The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Demonstrated Environmental Risk Factors Related to Pediatric Asthma
3.1. Tobacco and E-Cigarette Smoke
3.1.1. Tobacco Smoke
3.1.2. E-Cigarette Smoke and Vaping Exposure
3.2. Air Pollution
3.2.1. Outdoor Pollution
3.2.2. Indoor Pollution
3.3. Allergens
3.3.1. Indoor Allergens
3.3.2. Outdoor Allergens
3.4. Viral Infections
3.5. Microbiome
3.6. Obesity and Sedentary Lifestyle
3.7. Diet
3.8. Synergistic Effects of Multiple Environmental Exposures
4. Environmental Risk Factors in Pediatric Asthma: Is It Possible to Establish Which Weighs More?
5. The Social and Economic Burden of Pediatric Asthma: Prevention and Mitigation Strategies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
e.g., | Exempli gratia |
TRAP | Traffic Related Air Pollution |
CAMP | Childhood Asthma Management Program |
GINA | Global Initiative for Asthma |
COPD | Chronic Obstructive Pulmonary Disease |
SHS | Second Hand Smoke |
OR | Odds Ratio |
CI | Confidence Interval |
WHO | World Health Organization |
NOD | Nucleotide binding Oligomerization Domine |
ROS | Reactive Oxygen Species |
ILC2 | Innate Lymphoid Cells Group 2 |
HR | Hazard Ratio |
PM | Particulate Matter |
UFGH | Unflued Gas Heater |
HDM | House Dust Mite |
MPC | Mean Percentage Change |
RV | RhinoVirus |
RSV | Respiratory Syncytial Virus |
MD | Mediterranean Diet |
n3PUFAs | omega-3 polyunsaturated fatty acids |
ETS | Environmental Tobacco Smoke |
DALYs | Disability-adjusted life years |
TSE | Tobacco Smoke Exposure |
AIT | Allergen-specific Immunotherapy |
SCIT | Subcutaneous Immunotherapy |
SLIT | Sublingual Immunotherapy |
IL-10 | Interlekin-10 |
TGF-β | Transforming Growth Factor-beta |
NF-κB | Nuclear Factor kappa-light-chain-enhancer of activated B cells |
References
- Venkatesan, P. 2025 GINA report for asthma. Lancet Respir Med. 2025, 13, e41–e42. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, H.; Bonnelykke, K. Long-term studies of the natural history of asthma in childhood. J. Allergy Clin. Immunol. 2010, 126, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Romagnani, S. The increased prevalence of allergy and the hygiene hypothesis: Missing immune deviation, reduced immune suppression, or both? Immunology 2004, 112, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Wlasiuk, G.; Vercelli, D. The farm effect, or: When, what and how a farming environment protects from asthma and allergic disease. Curr. Opin. Allergy Clin. Immunol. 2012, 12, 461–466. [Google Scholar] [CrossRef]
- Bronnimann, S.; Burrows, B. A prospective study of the natural history of asthma: Remission and relapse rates. Chest 1986, 90, 480–484. [Google Scholar] [CrossRef]
- Silverstein, M.D.; Reed, C.E.; O’Connell, E.J.; Melton, L.J.; O’Fallon, W.M.; Yunginger, J.W. Long-term survival of a cohort of community residents with asthma. N. Engl. J. Med. 1994, 331, 1537–1541. [Google Scholar] [CrossRef]
- Löppönen, H.; Sorri, M. High-frequency air-conduction and electric bone-conduction audiometry: Comparison of two methods. Scand. Audiol. 1991, 20, 175–180. [Google Scholar] [CrossRef]
- Morgan, W.J.; Stern, D.A.; Sherrill, D.L.; Guerra, S.; Holberg, C.J.; Guilbert, T.W.; Taussig, L.M.; Wright, A.L.; Martinez, F.D. Outcome of asthma and wheezing in the first 6 years of life: Follow-up through adolescence. Am. J. Respir. Crit. Care Med. 2005, 172, 1253–1258. [Google Scholar] [CrossRef]
- Vonk, J.M.; Postma, D.S.; Boezen, H.M.; Grol, M.H.; Schouten, J.P.; Koëter, G.H.; Gerritsen, J. Childhood factors associated with asthma remission after 30 year follow up. Thorax 2004, 59, 925–929. [Google Scholar] [CrossRef]
- Stern, D.A.; Morgan, W.J.; Halonen, M.; Wright, A.L.; Martinez, F.D. Wheezing and bronchial hyper-responsiveness in early childhood as predictors of newly diagnosed asthma in early adulthood: A longitudinal birth-cohort study. Lancet 2008, 372, 1058–1064. [Google Scholar] [CrossRef]
