Effects of the SmartACT Intervention on Motor and Psychological Variables in Adolescent Athletes: A Controlled Trial Using BlazePod and Microgate
Abstract
1. Introduction
Aims and Hypotheses
2. Materials and Methods
Characteristic | Category | n (%) |
---|---|---|
Age (years), mean ± SD | — | 16.34 ± 0.64 |
Primary sport | Volleyball 46 (23.9%); Basketball 45 (23.4%); Football 42 (21.8%); Handball 20 (10.2%); Athletics 13 (6.6%); Wrestling 12 (6.1%); Others ≤ 2% each | |
Sports experience | >4 years 107 (55.3%); 3–4 years 26 (13.7%); 1–2 years 44 (22.8%); 1st year 16 (8.1%) | |
Training frequency | ≥5×/week 105 (54.3%); 4×/week 43 (22.3%); 2–3×/week 43 (22.3%); 1×/week 2 (1.0%) | |
Additional sports | Yes 66 (34.0%); No 127 (66.0%) | |
Diet pattern | Balanced 89 (46.0%); High-protein 58 (29.9%); Carbohydrate-dominant 28 (14.7%); Sugar-rich 6 (3.3%); Not reported 12 (6.2%) |
2.1. Motor Assessment: Agility and Reaction Speed
2.2. Psychological and Psychosomatic Assessment
2.3. Participant Flow and Outcome Completion
Outcome | Baseline Enrolled (N) | Completed Pre–Post (n) | Missing (n) | Reason for Missing |
---|---|---|---|---|
T-Drill agility | 193 | 168 | 25 | Absence or incomplete timing data |
BlazePod tests | 193 | 185 | 8 | Device availability/missed session |
DASS-21 | 193 | 193 | 0 | — |
GMSCS | 193 | 193 | 0 | — |
2.4. Blinding
2.5. Statistical Analysis
3. Results
3.1. Analysis of Correlations Between Motor Variables, Perception of Somatic Symptoms and Indicators of Psychological Distress
3.2. Analysis of Pretest–Posttest Differences in the SmartACT Group for Motor Variables (T-Drill Agility, BlazePod Hits and Reaction Time)
- T-Drill agility improved significantly from pretest (M = 11.80 s) to posttest (M = 10.78 s), MD = −1.07 s, t(68) = 10.29, p < 0.001, with a large effect size (d = 2.50, 95% CI [1.79–3.35]).
- BlazePod Hits increased from 16.34 to 19.01, MD = +2.53, t(68) = −5.90, p < 0.001, also with a large effect size (d = 1.43, 95% CI [0.87–2.07]).
- BlazePod Reaction Time decreased from 3770.84 ms to 3108.10 ms, MD = −643.75 ms, t(68) = 3.52, p < 0.001, with a large effect size (d = 0.85, 95% CI [0.35–1.41]).
