Assessing the Muscle–Bone Unit in Girls Exposed to Different Amounts of Impact-Loading Physical Activity—A Cross-Sectional Association Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Collection of Participants’ Characteristics
2.3. Anthropometry and Body Composition
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frost, H.M. Bone “Mass” and the “Mechanostat”: A Proposal. Anat. Rec. 1987, 219, 1–9. [Google Scholar] [CrossRef]
- Frost, H.M.; Schönau, E. The “Muscle-Bone Unit” in Children and Adolescents: A 2000 Overview. J. Pediatr. Endocrinol. Metab. 2000, 13, 571–590. [Google Scholar] [CrossRef]
- Fricke, O.; Schoenau, E. The ‘Functional Muscle-Bone Unit’: Probing the Relevance of Mechanical Signals for Bone Development in Children and Adolescents. Growth Horm. IGF Res. 2007, 17, 1–9. [Google Scholar] [CrossRef]
- Rittweger, J. Ten Years Muscle-Bone Hypothesis: What Have We Learned so Far?-Almost a Festschrift. J. Musculoskelet. Neuronal Interact. 2008, 8, 174–178. [Google Scholar]
- Rauch, F.; Bailey, D.A.; Baxter-Jones, A.; Mirwald, R.; Faulkner, R. The ‘Muscle-Bone Unit’during the Pubertal Growth Spurt. Bone 2004, 34, 771–775. [Google Scholar] [CrossRef]
- Schoenau, E.; Neu, C.M.; Mokov, E.; Wassmer, G.; Manz, F. Influence of Puberty on Muscle Area and Cortical Bone Area of the Forearm in Boys and Girls. J. Clin. Endocrinol. Metab. 2000, 85, 1095–1098. [Google Scholar] [CrossRef]
- Wang, J.; Horlick, M.; Thornton, J.C.; Levine, L.S.; Heymsfield, S.B.; Pierson Jr, R.N. Correlations between Skeletal Muscle Mass and Bone Mass in Children 6-18 Years: Influences of Sex, Ethnicity, and Pubertal Status. Growth Dev. Aging GDA 1999, 63, 99–109. [Google Scholar]
- Heaney, R.P.; Abrams, S.; Dawson-Hughes, B.; Looker, A.; Marcus, R.; Matkovic, V.; Weaver, C. Peak Bone Mass. Osteoporos. Int. 2000, 11, 985–1009. [Google Scholar] [CrossRef]
- Chevalley, T.; Rizzoli, R. Acquisition of Peak Bone Mass. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101616. [Google Scholar] [CrossRef]
- Van Langendonck, L.; Lefevre, J.; Claessens, A.L.; Thomis, M.; Philippaerts, R.; Delvaux, K.; Lysens, R.; Renson, R.; Vanreusel, B.; Vanden Eynde, B. Influence of Participation in High-Impact Sports during Adolescence and Adulthood on Bone Mineral Density in Middle-Aged Men: A 27-Year Follow-up Study. Am. J. Epidemiol. 2003, 158, 525–533. [Google Scholar] [CrossRef]
- Dorsey, K.B.; Thornton, J.C.; Heymsfield, S.B.; Gallagher, D. Greater Lean Tissue and Skeletal Muscle Mass Are Associated with Higher Bone Mineral Content in Children. Nutr. Metab. 2010, 7, 41. [Google Scholar] [CrossRef]
- Yan, C.; Moshage, S.G.; Kersh, M.E. Play During Growth: The Effect of Sports on Bone Adaptation. Curr. Osteoporos. Rep. 2020, 18, 684–695. [Google Scholar] [CrossRef]
- Wang, Q.; Alén, M.; Nicholson, P.; Suominen, H.; Koistinen, A.; Kröger, H.; Cheng, S. Weight-Bearing, Muscle Loading and Bone Mineral Accrual in Pubertal Girls—A 2-Year Longitudinal Study. Bone 2007, 40, 1196–1202. [Google Scholar] [CrossRef]