- Tager, I.B.; Hanrahan, J.P.; Tosteson, T.D.; Castile, R.G.; Brown, R.W.; Weiss, S.T.; Speizer, F.E. Lung function, pre- and post-natal smoke exposure, and wheezing in the first year of life. Am. Rev. Respir. Dis. 1993, 147, 811–817. [Google Scholar] [CrossRef]
- Oswald, H.; Phelan, P.D.; Lanigan, A.; Hibbert, M.; Bowes, G.; Olinsky, A. Outcome of childhood asthma in mid-adult life. BMJ 1994, 309, 95–96. [Google Scholar] [CrossRef]
- Horak, E.; Lanigan, A.; Roberts, M.; Welsh, L.; Wilson, J.; Carlin, J.B.; Olinsky, A.; Robertson, C.F. Longitudinal study of childhood wheezy bronchitis and asthma: Outcome at age 42. BMJ 2003, 326, 422–423. [Google Scholar] [CrossRef]
- Covar, R.A.; Strunk, R.; Zeiger, R.S.; Wilson, L.A.; Liu, A.H.; Weiss, S.; Tonascia, J.; Spahn, J.D.; Szefler, S.J. Predictors of remitting, periodic, and persistent childhood asthma. J. Allergy Clin. Immunol. 2010, 125, 359–366.e3. [Google Scholar] [CrossRef]
- Ferrante, G.; La Grutta, S. The Burden of Pediatric Asthma. Front. Pediatr. 2018, 6, 186. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, R.; McSharry, C.; Brady, J.; Donnelly, I.; Grierson, C.; McGuinness, S.; Jolly, L.; Weir, C.J.; Messow, M.; Spears, M.; et al. Sputum matrix metalloproteinase-12 in patients with chronic obstructive pulmonary disease and asthma: Relationship to disease severity. J. Allergy Clin. Immunol. 2012, 129, 655–663.e8. [Google Scholar] [CrossRef] [PubMed]
- Polosa, R.; Thomson, N.C. Smoking and asthma: Dangerous liaisons. Eur. Respir. J. 2013, 41, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Tsoumakidou, M.; Elston, W.; Zhu, J.; Wang, Z.; Gamble, E.; Siafakas, N.M.; Barnes, N.C.; Jeffery, P.K. Cigarette smoking alters bronchial mucosal immunity in asthma. Am. J. Respir. Crit. Care Med. 2007, 175, 919–925. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Passive Smoking. Environmental Tobacco Smoke; National Academies Press: Washington, DC, USA, 1986. [Google Scholar]
- Burke, H.; Leonardi-Bee, J.; Hashim, A.; Pine-Abata, H.; Chen, Y.; Cook, D.G.; Britton, J.R.; McKeever, T.M. Prenatal and Passive Smoke Exposure and Incidence of Asthma and Wheeze: Systematic Review and Meta-analysis. Pediatrics 2012, 129, 735–744. [Google Scholar] [CrossRef]
- Cook, D.G.; Strachan, D.P. Health effects of passive smoking. 3. Parental smoking and prevalence of respiratory symptoms and asthma in school age children. Thorax 1997, 52, 1081–1094. [Google Scholar] [CrossRef]
- Vork, K.L.; Broadwin, R.L.; Blaisdell, R.J. Developing asthma in childhood from exposure to secondhand tobacco smoke: Insights from a meta-regression. Environ. Health Perspect. 2007, 115, 1394–1400. [Google Scholar] [CrossRef]
- Cho, J.H.; Paik, S.Y. Association between Electronic Cigarette Use and Asthma among High School Students in South Korea. PLoS ONE 2016, 11, e0151022. [Google Scholar] [CrossRef]
- Schweitzer, R.J.; Wills, T.A.; Tam, E.; Pagano, I.; Choi, K. E-cigarette use and asthma in a multiethnic sample of adolescents. Prev. Med. 2017, 105, 226–231. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, W.; Zhu, L.; Duan, Y.; Jin, Y.; He, L. Relationship between the concentration of formaldehyde in the air and asthma in children: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 8358–8362. [Google Scholar] [PubMed]
- Golden, R.; Holm, S. Indoor Air Quality and Asthma: Has Unrecognized Exposure to Acrolein Confounded Results of Previous Studies? Dose Response 2017, 15, 1559325817691159. [Google Scholar] [CrossRef] [PubMed]
- Prieto, L.; Gutiérrez, V.; Cervera, A.; Liñana, J. Airway obstruction induced by inhaled acetaldehyde in asthma: Repeatability relationship to adenosine 5’-monophosphate responsiveness. J. Investig. Allergol. Clin. Immunol. 2002, 12, 91–98. [Google Scholar]