3.2.1. Motor Agility—T-Drill
3.2.2. Visual Response—BlazePod Hits
3.2.3. Reaction Time—BlazePod Reaction Time (RT)
3.3. Repeated Measures ANOVA: Pretest–Posttest Evolution in the Three Groups for Motor Variables and Psychological Indicators
3.3.1. Group Comparison Regarding T-Drill Agility Test
3.3.2. Group Comparison Regarding DASS-21 Total
3.3.3. Group Comparison Regarding GMSCS Total
3.3.4. Group Comparison Regarding GMSCS Fatigue
3.3.5. Group Comparison Regarding GMSCS Stomach/Abdominal Symptoms
3.3.6. Group Comparison Regarding GMSCS Head/Shoulder Symptoms
3.3.7. Group Comparison Regarding GMSCS Warm–Cold Symptoms
3.3.8. Group Comparison Regarding GMSCS Heart/Chest Symptoms
4. Discussion
4.1. Literature Context and Theoretical Framing
4.2. Practical Implications
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MAC | Mindfulness Acceptance Commitment |
SmartACT | Smart Acceptance and Commitment Therapies |
DASS-21 | Depression, Anxiety and Stress Scales (21-item) |
GMSCS | Ghent Multidimensional Somatic Complaints Scale |
RT | Reaction Time |
CI | Confidence Interval |
ANOVA | Analysis of Variance |
η2p | partial eta squared |
MD | Mean Difference |
SD | Standard Deviation |
References
- Vella, S.A.; Cliff, D.P.; Magee, C.A.; Okely, A.D. Sports participation and parent-reported health-related quality of life in children: Longitudinal associations. J. Pediatr. 2014, 164, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.D.; Barnes, J.D.; Tremblay, M.S.; Guerrero, M.D. Associations between organized sport participation and mental health difficulties: Data from over 11,000 US children and adolescents. PLoS ONE 2022, 17, e0268583. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classifications, training and testing. J. Sports Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef]
- Mancini, N.; Di Padova, M.; Polito, R.; Mancini, S.; Dipace, A.; Basta, A.; Colella, D.; Limone, P.; Messina, G.; Monda, M.; et al. The Impact of Perception–Action Training Devices on Quickness and Reaction Time in Female Volleyball Players. J. Funct. Morphol. Kinesiol. 2024, 9, 147. [Google Scholar] [CrossRef]
- Zemková, E.; Vilman, T.; Kováciková, Z.; Hamar, D. Reaction time in the Agility Test under simulated competitive and noncompetitive conditions. J. Strength Cond. Res. 2013, 27, 3445–3449. [Google Scholar] [CrossRef]
- Trajković, N.; Sporiš, G.; Krističević, T.; Madić, D.M.; Bogataj, Š. The Importance of Reactive Agility Tests in Differentiating Adolescent Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 3839. [Google Scholar] [CrossRef]
- Young, W.; Farrow, D. The importance of a sport-specific stimulus for training agility. Strength Cond. J. 2013, 35, 39–43. [Google Scholar] [CrossRef]
- Chow, C.G.; Kong, Y.H.; Wong, C.L. Reactive-Agility in Touch Plays an Important Role in Elite Playing Level: Reliability and Validity of a Newly Developed Repeated Up-and-Down Agility Test. J. Sports Sci. Med. 2022, 21, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Young, W.; Farrow, D. A review of agility: Practical applications for strength and conditioning. Strength Cond. J. 2006, 28, 24–29. [Google Scholar] [CrossRef]
- Sporiš, G.; Milanović, Z.; Trajković, N.; Joksimović, A. Correlation between speed, agility and quickness (SAQ) in elite young soccer players. Acta Kinesiol. 2011, 5, 36–41. [Google Scholar]
- Wang, P.; Shi, C.; Chen, J.; Gao, X.; Wang, Z.; Fan, Y.; Mao, Y. Training methods and evaluation of basketball players’ agility quality: A systematic review. Heliyon 2024, 10, e24296. [Google Scholar] [CrossRef] [PubMed]