- Locquet, M.; Beaudart, C.; Durieux, N.; Reginster, J.-Y.; Bruyère, O. Relationship between the Changes over Time of Bone Mass and Muscle Health in Children and Adults: A Systematic Review and Meta-Analysis. BMC Musculoskelet. Disord. 2019, 20, 429. [Google Scholar] [CrossRef]
- Bailey, D.A.; McKay, H.A.; Mirwald, R.L.; Crocker, P.R.E.; Faulkner, R.A. A Six-Year Longitudinal Study of the Relationship of Physical Activity to Bone Mineral Accrual in Growing Children: The University of Saskatchewan Bone Mineral Accrual Study. J. Bone Miner. Res. 1999, 14, 1672–1679. [Google Scholar] [CrossRef]
- Faulkner, R.A.; Forwood, M.R.; Beck, T.J.; Mafukidze, J.C.; Russell, K.; Wallace, W. Strength Indices of the Proximal Femur and Shaft in Prepubertal Female Gymnasts. Med. Sci. Sports Exerc. 2003, 35, 513–518. [Google Scholar] [CrossRef]
- Malina, R.M.; Geithner, C.A. Body Composition of Young Athletes. Am. J. Lifestyle Med. 2011, 5, 262–278. [Google Scholar] [CrossRef]
- Pettersson, U.; Nordström, P.; Alfredson, H.; Henriksson-Larsén, K.; Lorentzon, R. Effect of High Impact Activity on Bone Mass and Size in Adolescent Females: A Comparative Study Between Two Different Types of Sports. Calcif. Tissue Int. 2000, 67, 207–214. [Google Scholar] [CrossRef]
- Wilkinson, K.; Vlachopoulos, D.; Klentrou, P.; Ubago-Guisado, E.; De Moraes, A.C.F.; Barker, A.R.; Williams, C.A.; Moreno, L.A.; Gracia-Marco, L. Soft Tissues, Areal Bone Mineral Density and Hip Geometry Estimates in Active Young Boys: The PRO-BONE Study. Eur. J. Appl. Physiol. 2017, 117, 833–842. [Google Scholar] [CrossRef]
- Daly, R.M. The Effect of Exercise on Bone Mass and Structural Geometry during Growth. Optim. Bone Mass Strength 2007, 51, 33–49. [Google Scholar] [CrossRef]
- Nurmi-Lawton, J.A.; Baxter-Jones, A.D.; Mirwald, R.L.; Bishop, J.A.; Taylor, P.; Cooper, C.; New, S.A. Evidence of Sustained Skeletal Benefits from Impact-Loading Exercise in Young Females: A 3-Year Longitudinal Study. J. Bone Miner. Res. 2004, 19, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Egan, E.; Reilly, T.; Giacomoni, M.; Redmond, L.; Turner, C. Bone Mineral Density among Female Sports Participants. Bone 2006, 38, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, U.; Vancini, R.L.; Seffrin, A.; de Almeida, A.A.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B.; Andrade, M.S.; de Lira, C.A.B. Adolescent Female Handball Players Present Greater Bone Mass Content than Soccer Players: A Cross-Sectional Study. Bone 2022, 154, 116217. [Google Scholar] [CrossRef] [PubMed]
- Costa, D.C.; Valente-dos-Santos, J.; Sousa-e-Silva, P.; Martinho, D.V.; Duarte, J.P.; Tavares, O.M.; Castanheira, J.M.; Oliveira, T.G.; Abreu, S.; Leite, N.; et al. Growth, Body Composition and Bone Mineral Density among Pubertal Male Athletes: Intra-Individual 12-Month Changes and Comparisons between Soccer Players and Swimmers. BMC Pediatr. 2022, 22, 275. [Google Scholar] [CrossRef]
- Slater, A.; Tiggemann, M. Gender Differences in Adolescent Sport Participation, Teasing, Self-Objectification and Body Image Concerns. J. Adolesc. 2011, 34, 455–463. [Google Scholar] [CrossRef]