- Liu, Y.; Pan, J.; Zhang, H.; Shi, C.; Li, G.; Peng, Z.; Ma, J.; Zhou, Y.; Zhang, L. Short-Term Exposure to Ambient Air Pollution and Asthma Mortality. Am. J. Respir. Crit. Care Med. 2019, 200, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Huff, R.D.; Carlsten, C.; Hirota, J.A. An update on immunologic mechanisms in the respiratory mucosa in response to air pollutants. J. Allergy Clin. Immunol. 2019, 143, 1989–2001. [Google Scholar] [CrossRef]
- Khreis, H.; Kelly, C.; Tate, J.; Parslow, R.; Lucas, K.; Nieuwenhuijsen, M. Exposure to traffic-related air pollution and risk of development of childhood asthma: A systematic review and meta-analysis. Environ. Int. 2017, 100, 1–31. [Google Scholar] [CrossRef]
- Bontinck, A.; Maes, T.; Joos, G. Asthma and air pollution: Recent insights in pathogenesis and clinical implications. Curr. Opin. Pulm. Med. 2020, 26, 10–19. [Google Scholar] [CrossRef]
- Tiotiu, A.I.; Novakova, P.; Nedeva, D.; Chong-Neto, H.J.; Novakova, S.; Steiropoulos, P.; Kowal, K. Impact of Air Pollution on Asthma Outcomes. Int. J. Environ. Res. Public Health 2020, 17, 6212. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Lee, P.H.; Lee, S.H.; Park, C.S.; Jang, A.S. Impact of ozone on claudins and tight junctions in the lungs. Environ. Toxicol. 2018, 33, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Thurston, G.D.; Balmes, J.R.; Garcia, E.; Gilliland, F.D.; Rice, M.B.; Schikowski, T.; Van Winkle, L.S.; Annesi-Maesano, I.; Burchard, E.G.; Carlsten, C.; et al. Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2020, 17, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Lovinsky-Desir, S.; Jung, K.H.; Jezioro, J.R.; Torrone, D.Z.; de Planell-Saguer, M.; Yan, B.; Perera, F.P.; Rundle, A.G.; Per-zanowski, M.S.; Chillrud, S.N.; et al. Physical activity, black carbon exposure, and DNA methylation in the FOXP3 promoter. Clin. Epigenetics 2017, 9, 65. [Google Scholar] [CrossRef]
- Jung, K.H.; Lovinsky-Desir, S.; Yan, B.; Torrone, D.; Lawrence, J.; Jezioro, J.R.; Perzanowski, M.; Perera, F.P.; Chillrud, S.N.; Miller, R.L. Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: Importance of allergic sensitization. Clin. Epigenetics. 2017, 9, 61. [Google Scholar] [CrossRef]
- Jung, C.R.; Chen, W.T.; Tang, Y.H.; Hwang, B.F. Fine particulate matter exposure during pregnancy and infancy and incident asthma. J. Allergy Clin. Immunol. 2019, 143, 2254–2262.e5. [Google Scholar] [CrossRef]
- Smith, L.J.; McKay, K.O.; van Asperen, P.P.; Selvadurai, H.; Fitzgerald, D.A. Normal development of the lung and premature birth. Paediatr. Respir. Rev. 2010, 11, 135–142. [Google Scholar] [CrossRef]
- Breysse, P.N.; Diette, G.B.; Matsui, E.C.; Butz, A.M.; Hansel, N.N.; McCormack, M.C. Indoor air pollution and asthma in children. Proc. Am. Thorac. Soc. 2010, 7, 102–106. [Google Scholar] [CrossRef]
- Slaughter, J.C.; Lumley, T.; Sheppard, L.; Koenig, J.Q.; Shapiro, G.G. Effects of ambient air pollution on symptom severity and medication use in children with asthma. Ann. Allergy Asthma Immunol. 2003, 91, 346–353. [Google Scholar] [CrossRef]
- McConnell, R.; Berhane, K.; Gilliland, F.; Molitor, J.; Thomas, D.; Lurmann, F.; Avol, E.; Gauderman, J.W.; Peters, J.M. Prospective study of air pollution and bronchitic symptoms in children with asthma. Am. J. Respir. Crit. Care Med. 2003, 168, 790–797. [Google Scholar] [CrossRef]
- Smith, K.R.; Bruce, N.; Balakrishnan, K.; Adair-Rohani, H.; Balmes, J.; Chafe, Z.; Dherani, M.; Hosgood, H.D.; Mehta, S.; Pope, D.; et al. Millions dead: How do we know and what does it mean? Methods used in the comparative risk assessment of household air pollution. Annu. Rev. Public Health 2014, 35, 185–206. [Google Scholar] [CrossRef]
- Lee, K.; Xue, J.; Geyh, A.S.; Ozkaynak, H.; Leaderer, B.P.; Weschler, C.J.; Spengler, J.D. Nitrous acid, nitrogen dioxide, and ozone concentrations in residential environments. Environ. Health Perspect. 2002, 110, 145–150. [Google Scholar] [CrossRef]