- Delextrat, A.; Grosgeorge, B.; Bieuzen, F. Determinants of performance in a new test of planned agility for young elite basketball players. Int. J. Sports Physiol. Perform. 2015, 10, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, G. The effects of Power, Speed, Skill and Anaerobic Capacity of different training models in young male basketball players. Anthropologist 2014, 18, 877–883. [Google Scholar] [CrossRef]
- Forster, J.W.D.; Uthoff, A.M.; Rumpf, M.C.; Cronin, J.B. Training to Improve Pro-Agility Performance: A Systematic Review. J. Hum. Kinet. 2023, 85, 35–51. [Google Scholar] [CrossRef]
- Paul, D.J.; Gabbett, T.J.; Nassis, G.P. Agility in Team Sports: Testing, Training and Factors Affecting Performance. Sports Med. 2016, 46, 421–442. [Google Scholar] [CrossRef]
- Baker, D.G.; Newton, R.U. Comparison of lower body strength, power, acceleration, speed, agility, and sprint momentum to describe and compare playing rank among professional rugby league players. J. Strength Cond. Res. 2008, 22, 153–158. [Google Scholar] [CrossRef]
- Shedge, S.S.; Ramteke, S.U.; Jaiswal, P.R. Optimizing Agility and Athletic Proficiency in Badminton Athletes Through Plyometric Training: A Review. Cureus 2024, 16, e52596. [Google Scholar] [CrossRef]
- Sabiston, C.M.; Jewett, R.; Ashdown-Franks, G.; Belanger, M.; Brunet, J.; O’Loughlin, E.; O’Loughlin, J. Number of Years of Team and Individual Sport Participation During Adolescence and Depressive Symptoms in Early Adulthood. J. Sport Exerc. Psychol. 2016, 38, 105–110. [Google Scholar] [CrossRef]
- Eime, R.M.; Young, J.A.; Harvey, J.T.; Charity, M.J.; Payne, W.R. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: Informing development of a conceptual model of health through sport. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 98. [Google Scholar] [CrossRef]
- Panza, M.J.; Graupensperger, S.; Agans, J.P.; Doré, I.; Vella, S.A.; Evans, M.B. Adolescent Sport Participation and Symptoms of Anxiety and Depression: A Systematic Review and Meta-Analysis. J. Sport Exerc. Psychol. 2020, 42, 201–218. [Google Scholar] [CrossRef]
- He, J.P.; Paksarian, D.; Merikangas, K.R. Physical Activity and Mental Disorder Among Adolescents in the United States. J. Adolesc. Health 2018, 63, 628–635. [Google Scholar] [CrossRef]
- Murray, R.M.; Sabiston, C.M.; Doré, I.; Bélanger, M.; O’Loughlin, J.L. Association between pattern of team sport participation from adolescence to young adulthood and mental health. Scand. J. Med. Sci. Sports 2021, 31, 1481–1488. [Google Scholar] [CrossRef] [PubMed]
- Ashdown-Franks, G.; Sabiston, C.M.; Solomon-Krakus, S.; O’Loughlin, J.L. Sport participation in high school and anxiety symptoms in young adulthood. Ment. Health Phys. Act. 2017, 12, 19–24. [Google Scholar] [CrossRef]
- Merikangas, K.R.; Nakamura, E.F.; Kessler, R.C. Epidemiology of mental disorders in children and adolescents. Dialogues Clin. Neurosci. 2009, 11, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Serido, J.; Almeida, D.M.; Wethington, E. Chronic stressors and daily hassles: Unique and interactive relationships with psychological distress. J. Health Soc. Behav. 2004, 45, 17–33. [Google Scholar] [CrossRef]
- Kovács, I.K.; Borcsa, M. The relationship between anxiety, somatic symptoms and hardiness in adolescence. Rom. J. Appl. Psychol. 2017, 19, 42–49. [Google Scholar] [CrossRef]
- Demuthova, S. The school environment as a source of somatic problems in adolescents. Rev. Românească Educ. Multidimens. 2019, 11, 59–71. [Google Scholar] [CrossRef]
- Vulić-Prtorić, A. Somatic complaints in adolescence: Prevalence patterns across gender and age. Psihologijske Teme 2016, 25, 75–105. Available online: https://hrcak.srce.hr/file/230450 (accessed on 1 April 2025).