- Kokubo, T.; Tajima, A.; Miyazawa, A.; Maruyama, Y. Validity of the Low-Impact Dance for Exercise-Based Cardiac Rehabilitation Program. Phys. Ther. Res. 2018, 21, 9–15. [Google Scholar] [CrossRef]
- McCord, P.; Nichols, J.; Patterson, P. The Effect of Low Impact Dance Training on Aerobic Capacity, Submaximal Heart Rates and Body Composition of College-Aged Females. J. Sports Med. Phys. Fit. 1989, 29, 184–188. [Google Scholar]
- Ricard, M.D.; Veatch, S. Comparison of Impact Forces in High and Low Impact Aerobic Dance Movements. J. Appl. Biomech. 1990, 6, 67–77. [Google Scholar] [CrossRef]
- Wu, H.Y.; Tu, J.H.; Hsu, C.H. Effects of Low-Impact Dance on Blood Biochemistry, Bone Mineral Density, the Joint Range of Motion of Lower Extremities, Knee Extension Torque, and Fall in Females. J. Aging Phys. Act. 2016, 24, 1–7. [Google Scholar] [CrossRef]
- Silva, M.R.; Barata, P. Athletes and Coaches’ gender Inequality: The Case Of The Gymnastics Federation Of Portugal. Sci. Gymnast. J. 2016, 8, 187–196. [Google Scholar]
- Luiz-de-Marco, R.; Gobbo, L.A.; Castoldi, R.C.; Maillane-Vanegas, S.; Da Silva Ventura Faustino-da-Silva, Y.; Exupério, I.N.; Agostinete, R.R.; Fernandes, R.A. Impact of Changes in Fat Mass and Lean Soft Tissue on Bone Mineral Density Accrual in Adolescents Engaged in Different Sports: ABCD Growth Study. Arch. Osteoporos. 2020, 15, 22. [Google Scholar] [CrossRef]
- Nickols-Richardson, S.M.; Modlesky, C.M.; O’Connor, P.J.; Lewis, R.D. Premenarcheal Gymnasts Possess Higher Bone Mineral Density than Controls. Med. Sci. Sports Exerc. 2000, 32, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Fehling, P.C.; Alekel, L.; Clasey, J.; Rector, A.; Stillman, R.J. A Comparison of Bone Mineral Densities among Female Athletes in Impact Loading and Active Loading Sports. Bone 1995, 17, 205–210. [Google Scholar] [CrossRef]
- Milanese, C.; Piscitelli, F.; Cavedon, V.; Zancanaro, C. Effect of Distinct Impact Loading Sports on Body Composition in Pre-Menarcheal Girls. Sci. Sports 2014, 29, 10–19. [Google Scholar] [CrossRef]
- Nordström, P.; Thorsen, K.; Bergström, E.; Lorentzon, R. High Bone Mass and Altered Relationships between Bone Mass, Muscle Strength, and Body Constitution in Adolescent Boys on a High Level of Physical Activity. Bone 1996, 19, 189–195. [Google Scholar] [CrossRef]
- Cacciari, E.; Milani, S.; Balsamo, A.; Spada, E.; Bona, G.; Cavallo, L.; Cerutti, F.; Gargantini, L.; Greggio, N.; Tonini, G.; et al. Italian Cross-Sectional Growth Charts for Height, Weight and BMI (2 to 20 Yr). J. Endocrinol. Investig. 2006, 29, 581–593. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Lees, S.J. Physically active subjects should be the control group. Med Sci Sports Exerc. 2006, 38, 405–406. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett Jr, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Butte, N.F.; Watson, K.B.; Ridley, K.; Zakeri, I.F.; McMurray, R.G.; Pfeiffer, K.A.; Crouter, S.E.; Herrmann, S.D.; Bassett, D.R.; Long, A. A Youth Compendium of Physical Activities: Activity Codes and Metabolic Intensities. Med. Sci. Sports Exerc. 2018, 50, 246. [Google Scholar] [CrossRef]