- Brown, S.K.; Mahoney, K.J.; Cheng, M. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters. Indoor Air. 2004, 14 (Suppl. 8), 84–91. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, H.Y.; Suh, C.H.; Kim, H.C.; Kim, H.C.; Park, Y.J.; Lee, S.W. The Effect of Particulate Matter Reduction by Indoor Air Filter Use on Respiratory Symptoms and Lung Function: A Systematic Review and Meta-analysis. Allergy Asthma Immunol. Res. 2021, 13, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Phipatanakul, W.; Koutrakis, P.; Coull, B.A.; Petty, C.R.; Gaffin, J.M.; Sheehan, W.J.; Lai, P.S.; Bartnikas, L.M.; Kang, C.M.; Wolfson, J.M.; et al. Effect of School Integrated Pest Management or Classroom Air Filter Purifiers on Asthma Symptoms in Students with Active Asthma: A Randomized Clinical Trial. JAMA 2021, 326, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, W.J.; Permaul, P.; Petty, C.R.; Coull, B.A.; Baxi, S.N.; Gaffin, J.M.; Lai, P.S.; Gold, D.R.; Phipatanakul, W. Association Between Allergen Exposure in Inner-City Schools and Asthma Morbidity Among Students. JAMA Pediatr. 2017, 171, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Celedón, J.C.; Milton, D.K.; Ramsey, C.D.; Litonjua, A.A.; Ryan, L.; Platts-Mills, T.A.E.; Gold, D.R. Exposure to dust mite allergen and endotoxin in early life and asthma and atopy in childhood. J. Allergy Clin. Immunol. 2007, 120, 144–149. [Google Scholar] [CrossRef]
- Mendell, M.J.; Mirer, A.G.; Cheung, K.; Tong, M.; Douwes, J. Respiratory and allergic health effects of dampness, mold, and dampness-related agents: A review of the epidemiologic evidence. Environ. Health Perspect. 2011, 119, 748–756. [Google Scholar] [CrossRef]
- Jaakkola, J.J.K.; Hwang, B.F.; Jaakkola, N. Home dampness and molds, parental atopy, and asthma in childhood: A six-year population-based cohort study. Environ. Health Perspect. 2005, 113, 357–361. [Google Scholar] [CrossRef]
- Notarangelo, L.D.; Fleisher, T.A. Targeted strategies directed at the molecular defect: Toward precision medicine for select primary immunodeficiency disorders. J. Allergy Clin. Immunol. 2017, 139, 715–723. [Google Scholar] [CrossRef]
- Do, D.C.; Zhao, Y.; Gao, P. Cockroach allergen exposure and risk of asthma. Allergy 2016, 71, 463–474. [Google Scholar] [CrossRef]
- Sheehan, W.J.; Phipatanakul, W. Indoor allergen exposure and asthma outcomes. Curr. Opin. Pediatr. 2016, 28, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Abramson, M.J.; Puy, R.M.; Weiner, J.M. Injection allergen immunotherapy for asthma. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef] [PubMed]
- Normansell, R.; Kew, K.M.; Bridgman, A.L. Sublingual immunotherapy for asthma. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Mosbech, H.; Deckelmann, R.; de Blay, F.; Pastorello, E.A.; Trebas-Pietras, E.; Andres, L.P.; Malcus, I.; Ljørring, C.; Ca-nonica, G.W. Standardized quality (SQ) house dust mite sublingual immunotherapy tablet (ALK) reduces inhaled corticosteroid use while maintaining asthma control: A randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2014, 134, 568–575.e7. [Google Scholar] [CrossRef]
- Hoshino, M.; Akitsu, K.; Ohtawa, J.; Kubota, K. Long-term efficacy of house dust mite sublingual immunotherapy on clinical and pulmonary function in patients with asthma and allergic rhinitis. J. Allergy Clin. Immunol. Glob. 2024, 3, 100206. [Google Scholar] [CrossRef]
- Shrestha, S.K.; Lambert, K.A.; Erbas, B. Ambient pollen concentrations and asthma hospitalization in children and adolescents: A systematic review and meta-analysis. J. Asthma 2021, 58, 1155–1168. [Google Scholar] [CrossRef]
- Erbas, B.; Chang, J.-H.; Dharmage, S.; Ong, E.K.; Hyndman, R.; Newbigin, E.; Abramson, M. Do levels of airborne grass pollen influence asthma hospital admissions? Clin. Exp. Allergy 2007, 37, 1641–1647. [Google Scholar] [CrossRef]