- Gallant, S. Assessing adverse neural tension in athletes. J. Sport Rehabil. 1998, 7, 128–139. [Google Scholar] [CrossRef]
- Barroso, G.C.; Thiele, E.S. Muscle injuries in athletes. Rev. Bras. Ortop. 2015, 46, 354–358. [Google Scholar] [CrossRef]
- Roșioară, A.I.; Năsui, B.A.; Ciuciuc, N.; Sîrbu, D.M.; Curșeu, D.; Vesa, Ș.C.; Popescu, C.A.; Bleza, A.; Popa, M. Beyond BMI: Exploring Adolescent Lifestyle and Health Behaviours in Transylvania, Romania. Nutrients 2025, 17, 268. [Google Scholar] [CrossRef]
- Diduch, B.K. Gastrointestinal Conditions in the Female Athlete. Clin. Sports Med. 2017, 36, 655–669. [Google Scholar] [CrossRef]
- de Oliveira, E.P.; Burini, R.C.; Jeukendrup, A. Gastrointestinal complaints during exercise: Prevalence, etiology, and nutritional recommendations. Sports Med. 2014, 44 (Suppl. 1), S79–S85. [Google Scholar] [CrossRef]
- Waterman, J.J.; Kapur, R. Upper gastrointestinal issues in athletes. Curr. Sports Med. Rep. 2012, 11, 99–104. [Google Scholar] [CrossRef]
- Wright, H.; Collins, M.; Schwellnus, M.P. Gastrointestinal (GIT) symptoms in athletes: A review of risk factors associated with the development of GIT symptoms during exercise. Int. SportMed J. 2009, 10, 116–123. Available online: https://hdl.handle.net/10520/EJC48379 (accessed on 1 April 2025).
- Wilson, P.B. The Psychobiological Etiology of Gastrointestinal Distress in Sport: A Review. J. Clin. Gastroenterol. 2020, 54, 297–304. [Google Scholar] [CrossRef]
- Cronin, O.; Molloy, M.G.; Shanahan, F. Exercise, fitness, and the gut. Curr. Opin. Gastroenterol. 2016, 32, 67–73. [Google Scholar] [CrossRef]
- Coleman, N. Gastrointestinal Issues in Athletes. Curr. Sports Med. Rep. 2019, 18, 185–187. [Google Scholar] [CrossRef] [PubMed]
- Poucher, Z.A.; Tamminen, K.A.; Sabiston, C.M.; Cairney, J.; Kerr, G. Prevalence of symptoms of common mental disorders among elite Canadian athletes. Psychol. Sport Exerc. 2021, 57, 102018. [Google Scholar] [CrossRef]
- Robson-Ansley, P.J.; Gleeson, M.; Ansley, L. Fatigue management in the preparation of Olympic athletes. J. Sports Sci. 2009, 27, 1409–1420. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44 (Suppl. 2), S139–S147. [Google Scholar] [CrossRef] [PubMed]
- Budgett, R. Fatigue and underperformance in athletes: The overtraining syndrome. Br. J. Sports Med. 1998, 32, 107–110. [Google Scholar] [CrossRef]
- Hasyim, A.H.; Muhammad, A.; Sujarwo, H. The impact of sport hypnosis on volleyball athlete performance: An empirical study. J. Sport Area 2023, 8, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, J.; Alldredge, C.T.; Haddenhorst, A. Meta-analytic evidence on the efficacy of hypnosis for mental and somatic health issues: A 20-year perspective. Front. Psychol. 2024, 14, 1330238. [Google Scholar] [CrossRef]
- Li, Z.; Li, S.X. The Application of Hypnosis in Sports. Front. Psychol. 2022, 12, 771162. [Google Scholar] [CrossRef]
- Di Corrado, D.; Guarnera, M.; Vitali, F.; Quartiroli, A.; Coco, M. Imagery ability of elite level athletes from individual vs. team and contact vs. no-contact sports. PeerJ 2019, 7, e6940. [Google Scholar] [CrossRef]
