Prevalence and Risk Factors of Healthcare-Associated Infections among Hospitalized Pediatric Patients: Point Prevalence Survey in Thailand 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Settings, and Participants
2.2. Definitions
2.3. Statistical Analysis
3. Results
3.1. Age and Hospital-Level Distribution of the Survey Population
3.2. Prevalence of HAIs in the Total Cohort and Prevalence of HAIs Stratified by Age Groups
3.3. Prevalence of HAIs Stratified by Patient Characteristics and Exposures
3.4. Univariate and Multivariate Analysis of Risk Factors of HAIs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Patil, R.K.; Kabera, B.; Muia, C.K.; Ale, B.M. Hospital acquired infections in a private paediatric hospital in Kenya: A retrospective cross-sectional study. Pan Afr. Med. J. 2022, 41, 28. [Google Scholar] [PubMed]
- Maki, G.; Zervos, M. Health Care-Acquired Infections in Low- and Middle-Income Countries and the Role of Infection Prevention and Control. Infect. Dis. Clin. N. Am. 2021, 35, 827–839. [Google Scholar] [CrossRef] [PubMed]
- Mello, M.J.; Albuquerque Mde, F.; Lacerda, H.R.; Souza, W.V.; Correia, J.B.; Britto, M.C. Risk factors for healthcare-associated infection in pediatric intensive care units: A systematic review. Cad. Saude Publica 2009, 25 (Suppl. S3), S373–S391. [Google Scholar] [CrossRef] [PubMed]
- Murni, I.K.; Duke, T.; Kinney, S.; Daley, A.J.; Soenarto, Y. Reducing hospital-acquired infections and improving the rational use of antibiotics in a developing country: An effectiveness study. Arch. Dis. Child. 2015, 100, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Ayed, H.B.; Yaich, S.; Trigui, M.; Jemaa, M.B.; Hmida, M.B.; Karray, R.; Kassis, M.; Mejdoub, Y.; Feki, H.; Jedidi, J.; et al. Prevalence and risk factors of health care-associated infections in a limited resources country: A cross-sectional study. Am. J. Infect. Control 2019, 47, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Ketata, N.; Ben Ayed, H.; Ben Hmida, M.; Trigui, M.; Ben Jemaa, M.; Yaich, S.; Maamri, H.; Baklouti, M.; Jedidi, J.; Kassis, M.; et al. Point prevalence survey of health-care associated infections and their risk factors in the tertiary-care referral hospitals of Southern Tunisia. Infect. Dis. Health 2021, 26, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, P.; Gao, G.; Xu, C.; Chen, X. Age-period-cohort analysis of infectious disease mortality in urban-rural China, 1990–2010. Int. J. Equity Health 2016, 15, 55. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1334. [Google Scholar] [CrossRef]
- Anugulruengkitt, S.; Charoenpong, L.; Kulthanmanusorn, A.; Thienthong, V.; Usayaporn, S.; Kaewkhankhaeng, W.; Rueangna, O.; Sophonphan, J.; Moolasart, V.; Manosuthi, W.; et al. Point prevalence survey of antibiotic use among hospitalized patients across 41 hospitals in Thailand. JAC Antimicrob. Resist. 2023, 5, dlac140. [Google Scholar] [CrossRef]
- ECDC. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals—Protocol Version 6.1. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-vs-6-1 (accessed on 1 March 2024).
- WHO. WHO Methodology for Point Prevalence Survey on Antibiotic Use in Hospitals Version 1.1. 2019. Available online: https://www.who.int/publications/i/item/WHO-EMP-IAU-2018.01 (accessed on 3 March 2024).