- Anokye, N.; Fox-Rushby, J.; Sanghera, S.; Cook, D.G.; Limb, E.; Furness, C.; Kerry, S.M.; Victor, C.R.; Iliffe, S.; Ussher, M.; et al. Short-term and long-term cost-effectiveness of a pedometer-based exercise intervention in primary care: A within-trial analysis and beyond-trial modelling. BMJ Open 2018, 8, e021978. [Google Scholar] [CrossRef]
- Bush, R.K.; Prochnau, J.J. Alternaria-induced asthma. J. Allergy Clin. Immunol. 2004, 113, 227–234. [Google Scholar] [CrossRef]
- Salo, P.M.; Arbes, S.J.; Sever, M.; Jaramillo, R.; Cohn, R.D.; London, S.J.; Zeldin, D.C. Exposure to Alternaria alternata in US homes is associated with asthma symptoms. J. Allergy Clin. Immunol. 2006, 118, 892–898. [Google Scholar] [CrossRef] [PubMed]
- Soffer, N.; Green, B.J.; Acosta, L.; Divjan, A.; Sobek, E.; Lemons, A.R.; Rundle, A.G.; Jacobson, J.S.; Goldstein, I.F.; Miller, R.L.; et al. Alternaria is associated with asthma symptoms and exhaled NO among NYC children. J. Allergy Clin. Immunol. 2018, 142, 1366–1368.e10. [Google Scholar] [CrossRef] [PubMed]
- Gergen, P.J.; Turkeltaub, P.C. The association of individual allergen reactivity with respiratory disease in a national sample: Data from the second National Health and Nutrition Examination Survey, 1976–1980 (NHANES II). J. Allergy Clin. Immunol. 1992, 90, 579–588. [Google Scholar] [CrossRef] [PubMed]
- O’Hollaren, M.T.; Yunginger, J.W.; Offord, K.P.; Somers, M.J.; O’Connell, E.J.; Ballard, D.J.; Sachs, M.I. Exposure to an Aeroallergen as a Possible Precipitating Factor in Respiratory Arrest in Young Patients with Asthma. N. Engl. J. Med. 1991, 324, 359–363. [Google Scholar] [CrossRef]
- Valovirta, E.; Petersen, T.H.; Piotrowska, T.; Laursen, M.K.; Andersen, J.S.; Sørensen, H.F.; Klink, R.; GAP Investigators. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy. J. Allergy Clin. Immunol. 2018, 141, 529–538.e13. [Google Scholar] [CrossRef]
- Blanken, M.O.; Rovers, M.M.; Molenaar, J.M.; Winkler-Seinstra, P.L.; Meijer, A.; Kimpen, J.L.L.; Bont, L.; Dutch RSV Neonatal Network. Respiratory Syncytial Virus and Recurrent Wheeze in Healthy Preterm Infants. N. Engl. J. Med. 2013, 368, 1791–1799. [Google Scholar] [CrossRef]
- Feldman, A.S.; He, Y.; Moore, M.L.; Hershenson, M.B.; Hartert, T.V. Toward Primary Prevention of Asthma. Reviewing the Evidence for Early-Life Respiratory Viral Infections as Modifiable Risk Factors to Prevent Childhood Asthma. Am. J. Respir. Crit. Care Med. 2015, 191, 34–44. [Google Scholar] [CrossRef]
- Jackson, D.J.; Gangnon, R.E.; Evans, M.D.; Roberg, K.A.; Anderson, E.L.; Pappas, T.E.; Printz, M.C.; Lee, W.M.; Shult, P.A.; Reisdorf, E.; et al. Wheezing rhinovirus illnesses in early life predict asthma development in high-risk children. Am. J. Respir. Crit. Care Med. 2008, 178, 667–672. [Google Scholar] [CrossRef]
- Enrique, E.; Pineda, F.; Malek, T.; Bartra, J.; Basagaña, M.; Tella, R.; Castelló, J.V.; Alonso, R.; de Mateo, J.A.; Cerdá-Trias, T.; et al. Sublingual immunotherapy for hazelnut food allergy: A randomized, double-blind, placebo-controlled study with a standardized hazelnut extract. J. Allergy Clin. Immunol. 2005, 116, 1073–1079. [Google Scholar] [CrossRef]
- Vasileiou, E.; Sheikh, A.; Butler, C.; El Ferkh, K.; von Wissmann, B.; McMenamin, J.; Ritchie, L.; Schwarze, J.; Papadopoulos, N.G.; Johnston, S.L.; et al. Effectiveness of Influenza Vaccines in Asthma: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2017, 65, 1388–1395. [Google Scholar] [CrossRef]
- Depner, M.; Ege, M.J.; Cox, M.J.; Dwyer, S.; Walker, A.W.; Birzele, L.T.; Genuneit, J.; Horak, E.; Braun-Fahrländer, C.; Danielewicz, H.; et al. Bacterial microbiota of the upper respiratory tract and childhood asthma. J. Allergy Clin. Immunol. 2017, 139, 826–834.e13. [Google Scholar] [CrossRef]