- Khoury, B.; Sharma, M.; Rush, S.E.; Fournier, C. Mindfulness-based stress reduction for healthy individuals: A meta-analysis. J. Psychosom. Res. 2015, 78, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Shearer, A.; Hunt, M.; Chowdhury, M.; Nicol, L. Effects of a brief mindfulness meditation intervention on student stress and heart rate variability. Int. J. Stress Manag. 2016, 23, 232. [Google Scholar] [CrossRef]
- Pates, J.; Palmi, J. The effects of hypnosis on flow states and performance. J. Excell. 2002, 6, 48–62. [Google Scholar]
- Milling, L.S.; Randazzo, E.S. Enhancing sports performance with hypnosis: An ode for Tiger Woods. Psychol. Conscious. Theory Res. Pract. 2016, 3, 45. [Google Scholar] [CrossRef]
- Straub, W.F.; Bowman, J.J. A review of the development of sport hypnosis as a performance enhancement method for athletes. J. Psychol. Clin. Psychiatry 2016, 6, 00378. [Google Scholar] [CrossRef]
- Lindsay, P.; Maynard, I.; Thomas, O. Effects of hypnosis on flow states and cycling performance. Sport Psychol. 2005, 19, 164–177. [Google Scholar] [CrossRef]
- Pates, J.; Maynard, I. Effects of hypnosis on flow states and golf performance. Percept. Mot. Skills 2000, 91 Pt 2, 1057–1075. [Google Scholar] [CrossRef]
- Mattle, S.; Birrer, D.; Elfering, A. Feasibility of Hypnosis on Performance in Air Rifle Shooting Competition. Int. J. Clin. Exp. Hypn. 2020, 68, 521–529. [Google Scholar] [CrossRef]
- Hamid, N.; Abdoli, R.; Shahroie, A. Efficacy of cognitive behavior therapy with positive imagination of success during hypnotism on athletic performance. Hormozgan Med. J. 2018, 22, e86481. [Google Scholar] [CrossRef]
- Sahabuddin, S.; Sofyan, D.; Fadillah, A. Integrating Self-Hypnotherapy Techniques into Physical Conditioning Programs for Volleyball Performance Enhancement. Compet. J. Pendidik. Kepelatihan Olahraga 2025, 17, 503–518. [Google Scholar] [CrossRef]
- Barker, J.B.; Jones, M.; Greenlees, I. Using Hypnosis to Enhance Self-Efficacy in Sport Performers. J. Clin. Sport Psychol. 2013, 7, 228–247. [Google Scholar] [CrossRef]
- Noetel, M.; Ciarrochi, J.; Van Zanden, B.; Lonsdale, C. Mindfulness and acceptance approaches to sporting performance enhancement: A systematic review. Int. Rev. Sport Exerc. Psychol. 2019, 12, 139–175. [Google Scholar] [CrossRef]
- González-García, M.; Álvarez, J.C.; Pérez, E.Z.; Fernandez-Carriba, S.; López, J.G. Feasibility of a Brief Online Mindfulness and Compassion-Based Intervention to Promote Mental Health Among University Students During the COVID-19 Pandemic. Mindfulness 2021, 12, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Johles, L.; Gustafsson, H.; Jansson-Fröjmark, M.; Classon, C.; Hasselqvist, J.; Lundgren, T. Psychological Flexibility Among Competitive Athletes: A Psychometric Investigation of a New Scale. Front. Sports Act. Living 2020, 2, 110. [Google Scholar] [CrossRef]