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Rutledge-Taylor, K.; Matlow, A.; Gravel, D.; Embree, J.; Le Saux, N.; Johnston, L.; Suh, K.; Embil, J.; Henderson, E.; John, M.; et al. A point prevalence survey of health care-associated infections in Canadian pediatric inpatients. Am. J. Infect. Control 2012, 40, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Moolasart, V.; Manosuthi, W.; Thienthong, V.; Vachiraphan, A.; Judaeng, T.; Rongrungrueng, Y.; Vanprapar, N.; Danchaivijitr, S. Prevalence and risk factors of healthcare-associated infections in Thailand 2018: A point prevalence survey. J. Med. Assoc. Thai 2019, 102, 1309–1316. [Google Scholar]
- Lodha, R.; Natchu, U.C.; Nanda, M.; Kabra, S.K. Nosocomial infections in pediatric intensive care units. Indian J. Pediatr. 2001, 68, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Kapil, A.; Lodha, R.; Kabra, S.K.; Sood, S.; Dhawan, B.; Dhawan, B.; Das, B.K.; Sreenivas, V. Burden of healthcare-associated infections in a paediatric intensive care unit of a developing country: A single centre experience using active surveillance. J. Hosp. Infect. 2011, 78, 323–326. [Google Scholar] [CrossRef] [PubMed]
- Murni, I.K.; Duke, T.; Kinney, S.; Daley, A.J.; Wirawan, M.T.; Soenarto, Y. Risk factors for healthcare-associated infection among children in a low-and middle-income country. BMC Infect. Dis. 2022, 22, 406. [Google Scholar] [CrossRef] [PubMed]
- Talaat, M.; El-Shokry, M.; El-Kholy, J.; Ismail, G.; Kotb, S.; Hafez, S.; Attia, E.; Lessa, F.C. National surveillance of health care-associated infections in Egypt: Developing a sustainable program in a resource-limited country. Am. J. Infect. Control 2016, 44, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- WHO. Minimum Requirements for Infection Prevention and Control Programmes. 2019. Available online: https://www.who.int/publications/i/item/9789241516945 (accessed on 2 March 2024).
- Zingg, W.; Holmes, A.; Dettenkofer, M.; Goetting, T.; Secci, F.; Clack, L.; Allegranzi, B.; Magiorakos, A.-P.; Pittet, D. Hospital organisation, management, and structure for prevention of health-care-associated infection: A systematic review and expert consensus. Lancet Infect. Dis. 2015, 15, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Kendirli, T.; Yaman, A.; Odek, C.; Ozdemir, H.; Karbuz, A.; Aldemir, B.; Güriz, H.; Ateş, C.; Ozsoy, G.; Aysev, D.; et al. Central line-associated bloodstream infections in pediatric intensive care unit. Turk. J. Pediatr. Emerg. Intensive Care Med. 2017, 4, 42–46. [Google Scholar] [CrossRef]
- Singhi, S.; Nallaswamy, K. Catheter related blood stream infection in Indian PICUs: Several unanswered issues! Indian J. Crit. Care Med. 2013, 17, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Zingg, W.; Cartier, V.; Inan, C.; Touveneau, S.; Theriault, M.; Gayet-Ageron, A.; Clergue, F.; Pittet, D.; Walder, B. Hospital-wide multidisciplinary, multimodal intervention programme to reduce central venous catheter-associated bloodstream infection. PLoS ONE 2014, 9, e93898. [Google Scholar] [CrossRef]