- Milanese, C.; Cavedon, V.; Peluso, I.; Toti, E.; Zancanaro, C. The Limited Impact of Low-Volume Recreational Dance on Three-Compartment Body Composition and Apparent Bone Mineral Density in Young Girls. Children 2022, 9, 391. [Google Scholar] [CrossRef]
- Guss, C.E.; McAllister, A.; Gordon, C.M. DXA in Children and Adolescents. J. Clin. Densitom. 2021, 24, 28–35. [Google Scholar] [CrossRef]
- Burt, L.A.; Naughton, G.A.; Greene, D.A.; Ducher, G. Skeletal Differences at the Ulna and Radius between Pre-Pubertal Non-Elite Female Gymnasts and Non-Gymnasts. J. Musculoskelet. Neuronal Interact. 2011, 11, 227–233. [Google Scholar]
- Cardadeiro, G.; Baptista, F.; Zymbal, V.; Rodrigues, L.A.; Sardinha, L.B. Ward’s Area Location, Physical Activity, and Body Composition in 8-and 9-Year-Old Boys and Girls. J. Bone Miner. Res. 2010, 25, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- McKay, H.A.; Petit, M.A.; Schutz, R.W.; Prior, J.C.; Barr, S.I.; Khan, K.M. Augmented Trochanteric Bone Mineral Density after Modified Physical Education Classes: A Randomized School-Based Exercise Intervention Study in Prepubescent and Early Pubescent Children. J. Pediatr. 2000, 136, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Proctor, K.L.; Adams, W.C.; Shaffrath, J.D.; Van Loan, M.D. Upper-Limb Bone Mineral Density of Female Collegiate Gymnasts versus Controls. Med. Sci. Sports Exerc. 2002, 34, 1830–1835. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, N.J.; Arabi, A.; Bachrach, L.K.; Fewtrell, M.; Fuleihan, G.E.-H.; Kecskemethy, H.H.; Jaworski, M.; Gordon, C.M. Dual-Energy X-Ray Absorptiometry Interpretation and Reporting in Children and Adolescents: The Revised 2013 ISCD Pediatric Official Positions. J. Clin. Densitom. 2014, 17, 225–242. [Google Scholar] [CrossRef]
- Taylor, A.; Konrad, P.T.; Norman, M.E.; Harcke, H.T. Total Body Bone Mineral Density in Young Children: Influence of Head Bone Mineral Density. J. Bone Miner. Res. 1997, 12, 652–655. [Google Scholar] [CrossRef]
- Kim, J.; Wang, Z.; Heymsfield, S.B.; Baumgartner, R.N.; Gallagher, D. Total-Body Skeletal Muscle Mass: Estimation by a New Dual-Energy X-Ray Absorptiometry Method. Am. J. Clin. Nutr. 2002, 76, 378–383. [Google Scholar] [CrossRef]
- Lohman, T.G.; Going, S.B. Body Composition Assessment for Development of an International Growth Standard for Preadolescent and Adolescent Children. Food Nutr. Bull. 2006, 27, S314–S325. [Google Scholar] [CrossRef]
- Siervogel, R.M.; Maynard, L.M.; Wisemandle, W.A.; Roche, A.F.; Guo, S.S.; Chumlea, W.C.; Towne, B. Annual Changes in Total Body Fat and Fat-Free Mass in Children from 8 to 18 Years in Relation to Changes in Body Mass Index. The Fels Longitudinal Study. Ann. N. Y. Acad. Sci. 2000, 904, 420–423. [Google Scholar] [CrossRef]