- Petterson, H.; Olson, B.L. Effects of mindfulness-based interventions in high school and college athletes for reducing stress and injury, and improving quality of life. J. Sport Rehabil. 2017, 26, 578–587. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Hölzel, B.K.; Posner, M.I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 2015, 16, 213–225. [Google Scholar] [CrossRef]
- Henry, J.D.; Crawford, J.R. The short-form version of the Depression Anxiety Stress Scales (DASS-21): Construct validity and normative data in a large non-clinical sample. Br. J. Clin. Psychol. 2005, 44 Pt 2, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Beirens, K.; Fontaine, J.R. Development of the Ghent Multidimensional Somatic Complaints Scale. Assessment 2010, 17, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, A.J.; DiStefano, L.J.; Brown, C.N.; Herman, D.C.; Guskiewicz, K.M.; Padua, D.A. A dynamic warm-up model increases quadriceps strength and hamstring flexibility. J. Strength Cond. Res. 2012, 26, 1130–1141. [Google Scholar] [CrossRef]
- Pauole, K.; Madole, K.; Garhammer, J.; Lacourse, M.; Rozenek, R. Reliability and validity of the T-test as a measure of agility, leg power, and leg speed in college-aged men and women. J. Strength Cond. Res. 2000, 14, 443–450. [Google Scholar] [CrossRef]
- Polechoński, J.; Pilch, J.; Langer, A.; Prończuk, M.; Markowski, J.; Maszczyk, A. Assessment of the reliability and validity of simple and complex reaction speed tests in mixed martial arts athletes using the BlazePod system. Baltic J. Health Phys. Act. 2025, 17, 2. [Google Scholar] [CrossRef]
- Hoffman, J.R. Evaluation of a Reactive Agility Assessment Device in Youth Football Players. J. Strength Cond. Res. 2020, 34, 3311–3315. [Google Scholar] [CrossRef]
- Barabási-Madár, T.; Monea, D.; Costea-Bărluţiu, C. Effects of a Mindfulness-Based Intervention on the Physical and Psychological Well-Being in Teenagers. Educ. Health Perform. 2023, 25–37. [Google Scholar] [CrossRef]
- Barabási-Madár, T.; Costea-Bărluţiu, C.; Vargha, J.L. Preliminary data on the effectiveness of in This Moment program: Investigation of its impact on Romanian high school students’ stress management abilities. In Proceedings of the Poster Presentation, ACBS World Conference 17, Dublin, Ireland, 25–30 June 2019. [Google Scholar]
- Barabási-Madár, T.; Costea-Bărluţiu, C.; Vargha, J.L. Studiul utilizării smartphone-ului de către elevii de liceu. In Punți Între Teorii, Cercetări, Studii de Caz. Abordări Multidisciplinare; Jardan, V.A., Ed.; Editura APAR: Brașov, Romania, 2019. [Google Scholar]
- Gardner, F.L.; Moore, Z.E. The Psychology of Enhancing Human Performance: The Mindfulness-Acceptance-Commitment (MAC) Approach; Springer Publ. Co.: New York, NY, USA, 2007. [Google Scholar]
- Miró, A.; Mesperuza, M.; Jensen, M.P.; Day, M.A.; García, F.; Miró, J. Therapeutic hypnosis and sports performance: A systematic review. Int. Rev. Sport Exerc. Psychol. 2025, 1–21. [Google Scholar] [CrossRef]
- Volgemute, K.; Vazne, Z.; Malinauskas, R. The benefits of guided imagery on athletic performance: A mixed-methods approach. Front. Psychol. 2025, 16, 1500194. [Google Scholar] [CrossRef]