- Zingg, W.; Huttner, B.D.; Sax, H.; Pittet, D. Assessing the burden of healthcare-associated infections through prevalence studies: What is the best method? Infect. Control Hosp. Epidemiol. 2014, 35, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Zingg, W.; Hopkins, S.; Gayet-Ageron, A.; Holmes, A.; Sharland, M.; Suetens, C. Health-care-associated infections in neonates, children, and adolescents: An analysis of paediatric data from the European Centre for Disease Prevention and Control point-prevalence survey. Lancet Infect. Dis. 2017, 17, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Wolkewitz, M.; Mandel, M.; Palomar-Martinez, M.; Alvarez-Lerma, F.; Olaechea-Astigarraga, P.; Schumacher, M. Methodological challenges in using point-prevalence versus cohort data in risk factor analyses of nosocomial infections. Ann. Epidemiol. 2018, 28, 475–480.e1. [Google Scholar] [CrossRef] [PubMed]
- Danchaivijitr, S.; Judaeng, T.; Sripalakij, S.; Naksawas, K.; Plipat, T. Prevalence of nosocomial infection in Thailand 2006. J. Med. Assoc. Thai. 2007, 90, 1524–1529. [Google Scholar] [PubMed]
- Rongrungruang, Y.; Sawanpanyalert, N.; Chomdacha, P.; Surasarang, K.; Wiruchkul, N.; Kachintorn, K.; Tantilipikara, P.; Danchaivijitr, S. Health-care associated infections in Thailand 2011. J. Med. Assoc. Thai. 2013, 96 (Suppl. S2), S117–S123. [Google Scholar] [PubMed]
- Manosuthi, W.; Thientong, V.; Moolasart, V.; Rongrungrueng, Y.; Sangsajja, C.; Danchaivijitr, S. Healthcare-Associated Infections at Selected Hospitals in Thailand. Southeast Asian J. Trop. Med. Public Health 2017, 48, 204–212. [Google Scholar] [PubMed]
- ECDC. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2011–2012. 2013. Available online: https://www.ecdc.europa.eu/en/publications-data/point-prevalence-survey-healthcare-associated-infections-and-antimicrobial-use-0 (accessed on 1 March 2024).
- Rhame, F.S.; Sudderth, W.D. Incidence and prevalence as used in the analysis of the occurrence of nosocomial infections. Am. J. Epidemiol. 1981, 113, 1–11. [Google Scholar] [CrossRef]
- Muenchhoff, M.; Goulder, P.J. Sex differences in pediatric infectious diseases. J. Infect. Dis. 2014, 209 (Suppl. S3), S120–S126. [Google Scholar] [CrossRef]
- Ling, M.L.; Apisarnthanarak, A.; Madriaga, G. The Burden of Healthcare-Associated Infections in Southeast Asia: A Systematic Literature Review and Meta-analysis. Clin. Infect. Dis. 2015, 60, 1690–1699. [Google Scholar] [CrossRef] [PubMed]
- Raoofi, S.; Pashazadeh Kan, F.; Rafiei, S.; Hosseinipalangi, Z.; Noorani Mejareh, Z.; Khani, S.; Abdollahi, B.; Seyghalani Talab, F.; Sanaei, M.; Zarabi, F.; et al. Global prevalence of nosocomial infection: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, S.; Chaturvedi, R.; Garg, S.M.; Datta, R.; Kumar, A. Incidence of healthcare associated infection in the surgical ICU of a tertiary care hospital. Med. J. Armed Forces India 2013, 69, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, V.D.; Maki, D.G.; Salomao, R.; Moreno, C.; Mehta, Y.; Higuera, F.; Cuellar, L.E.; Arikan, A.; Abouqal, R.; Leblebicioglu, H. Device-associated nosocomial infections in 55 intensive care units of 8 developing countries. Ann. Intern. Med. 2006, 145, 582–591. [Google Scholar] [CrossRef] [PubMed]
- Duerink, D.; Roeshadi, D.; Wahjono, H.; Lestari, E.; Hadi, U.; Wille, J.; De Jong, R.; Nagelkerke, N.; Broek, P.V.D. Surveillance of healthcare-associated infections in Indonesian hospitals. J. Hosp. Infect. 2006, 62, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Emori, T.G.; Gaynes, R.P. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin. Microbiol. Rev. 1993, 6, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; McGowan, J.E., Jr. Methodologic issues in hospital epidemiology. III. Investigating the modifying effects of time and severity of underlying illness on estimates of cost of nosocomial infection. Rev. Infect. Dis. 1984, 6, 285–300. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.A.; Zimmerman, J.E. A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay. BMC Med. Inform. Decis. Mak. 2010, 10, 27. [Google Scholar] [CrossRef]