- Birzele, L.T.; Depner, M.; Ege, M.J.; Engel, M.; Kublik, S.; Bernau, C.; Loss, G.J.; Genuneit, J.; Horak, E.; Schloter, M.; et al. Environmental and mucosal microbiota and their role in childhood asthma. Allergy 2017, 72, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Hufnagl, K.; Pali-Schöll, I.; Roth-Walter, F.; Jensen-Jarolim, E. Dysbiosis of the gut and lung microbiome has a role in asthma. Semin. Immunopathol. 2020, 42, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Budden, K.F.; Gellatly, S.L.; Wood, D.L.A.; Cooper, M.A.; Morrison, M.; Hugenholtz, P.; Hansbro, P.M. Emerging pathogenic links between microbiota and the gut-lung axis. Nat. Rev. Microbiol. 2017, 15, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Kozyrskyj, A.L. Perinatal programming of asthma: The role of gut microbiota. Clin. Dev. Immunol. 2012, 2012, 932072. [Google Scholar] [CrossRef]
- Lehtimäki, J.; Thorsen, J.; Rasmussen, M.A.; Hjelmsø, M.; Shah, S.; Mortensen, M.S.; Trivedi, U.; Vestergaard, G.; Bønnelykke, K.; Chawes, B.L.; et al. Urbanized microbiota in infants, immune constitution, and later risk of atopic diseases. J. Allergy Clin. Immunol. 2021, 148, 234–243. [Google Scholar] [CrossRef]
- Nieto, A.; Mazón, A.; Nieto, M.; Calderón, R.; Calaforra, S.; Selva, B.; Uixera, S.; Palao, M.J.; Brandi, P.; Conejero, L.; et al. Bacterial Mucosal Immunotherapy with MV130 Prevents Recurrent Wheezing in Children: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 462–472. [Google Scholar] [CrossRef]
- Sun, Y.; Meng, Y.; Ou, Z.; Li, Y.; Zhang, M.; Chen, Y.; Zhang, Z.; Chen, X.; Mu, P.; Norbäck, D.; et al. Indoor microbiome, air pollutants and asthma, rhinitis and eczema in preschool children—A repeated cross-sectional study. Environ. Int. 2022, 161, 107137. [Google Scholar] [CrossRef]
- Fu, X.; Ou, Z.; Sun, Y. Indoor microbiome and allergic diseases: From theoretical advances to prevention strategies. Eco-Environ. Health 2022, 1, 133–146. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, M.; Ou, Z.; Meng, Y.; Chen, Y.; Lin, R.; Hashim, Z.; Wieslander, G.; Chen, Q.; Norbäck, D.; et al. Indoor microbiome, microbial and plant metabolites, chemical compounds, and asthma symptoms in junior high school students: A multicentre association study in Malaysia. Eur. Respir. J. 2022, 60, 2200260. [Google Scholar] [CrossRef]
- McClean, K.M.; Kee, F.; Young, I.S.; Elborn, J.S. Obesity and the lung: 1. Epidemiology. Thorax 2008, 63, 649–654. [Google Scholar] [CrossRef]
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, R.F.; Berthon, B.S.; Wood, L.G. Weight loss in obese children with asthma—Is it important? Paediatr. Respir. Rev. 2021, 37, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Pijnenburg, M.W.; Frey, U.; De Jongste, J.C.; Saglani, S. Childhood asthma: Pathogenesis and phenotypes. Eur. Respir. J. 2022, 59, 2100731. [Google Scholar] [CrossRef] [PubMed]
- Granell, R.; Henderson, A.J.; Evans, D.M.; Smith, G.D.; Ness, A.R.; Lewis, S.; Palmer, T.M.; Sterne, J.A. Effects of BMI, fat mass, and lean mass on asthma in childhood: A Mendelian randomization study. PLoS Med. 2014, 11, e1001669. [Google Scholar] [CrossRef]
- Stefani, C.; Pecoraro, L.; Flodmark, C.E.; Zaffanello, M.; Piacentini, G.; Pietrobelli, A. Allergic Diseases and Childhood Obesity: A Detrimental Link? Biomedicines 2023, 11, 2061. [Google Scholar] [CrossRef]
- Eijkemans, M.; Mommers, M.; Remmers, T.; Draaisma, J.M.T.; Prins, M.H.; Thijs, C. Physical activity and asthma development in childhood: Prospective birth cohort study. Pediatr. Pulmonol. 2020, 55, 76–82. [Google Scholar] [CrossRef]
- Humphreys, B.R.; McLeod, L.; Ruseski, J.E. Physical activity and health outcomes: Evidence from Canada. Health Econ. 2014, 23, 33–54. [Google Scholar] [CrossRef]
- Marques, A.; Santos, T.; Martins, J.; Matos MGDe Valeiro, M.G. The association between physical activity and chronic diseases in European adults. Eur. J. Sport. Sci. 2018, 18, 140–149. [Google Scholar] [CrossRef]
- Hughes, D. Childhood Asthma and Exercise. Paediatr Child Health. 2014, 19, 467–468. Available online: www.wada-ama.org/. (accessed on 7 June 2025). [CrossRef]
