25) | −0.06 (1.29) | −0.11 (1.36) | −0.04 (1.18) | −0.25 (1.17) | 1.63 | 0.182 | 1.89 | 0.129 |
Body fat (%) | 22.61 (5.30) | 22.45 (5.13) | 23.14 (6.23) | 22.71 (4.87) | 22.12 (4.75) | 1.92 | 0.125 | 2.85 | 0.036 * |
Total cholesterol (mmol/L) | 3.63 (0.64) | 3.59 (0.61) | 3.68 (0.64) | 3.70 (0.64) | 3.58 (0.65) | 2.05 | 0.106 | 1.16 | 0.325 |
LDL-C (mmol/L) | 2.07 (0.53) | 2.01 (0.52) | 2.11 (0.54) | 2.10 (0.51) | 2.05 (0.54) | 1.71 | 0.164 | 1.02 | 0.385 |
HDL-C (mmol/L) | 1.23 (0.31) | 1.23 (0.29) | 1.23 (0.32) | 1.26 (0.31) | 1.21 (0.32) | 1.10 | 0.349 | 1.05 | 0.369 |
Triglycerides (mmol/L) | 0.76 (0.31) | 0.79 (0.31) | 0.77 (0.25) | 0.74 (0.27) | 0.74 (0.39) | 1.55 | 0.199 | 0.72 | 0.540 |
HbA1c (%) | 5.42 (0.26) | 5.43 (0.24) | 5.44 (0.31) | 5.37 (0.23) | 5.44 (0.24) | 3.43 | 0.017 * | 3.43 | 0.017 * |
Systolic blood pressure (mmHg) | 102.0 (11.9) | 102.6 (11.5) | 101.9 (11.8) | 102.6 (12.3) | 101.0 (11.8) | 1.11 | 0.345 | 0.91 | 0.438 |
Diastolic blood pressure (mmHg) | 63.9 (9.4) | 63.9 (8.4) | 63.8 (8.9) | 64.1 (9.5) | 63.6 (10.6) | 0.14 | 0.937 | 0.38 | 0.768 |
Intervention Groups a | ||||||
---|---|---|---|---|---|---|
PA + MMNS | PA + Placebo | MMNS | ||||
Outcome Variables | Coefficient | 95% CI | Coefficient | 95% CI | Coefficient | 95% CI |
MVPA (min/day) | 2.31 | (−1.26; 5.87) | −1.28 | (−4.82; 2.26) | −1.42 | (−4.94; 2.10) |
Estimated VO2max (mL/kg/min) | −0.00 | (−0.54; 0.53) | −0.19 | (−0.72; 0.34) | 1.21 | (0.68; 1.73) ** |
Body fat (%) | 0.35 | (−0.09; 0.80) | −0.31 | (−0.76; 0.14) | −0.04 | (−0.48; 0.41) |
Total cholesterol (mmol/L) | −0.01 | (−0.10; 0.09) | 0.04 | (−0.07; 0.14) | 0.02 | (−0.08; 0.12) |
LDL-C (mmol/L) | 0.05 | (−0.03; 0.13) | 0.11 | (0.03; 0.20) * | 0.05 | (−0.03; 0.13) |
HDL-C (mmol/L) | −0.02 | (−0.08; 0.03) | −0.04 | (−0.10; 0.01) | −0.04 | (−0.10; 0.01) |
Triglycerides (mmol/L) | 0.03 | (−0.03; 0.08) | −0.03 | (−0.09; 0.03) | 0.07 | (0.02; 0.13) * |
HbA1c (%) | −0.07 | (−0.11; −0.03) ** | −0.04 | (−0.08; 0.00) | −0.00 | (−0.04; 0.04) |
Systolic blood pressure (mmHg) | −0.47 | (−2.57; 1.64) | 0.53 | (−1.56; 2.61) | −1.87 | (−3.94; 0.21) |
Diastolic blood pressure (mmHg) | 0.91 | (−0.85; 2.67) | 1.64 | (−0.11; 3.39) | −1.36 | (−3.10; 0.37) |
Intervention Groups a | ||||||
---|---|---|---|---|---|---|
PA + MMNS | PA + Placebo | MMNS | ||||
Outcome Variables | Coefficient | 95% CI | Coefficient | 95% CI | Coefficient | 95% CI |
MVPA (min/day) | −1.99 | (−7.31; 3.34) | 1.33 | (−4.04; 6.69) | 3.51 | (−2.01; 9.03) |
Estimated VO2max (mL/kg/min) | 0.04 | (−0.68; 0.75) | −0.17 | (−0.88; 0.54) | 0.19 | (−0.55; 0.92) |