- Wells, J.C.K.; Cole, T.J. Adjustment of Fat-Free Mass and Fat Mass for Height in Children Aged 8 y. Int. J. Obes. 2002, 26, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.C.K.; Coward, W.A.; Cole, T.J.; Davies, P.S.W. The Contribution of Fat and Fat-Free Tissue to Body Mass Index in Contemporary Children and the Reference Child. Int. J. Obes. 2002, 26, 1323–1328. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G. Statistics Used in Observational Studies. In Sports Injury Research; Oxford University Press: New York, NY, USA, 2010; Volume 1, pp. 69–81. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ishwaran, H.; Lu, M. Standard Errors and Confidence Intervals for Variable Importance in Random Forest Regression, Classification, and Survival. Stat. Med. 2019, 38, 558–582. [Google Scholar] [CrossRef] [PubMed]
- Skinner, A.M.; Barker, A.R.; Moore, S.A.; Soininen, S.; Haapala, E.A.; Väistö, J.; Westgate, K.; Brage, S.; Lakka, T.A.; Vlachopoulos, D. Cross-Sectional and Longitudinal Associations between the 24-Hour Movement Behaviours, Including Muscle and Bone Strengthening Activity, with Bone and Lean Mass from Childhood to Adolescence. BMC Public Health 2024, 24, 227. [Google Scholar] [CrossRef]
- Sioen, I.; Lust, E.; De Henauw, S.; Moreno, L.A.; Jiménez-Pavón, D. Associations Between Body Composition and Bone Health in Children and Adolescents: A Systematic Review. Calcif. Tissue Int. 2016, 99, 557–577. [Google Scholar] [CrossRef]
- Hyde, N.K.; Duckham, R.L.; Wark, J.D.; Brennan-Olsen, S.L.; Hosking, S.M.; Holloway-Kew, K.L.; Pasco, J.A. The Association Between Muscle Mass and Strength in Relation to Bone Measures in a Paediatric Population: Sex-Specific Effects. Calcif. Tissue Int. 2020, 107, 121–125. [Google Scholar] [CrossRef]
- Baptista, F.; Barrigas, C.; Vieira, F.; Santa-Clara, H.; Homens, P.M.; Fragoso, I.; Teixeira, P.J.; Sardinha, L.B. The Role of Lean Body Mass and Physical Activity in Bone Health in Children. J. Bone Min. Metab. 2012, 30, 100–108. [Google Scholar] [CrossRef]
- Daly, R.M.; Stenevi-Lundgren, S.; Linden, C.; Karlsson, M.K. Muscle Determinants of Bone Mass, Geometry and Strength in Prepubertal Girls. Med. Sci. Sports Exerc. 2008, 40, 1135–1141. [Google Scholar] [CrossRef]
- Johannsen, N.; Binkley, T.; Englert, V.; Neiderauer, G.; Specker, B. Bone Response to Jumping Is Site-Specific in Children: A Randomized Trial. Bone 2003, 33, 533–539. [Google Scholar] [CrossRef]
- Vicente-Rodríguez, G.; Ara, I.; Perez-Gomez, J.; Dorado, C.; Calbet, J.A.L. Muscular Development and Physical Activity as Major Determinants of Femoral Bone Mass Acquisition during Growth. Br. J. Sports Med. 2005, 39, 611–616. [Google Scholar] [CrossRef]
- Vicente-Rodríguez, G. How Does Exercise Affect Bone Development during Growth? Sports Med. 2006, 36, 561–569. [Google Scholar] [CrossRef]
- Duran, I.; Martakis, K.; Bossier, C.; Stark, C.; Rehberg, M.; Semler, O.; Schoenau, E. Interaction of Body Fat Percentage and Height with Appendicular Functional Muscle-Bone Unit. Arch. Osteoporos. 