- Yan, J.; Liu, L.; Zhu, Y.; Huang, G.; Wang, P.P. The association between breastfeeding and childhood obesity: A meta-analysis. BMC Public Health 2014, 14, 1267. [Google Scholar] [CrossRef]
- Dogaru, C.M.; Nyffenegger, D.; Pescatore, A.M.; Spycher, B.D.; Kuehni, C.E. Breastfeeding and childhood asthma: Systematic review and meta-analysis. Am. J. Epidemiol. 2014, 179, 1153–1167. [Google Scholar] [CrossRef]
- Wood, L.G.; Garg, M.L.; Gibson, P.G. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. J. Allergy Clin. Immunol. 2011, 127, 1133–1140. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Hoffmann, G. Mediterranean dietary pattern, inflammation and endothelial function: A systematic review and meta-analysis of intervention trials. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Guilleminault, L.; Williams, E.; Scott, H.; Berthon, B.; Jensen, M.; Wood, L. Diet and Asthma: Is It Time to Adapt Our Message? Nutrients 2017, 9, 1227. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, B.; Berthon, B.S.; Wark, P.; Wood, L.G. Effects of Fruit and Vegetable Consumption on Risk of Asthma, Wheezing and Immune Responses: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Surette, M.E.; Koumenis, I.L.; Edens, M.B.; Tramposch, K.M.; Clayton, B.; Bowton, D.; Chilton, F.H. Inhibition of leukotriene biosynthesis by a novel dietary fatty acid formulation in patients with atopic asthma: A randomized, placebo-controlled, parallel-group, prospective trial. Clin. Ther. 2003, 25, 972–979. [Google Scholar] [CrossRef]
- Nagakura, T.; Matsuda, S.; Shichijyo, K.; Sugimoto, H.; Hata, K. Dietary supplementation with fish oil rich in omega-3 polyunsaturated fatty acids in children with bronchial asthma. Eur. Respir. J. 2000, 16, 861–865. [Google Scholar] [CrossRef]
- Lang, J.E.; Mougey, E.B.; Hossain, M.J.; Livingston, F.; Balagopal, P.B.; Langdon, S.; Lima, J.J. Fish Oil Supplementation in Overweight/Obese Patients with Uncontrolled Asthma. A Randomized Trial. Ann. Am. Thorac. Soc. 2019, 16, 554–562. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, J. Prevalence and risk factors for childhood asthma: A systematic review and meta-analysis. BMC Pediatr. 2025, 25, 50. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Forno, E.; Rodriguez-Martinez, C.E.; Celedón, J.C. Risk and Protective Factors for Childhood Asthma: What Is the Evidence? J. Allergy Clin. Immunol. Pract. 2016, 4, 1111–1122. [Google Scholar] [CrossRef]
- Zhang, D.; Zheng, J. The Burden of Childhood Asthma by Age Group, 1990–2019: A Systematic Analysis of Global Burden of Disease 2019 Data. Front. Pediatr. 2022, 10, 823399. [Google Scholar] [CrossRef]
- Hatoun, J.; Davis-Plourde, K.; Penti, B.; Cabral, H.; Kazis, L. Tobacco Control Laws and Pediatric Asthma. Pediatrics 2018, 141 (Suppl. 1), S130–S136. [Google Scholar] [CrossRef]
- Lee, S.L.; Wong, W.H.S.; Lau, Y.L. Smoke-free legislation reduces hospital admissions for childhood lower respiratory tract infection. Tob. Control 2016, 25, e90–e94. [Google Scholar] [CrossRef]
- Radó, M.K.; Mölenberg, F.J.M.; Westenberg, L.E.H.; Sheikh, A.; Millett, C.; Burdorf, A.; van Lenthe, F.J.; Been, J.V. Effect of smoke-free policies in outdoor areas and private places on children’s tobacco smoke exposure and respiratory health: A systematic review and meta-analysis. Lancet Public Health 2021, 6, e566–e578. [Google Scholar] [CrossRef]
- Wu, F.; Takaro, T.K. Childhood Asthma and Environmental Interventions. Environ. Health Perspect. 2007, 115, 971–975. [Google Scholar] [CrossRef]
- Nuzzi, G.; Di Cicco, M.; Trambusti, I.; Agosti, M.; Peroni, D.G.; Comberiati, P. Primary Prevention of Pediatric Asthma through Nutritional Interventions. Nutrients 2022, 14, 754. [Google Scholar] [CrossRef] [PubMed]
Author | Year | Risk Factor | Results and Effect Size (Odds Ratio, 95% CI) |
---|---|---|---|
Burke et al. [20] | 2012 | Prenatal maternal smoking | OR = 1.85 (95% CI: 1.35–2.53) for asthma <2 years; OR = 1.23 (95% CI: 1.12–1.36) for 5–18 years |