- Gutman, T.; Gottlieb, A. Performance mindfulness: Integrating ACT matrix, imagery and mindfulness for performance enhancement. J. Sport Psychol. 2024, 1–17. [Google Scholar] [CrossRef]
- Jovanovic, M.; Sporis, G.; Omrcen, D.; Fiorentini, F. Effects of speed, agility, quickness training method on power performance in elite soccer players. J. Strength Cond. Res. 2011, 25, 1285–1292. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, R.T.; Atkinson, G.; Drust, B.; Gregson, W. Monitoring Fatigue Status in Elite Team-Sport Athletes: Implications for Practice. Int. J. Sports Physiol. Perform. 2017, 12 (Suppl. 2), S227–S234. [Google Scholar] [CrossRef] [PubMed]
- Almonroeder, T.G.; Tighe, S.M.; Miller, T.M.; Lanning, C.R. The influence of fatigue on decision-making in athletes: A systematic review. Sports Biomech. 2020, 19, 76–89. [Google Scholar] [CrossRef]
- Radin, E.L. Role of muscles in protecting athletes from injury. Acta Med. Scand. 1986, 220 (Suppl. 711), 143–147. [Google Scholar] [CrossRef]
- Sikora, M.; Mikołajczyk, R.; Łakomy, O.; Karpiński, J.; Żebrowska, A.; Kostorz-Nosal, S.; Jastrzębski, D. Influence of the breathing pattern on the pulmonary function of endurance-trained athletes. Sci. Rep. 2024, 14, 1113. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, G.M.; Russo, L.; Maric, M.; Padulo, J. Sports Performance and Breathing Rate: What Is the Connection? A Narrative Review on Breathing Strategies. Sports 2023, 11, 103. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.T-Drill agility | ||||||||||||
2.BlazePod Hits | −0.400 ** | |||||||||||
3.BlazePod React. Time | 0.371 ** | −0.894 ** | ||||||||||
4.GMSCS Head Should | 0.214 ** | −0.075 | 0.112 | |||||||||
5.GMSCS Heart Chest | 0.172 * | −0.049 | 0.140 | 0.670 ** | ||||||||
6.GMSCS Stom Abd | 0.313 ** | −0.106 | 0.114 | 0.471 ** | 0.502 ** | |||||||
7.GMSCS Warm Cold | 0.223 ** | −0.030 | 0.038 | 0.500 ** | 0.531 ** | 0.607 ** | ||||||
8.GMSCS Fatigue | 0.283 ** | −0.052 | 0.085 | 0.592 ** | 0.602 ** | 0.565 ** | 0.658 ** | |||||
9.GMSCS TOTAL | 0.295 ** | −0.074 | 0.118 | 0.780 ** | 0.810 ** | 0.764 ** | 0.806 ** | 0.879 ** | ||||
10.DASS-21 Depression | 0.391 ** | −0.172 * | 0.189 * | 0.492 ** | 0.529 ** | 0.450 ** | 0.431 ** | 0.623 ** | 0.635 ** | |||
11.DASS-21 Anxiety | 0.307 ** | −0.147 * | 0.151 * | 0.574 ** | 0.674 ** | 0.452 ** | 0.568 ** | 0.650 ** | 0.726 ** | 0.715 ** | ||
12.DASS-21 Stress | 0.368 ** | −0.189 * | 0.213 ** | 0.548 ** | 0.549 ** | 0.444 ** | 0.519 ** | 0.677 ** | 0.688 ** | 0.766 ** | 0.767 ** | |
13.DASS-21 TOTAL | 0.386 ** | −0.186 * | 0.203 ** | 0.588 ** | 0.637 ** | 0.491 ** | 0.552 ** | 0.712 ** | 0.747 ** | 0.909 ** | 0.902 ** | 0.927 ** |
Variable | Time | M | MD | T (df) | p | Cohen’s d [95% CI] |
---|---|---|---|---|---|---|
T-Drill agility (s) | Pretest | 11.80 | −1.07 | 10.29 (68) | <0.001 | 2.50 [1.79, 3.35] |
Posttest | 10.78 | |||||
BlazePod Hits | Pretest | 16.34 | +2.53 | −5.90 (68) | <0.001 | 1.43 [0.87, 2.07] |
Posttest | 19.01 | |||||
BlazePod Reaction Time (ms) | Pretest | 3770.84 | −643.75 | 3.52 (68) | <0.001 | 0.85 [0.35, 1.41] |
Posttest | 3108.10 |