Body fat (%) | 1.58 | (0.55; 2.61) * | −0.06 | (−1.11; 1.00) | 0.48 | (−0.58; 1.53) |
Total cholesterol (mmol/L) | −0.12 | (−0.26; 0.03) | −0.12 | (−0.26; 0.03) | −0.04 | (−0.18; 0.11) |
LDL-C (mmol/L) | 0.06 | (−0.05; 0.17) | −0.04 | (−0.15; 0.07) | 0.02 | (−0.09; 0.14) |
HDL-C (mmol/L) | −0.12 | (−0.19; −0.04) * | −0.07 | (−0.15; 0.01) | −0.08 | (−0.16; 0.00) |
Triglycerides (mmol/L) | 0.01 | (−0.15; 0.16) | 0.05 | (−0.11; 0.21) | 0.06 | (−0.10; 0.22) |
HbA1c (%) | 0.01 | (−0.04; 0.06) | −0.00 | (−0.05; 0.05) | 0.03 | (−0.02; 0.08) |
Systolic blood pressure (mmHg) | 10.03 | (−7.52; 27.58) | −13.01 | (−30.40; 4.39) | −36.53 | (−53.83; −19.23) ** |
Diastolic blood pressure (mmHg) | 7.97 | (−6.02; 21.95) | −10.47 | (−24.34; 3.40) | −29.18 | (−42.96; −15.40) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nqweniso, S.; Walter, C.; Randt, R.d.; Adams, L.; Beckmann, J.; Dolley, D.; Joubert, N.; Long, K.Z.; Müller, I.; Pühse, U.; et al. A Combined Physical Activity and Multi-Micronutrient Supplementation Intervention in South African Primary Schools: Effects on Physical Activity, Fitness, and Cardiovascular Disease Risk Factors. Children 2025, 12, 1352. https://doi.org/10.3390/children12101352
Nqweniso S, Walter C, Randt Rd, Adams L, Beckmann J, Dolley D, Joubert N, Long KZ, Müller I, Pühse U, et al. A Combined Physical Activity and Multi-Micronutrient Supplementation Intervention in South African Primary Schools: Effects on Physical Activity, Fitness, and Cardiovascular Disease Risk Factors. Children. 2025; 12(10):1352. https://doi.org/10.3390/children12101352
Chicago/Turabian StyleNqweniso, Siphesihle, Cheryl Walter, Rosa du Randt, Larissa Adams, Johanna Beckmann, Danielle Dolley, Nandi Joubert, Kurt Z. Long, Ivan Müller, Uwe Pühse, and et al. 2025. "A Combined Physical Activity and Multi-Micronutrient Supplementation Intervention in South African Primary Schools: Effects on Physical Activity, Fitness, and Cardiovascular Disease Risk Factors" Children 12, no. 10: 1352. https://doi.org/10.3390/children12101352
APA StyleNqweniso, S., Walter, C., Randt, R. d., Adams, L., Beckmann, J., Dolley, D., Joubert, N., Long, K. Z., Müller, I., Pühse, U., Seelig, H., Steinmann, P., Utzinger, J., Lang, C., & Gerber, M. (2025). A Combined Physical Activity and Multi-Micronutrient Supplementation Intervention in South African Primary Schools: Effects on Physical Activity, Fitness, and Cardiovascular Disease Risk Factors. Children, 12(10), 1352. https://doi.org/10.3390/children12101352