Burke et al. [20] | 2012 | Postnatal maternal smoking | OR = 1.20 (95% CI: 0.98–1.46) for asthma in 5–18-year-olds |
Burke et al. [20] | 2012 | Postnatal paternal smoking | OR = 1.34 (95% CI: 1.23–1.46) children 3–4 years |
Burke et al. [20] | 2012 | Household second-hand smoke | OR = 1.14 (95% CI: 0.94–1.38) ≤ 2 years (NS); OR = 1.21 (95% CI: 1.00–1.47) 3–4 years; OR = 1.30 (95% CI: 1.04–1.62) 5–18 years |
Cho et al. [23] | 2016 | E-cigarette (active use) | OR = 2.36 (95% CI: 1.89–2.94) (Cho et al.); OR = 1.48 (95% CI: 1.26–1.74) (Schweitzer et al.) |
Khreis et al. [30] | 2017 | Outdoor air pollution (TRAP) | PM2.5: OR = 1.03; PM10: OR = 1.00; NO2: OR = 1.05; Black carbon: OR = 1.08 (95% CI) |
McConnell et al. [41] | 2003 | Indoor air pollution | PM2.5/PM10 linked to exacerbations and symptoms; biomass and unflued gas heaters worsen symptoms (OR = 1.12; 95% CI, 1.04 to 1.22) |
Celedon et al. [48] | 2007 | Indoor allergens (HDM, mold, rodents, cockroaches) | HDM >10 µg/g: OR = 1.8 (95% CI: 1.3–2.6); mold: OR = 1.56 (95% CI: 1.19–2.05); high humidity OR = 1.3–1.5; allergen reduction = –63% symptoms |
Shrestha et al. [58] | 2021 | Outdoor allergens (grass and birch pollen, Alternaria) | Grass pollen: OR = 1.03 per 10 grains/m3 (95% CI: 1.01–1.04); birch pollen MPC = 0.85% increased admissions; Alternaria OR = 2.3–189 |
Jackson et al. [69] | 2008 | Viral infections (RV and RSV) | RV wheezing: OR = 9.8 (95% CI: 3.7–26.0); RV + atopy: OR = 26.6 (95% CI: 8.3–85.7); RSV severe dose–response; palivizumab reduces episodes ~50% |
Depner et al. [72] | 2017 | Gut microbiome | Low diversity and Moraxella overgrowth: OR = 4.52 (95% CI); |
Eijkemans et al. [88] | 2020 | Childhood obesity | Asthma risk doubled compared to normal weight peers; mechanisms: mechanical, metabolic, inflammatory; stronger in <6 years (no specific OR reported) |
Hughes et al. [91] | 2014 | Sedentary lifestyle | No direct evidence that it increases asthma risk; sedentariness is more likely a consequence of asthma |
Hosseini et al. [97] | 2017 | Diet | Western diet (high saturated fat, low fiber) linked to increased risk; Mediterranean diet and fruit/vegetable intake protective; n3PUFA supplements not effective for asthma control |
Asthma and allergic disease prevalence has risen markedly in recent decades. |
Multiple risk factors are implicated: tobacco smoke, air pollution, allergens, viral infections, gut microbiome, obesity, physical inactivity, and diet. |
The relative weight of these factors remains uncertain. Strongest evidence implicates:
|
Pediatric allergists should adopt a comprehensive, proactive strategy to monitor and mitigate multiple risks simultaneously. |
Multifactorial interventions are essential to achieve optimal disease control and reduce exacerbation frequency and severity. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecoraro, L.; Lanzilotti, A.G.; De Musso, M.; Di Muri, E.; Tramacere, F.; Altavilla, E.; Indrio, F. The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review. Children 2025, 12, 1327. https://doi.org/10.3390/children12101327
Pecoraro L, Lanzilotti AG, De Musso M, Di Muri E, Tramacere F, Altavilla E, Indrio F. The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review. Children. 2025; 12(10):1327. https://doi.org/10.3390/children12101327
Chicago/Turabian StylePecoraro, Luca, Anna Gloria Lanzilotti, Marta De Musso, Elisabetta Di Muri, Fernanda Tramacere, Emiliano Altavilla, and Flavia Indrio. 2025. "The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review" Children 12, no. 10: 1327. https://doi.org/10.3390/children12101327
APA StylePecoraro, L., Lanzilotti, A. G., De Musso, M., Di Muri, E., Tramacere, F., Altavilla, E., & Indrio, F. (2025). The Role of Environmental Exposures in Pediatric Asthma Pathogenesis: A Contemporary Narrative Review. Children, 12(10), 1327. https://doi.org/10.3390/children12101327