Compare Groups | MD | SE | p | η2p (95% CI) |
---|---|---|---|---|
SmartACT vs. MAC | −1.11 | 0.226 | 0.000 | 0.19 [0.09–0.29] |
SmartACT vs. Control | −1.07 | 0.232 | 0.000 | 0.18 [0.08–0.28] |
MAC vs. Control | 0.04 | 0.246 | 0.987 | 0.00 [0.00–0.04] |
Compare Groups | MD | SE | p | η2p (95% CI) |
---|---|---|---|---|
SmartACT vs. MAC | −6.43 | 1.844 | 0.002 | 0.11 [0.03–0.21] |
SmartACT vs. Control | −4.87 | 1.891 | 0.029 | 0.07 [0.01–0.16] |
MAC vs. Control | 1.56 | 1.918 | 0.697 | 0.01 [0.00–0.06] |
Compare Groups | MD | SE | p | η2p (95% CI) |
---|---|---|---|---|
SmartACT vs. MAC | −12.62 | 2.968 | 0.000 | 0.15 [0.07–0.25] |
SmartACT vs. Control | −7.19 | 3.045 | 0.050 | 0.08 [0.01–0.17] |
MAC vs. Control | 5.43 | 3.088 | 0.186 | 0.03 [0.00–0.09] |
Compare Groups | MD | SE | p | η2p (95% CI) |
---|---|---|---|---|
SmartACT vs. MAC | −4.88 | .998 | 0.000 | 0.17 [0.08–0.27] |
SmartACT vs. Control | −2.91 | 1.024 | 0.014 | 0.09 [0.01–0.18] |
MAC vs. Control | 1.97 | 1.038 | 0.143 | 0.04 [0.00–0.11] |
Compare Groups | MD | SE | p | η2p (95% CI) |
---|---|---|---|---|
SmartACT vs. MAC | −1.84 | 0.647 | 0.014 | 0.08 [0.01–0.17] |
SmartACT vs. Control | −1.03 | 0.664 | 0.272 | 0.03 [0.00–0.09] |
MAC vs. Control | 0.81 | 0.673 | 0.449 | 0.02 [0.00–0.07] |
Compare Groups | MD | SE | p | η2p (95% CI) |
---|---|---|---|---|
SmartACT vs. MAC | −2.36 | 0.574 | 0.000 | 0.13 [0.05–0.23] |
SmartACT vs. Control | −1.02 | 0.588 | 0.194 | 0.04 [0.00–0.11] |
MAC vs. Control | 1.34 | 0.597 | 0.067 | 0.05 [0.00–0.12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timea, B.M.; Carmen, C.-B.; Nicolae, O.M.; Nicola, M.; Teodor, G.V.; Maria, S.A.; Cornelia, P.; Hervás-Gómez, C.; Florina, G.E.; Dan, M. Effects of the SmartACT Intervention on Motor and Psychological Variables in Adolescent Athletes: A Controlled Trial Using BlazePod and Microgate. Children 2025, 12, 1338. https://doi.org/10.3390/children12101338
Timea BM, Carmen C-B, Nicolae OM, Nicola M, Teodor GV, Maria SA, Cornelia P, Hervás-Gómez C, Florina GE, Dan M. Effects of the SmartACT Intervention on Motor and Psychological Variables in Adolescent Athletes: A Controlled Trial Using BlazePod and Microgate. Children. 2025; 12(10):1338. https://doi.org/10.3390/children12101338
Chicago/Turabian StyleTimea, Barabási Madár, Costea-Bărluţiu Carmen, Ordean Mircea Nicolae, Mancini Nicola, Grosu Vlad Teodor, Sabău Anca Maria, Popovici Cornelia, Carlos Hervás-Gómez, Grosu Emilia Florina, and Monea Dan. 2025. "Effects of the SmartACT Intervention on Motor and Psychological Variables in Adolescent Athletes: A Controlled Trial Using BlazePod and Microgate" Children 12, no. 10: 1338. https://doi.org/10.3390/children12101338
APA StyleTimea, B. M., Carmen, C.-B., Nicolae, O. M., Nicola, M., Teodor, G. V., Maria, S. A., Cornelia, P., Hervás-Gómez, C., Florina, G. E., & Dan, M. (2025). Effects of the SmartACT Intervention on Motor and Psychological Variables in Adolescent Athletes: A Controlled Trial Using BlazePod and Microgate. Children, 12(10), 1338. https://doi.org/10.3390/children12101338