2019, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Courteix, D.; Lespessailles, E.; Peres, S.L.; Obert, P.; Germain, P.; Benhamou, C.L. Effect of Physical Training on Bone Mineral Density in Prepubertal Girls: A Comparative Study between Impact-Loading and Non-Impact-Loading Sports. Osteoporos. Int. 1998, 8, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Maïmoun, L.; Coste, O.; Philibert, P.; Briot, K.; Mura, T.; Galtier, F.; Mariano-Goulart, D.; Paris, F.; Sultan, C. Peripubertal Female Athletes in High-Impact Sports Show Improved Bone Mass Acquisition and Bone Geometry. Metabolism 2013, 62, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Matthews, B.L.; Bennell, K.L.; McKay, H.A.; Khan, K.M.; Baxter-Jones, A.D.G.; Mirwald, R.L.; Wark, J.D. Dancing for Bone Health: A 3-Year Longitudinal Study of Bone Mineral Accrual across Puberty in Female Non-Elite Dancers and Controls. Osteoporos. Int. 2006, 17, 1043–1054. [Google Scholar] [CrossRef] [PubMed]
- Scerpella, T.A.; Davenport, M.; Morganti, C.M.; Kanaley, J.A.; Johnson, L.M. Dose Related Association of Impact Activity and Bone Mineral Density in Pre-Pubertal Girls. Calcif. Tissue Int. 2003, 72, 24–31. [Google Scholar] [CrossRef]
- Kang, E.K.; Park, H.W.; Baek, S.; Lim, J.Y. The Association between Trunk Body Composition and Spinal Bone Mineral Density in Korean Males versus Females: A Farmers’ Cohort for Agricultural Work-Related Musculoskeletal Disorders (FARM) Study. J Korean Med Sci. 2016, 31, 603–1595. [Google Scholar] [CrossRef]
- Proctor, D.N.; Melton Iii, L.J.; Khosla, S.; Crowson, C.S.; O’Connor, M.K.; Riggs, B.L. Relative Influence of Physical Activity, Muscle Mass and Strength on Bone Density. Osteoporos. Int. 2000, 11, 944–952. [Google Scholar] [CrossRef]
Variable | Group | |||
---|---|---|---|---|
C (n = 22) | D (n = 21) | GL (n = 14) | GH (n = 20) | |
Age (months) | 141.5 ± 25.30 | 136.7 ± 26.29 | 128.8 ± 25.10 | 134.0 ± 33.22 |
Body mass (kg) | 42.3 ± 12.47 | 40.9 ± 11.98 | 33.8 ± 9.90 | 35.2 ± 11.18 |
Stature (cm) | 149.7 ± 12.91 | 147.2 ± 12.77 | 137.6 ± 12.04 * | 139.0 ±13.77 |
BMI (kg/m2) | 18.4 ± 3.04 | 18.5 ± 3.25 | 17.5 ± 2.15 | 17.7 ± 2.24 |
MET-min/w | 1090.9 ± 596.63 | 1357.5 ± 805.32 | 2083.6 ± 365.90 *^ | 2938.7 ± 740.55 *^§ |
Variable | Group | |||
---|---|---|---|---|
C (n = 22) | D (n = 21) | GL (n = 14) | GH (n = 20) | |
Appendicular FFSTM (g) | 12,450.7 ± 3561.82 | 12,366.3 ± 3348.86 | 10,791.7 ± 2938.54 | 12,103.6 ± 4233.81 |
Appendicular FFMI (kg/m2) | 6.0 ± 0.89 | 6.2 ± 0.80 | 6.3 ± 0.62 | 6.8 * ± 1.10 |
WB FM (g) | 11,368.6 ± 4627.86 | 10,498.9 ± 4460.86 | 7078.6 ± 3073.31 * | 6284.9 ± 2147.77 *^ |
WB FMI (kg/m2) | 11.4 ± 4.63 | 10.5 ± 4.46 | 7.1 ± 3.07 *^ | 6.3 ± 2.15 *^ |
Variable | Adjusted R2 | Beta Coefficient | t Value | p Value | SEE |
---|---|---|---|---|---|
TBLH BMC (g) | 0.892 | 0.945 | 25.066 | <0.001 | 105.0 |
Appendicular BMC (g) | 0.906 | 0.953 | 27.088 | <0.001 | 61.4 |
Trunk BMC (g) | 0.827 | 0.911 | 19.074 | <0.001 | 50.8 |
Pelvis BMC (g) | 0.788 | 0.889 | 16.820 | <0.001 | 25.9 |
Lumbar spine BMC (g) | 0.504 | 0.715 | 8.850 | <0.001 | 9.7 |
Ward’s triangle BMC (g) | 0.238 | 0.498 | 4.974 | <0.001 | 0.16 |
Ultradistal radius BMC (g) | 0.434 | 0.664 | 7.696 | <0.001 | 0.19 |
TBLH aBMD (g/cm2) | 0.867 | 0.932 | 22.247 | <0.001 | 0.0422 |
Appendicular aBMD (g/cm2) | 0.891 | 0.945 | 24.976 | <0.001 | 0.0391 |
Trunk aBMD (g/cm2) | 0.002 | 0.121 | 1.057 | 0.294 | 0.3485 |
Pelvis aBMD (g/cm2) | 0.778 | 0.884 | 16.371 | <0.001 | 0.0842 |
Lumbar spine aBMD (g/cm2) | 0.522 | 0.727 | 9.172 | <0.001 | 0.1188 |
Ward’s triangle aBMD (g/cm2) | 0.252 | 0.511 | 5.154 | <0.001 | 0.119 |
Ultradistal radius aBMD (g/cm2) | 0.281 | 0.539 | 5.547 | <0.001 | 0.0495 |
Additional Predictor | Predicted Variable | R2 | Change in R2 | p Value of R2 Change | SEE | Change in SEE |
---|---|---|---|---|---|---|
Body mass (kg) | TBLH BMC (g) | 0.899 | +0.007 | 0.013 | 101.3 | −3.7 |
App BMC (g) | 0.914 | +0.008 | 0.006 | 58.7 | −2.7 | |
WB FFMI (kg/m2) | TBLH BMC (g) | 0.921 | +0.029 | <0.001 | 90.0 | −15.0 |
Appendicular BMC (g) | 0.923 | +0.017 | <0.001 | 55.5 | −5.9 | |
Trunk BMC (g) | 0.878 | +0.051 | <0.001 | 42.6 | −8.2 | |
Pelvis BMC (g) | 0.809 | +0.021 | 0.003 | 24.6 | −1.3 | |
TBLH aBMD (g/cm2) | 0.876 | +0.009 | 0.013 | 0.041 | −0.0037 | |
Appendicular aBMD (g/cm2) | 0.897 | +0.006 | 0.076 | 0.0385 | −0.0006 | |
Pelvis aBMD (g/cm2) | 0.818 | +0.040 | <0.001 | 0.0764 | −0.0078 | |
Trunk FFSTM (kg/m2) | Trunk BMC | 0.885 | +0.058 | <0.001 | 41.3 | −9.5 |
Pelvis BMC | 0.817 | +0.029 | 0.001 | 24.1 | −1.8 | |
Lumbar spine BMC | 0.566 | +0.062 | 0.001 | 9.0 | −0.7 | |
TBLH aBMD (g/cm2) | 0.879 | +0.012 | 0.005 | 0.0405 | −0.0017 | |
Appendicular aBMD (g/cm2) | 0.896 | +0.005 | 0.043 | 0.0383 | −0.0008 | |
Pelvis aBMD (g/cm2) | 0.824 | +0.046 | <0.001 | 0.0751 | −0.0091 | |
Physical activity (h) | Pelvis BMC | 0.798 | +0.010 | 0.031 | 25.3 | −0.6 |
Ward’s triangle BMC | 0.343 | +0.105 | 0.001 | 0.15 | −0.10 | |
Ultradistal radius BMC | 0.473 | +0.003 | 0.012 | 0.19 | −0.006 | |
TBLH aBMD (g/cm2) | 0.887 | +0.020 | <0.001 | 0.039 | −0.003 | |
Appendicular aBMD (g/cm2) | 0.908 | +0.017 | 0.001 | 0.0364 | −0.0027 | |
Trunk aBMD (g/cm2) | 0.119 | +0.117 | 0.004 | 0.3310 | −0.0175 | |
Pelvis aBMD (g/cm2) | 0.785 | +0.007 | 0.077 | 0.0830 | −0.0012 | |
Ward’s triangle aBMD (g/cm2) | 0.337 | +0.085 | 0.002 | 0.112 | −0.007 | |
Ultradistal radius aBMD (g/cm2) | 0.355 | +0.054 | 0.003 | 0.0469 | −0.0026 | |
Lumbar spine aBMD (g/cm2) | 0.527 | +0.257 | 0.185 | 0.118 | −0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavedon, V.; Sandri, M.; Zancanaro, C.; Milanese, C. Assessing the Muscle–Bone Unit in Girls Exposed to Different Amounts of Impact-Loading Physical Activity—A Cross-Sectional Association Study. Children 2024, 11, 1099. https://doi.org/10.3390/children11091099
Cavedon V, Sandri M, Zancanaro C, Milanese C. Assessing the Muscle–Bone Unit in Girls Exposed to Different Amounts of Impact-Loading Physical Activity—A Cross-Sectional Association Study. Children. 2024; 11(9):1099. https://doi.org/10.3390/children11091099
Chicago/Turabian StyleCavedon, Valentina, Marco Sandri, Carlo Zancanaro, and Chiara Milanese. 2024. "Assessing the Muscle–Bone Unit in Girls Exposed to Different Amounts of Impact-Loading Physical Activity—A Cross-Sectional Association Study" Children 11, no. 9: 1099. https://doi.org/10.3390/children11091099