- Vilins, M.; Blecher, S.; Silva, M.A.; Rosenthal, V.D.; Barker, K.; Salomao, R. Rate and time to develop first central line-associated bloodstream infections when comparing open and closed infusion containers in a Brazilian hospital. Braz. J. Infect. Dis. 2009, 13, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Stover, B.H.; Shulman, S.T.; Bratcher, D.F.; Brady, M.T.; Levine, G.L.; Jarvis, W.R. Nosocomial infection rates in US children’s hospitals’ neonatal and pediatric intensive care units. Am. J. Infect. Control 2001, 29, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, M.C.; Hermansen, M.G. Intravascular catheter complications in the neonatal intensive care unit. Clin. Perinatol. 2005, 32, 141–156. [Google Scholar] [CrossRef]
- Vilela, R.; Jacomo, A.D.; Tresoldi, A.T. Risk factors for central venous catheter-related infections in pediatric intensive care. Clinics 2007, 62, 537–544. [Google Scholar] [CrossRef]
- Crnich, C.J.; Maki, D.G. The promise of novel technology for the prevention of intravascular device-related bloodstream infection. I. Pathogenesis and short-term devices. Clin. Infect. Dis. 2002, 34, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Levit, O.L.; Shabanova, V.; Bizzarro, M.J. Umbilical catheter-associated complications in a level IV neonatal intensive care unit. J. Perinatol. 2020, 40, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Gorski, L.A.; Hadaway, L.; Hagle, M.E.; Broadhurst, D.; Clare, S.; Kleidon, T.; Meyer, B.M.; Nickel, B.; Rowley, S.; Sharpe, E.; et al. Infusion Therapy Standards of Practice, 8th Edition. J. Infus. Nurs. 2021, 44, S1–S224. [Google Scholar] [CrossRef] [PubMed]
- Demirbuğa, A.; Karapınar, D.B.A.; Yaşa, B.; Çoban, A.; Öngen, B.; Dede, E.; Atasever, N.M.; Somer, A.; Törün, S.H. Emerging importance of multidrug-resistant Stenotrophomonas maltophilia infections in neonatal intensive care unit in a tertiary center in Turkey. Pediatr. Neonatol. 2023, 65, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, M.; Yilmaz, G.; Aslan, Y.; Bayramoglu, G. Risk factors and clinical characteristics of Stenotrophomonas maltophilia infections in neonates. J. Microbiol. Immunol. Infect. 2011, 44, 467–472. [Google Scholar] [CrossRef]
- Del Toro, M.D.; Rodriguez-Bano, J.; Herrero, M.; Rivero, A.; Garcia-Ordonez, M.A.; Corzo, J.; Pérez-Cano, R.; Grupo Andaluz para El Estudio de Las Enfermedades Infecciosas (GAEI). Clinical epidemiology of Stenotrophomonas maltophilia colonization and infection: A multicenter study. Medicine 2002, 81, 228–239. [Google Scholar] [CrossRef]
Characteristic | No. | HAI Prevalence (95% CI) | p-Value |
---|---|---|---|
Patient characteristics | |||
Sex | 0.16 | ||
Female | 675 | 3.1 (1.9–4.7) | |
Male | 768 | 4.6 (3.2–6.3) | |
Transferred from another hospital | 0.003 * | ||
No | 1229 | 3.3 (2.3–4.4) | |
Yes | 214 | 7.5 (4.3–11.9) | |
Previous hospitalization with the last 90 days | 0.10 | ||
No | 1322 | 3.6 (2.7–4.8) | |
Yes | 121 | 6.6 (2.9–12.6) | |
Exposures | |||
Surgery during admission | 0.44 | ||
No | 1296 | 4.0 (3.0–5.2) | |
Yes | 147 | 2.7 (0.7–6.8) | |
Central vascular catheter | <0.001 * | ||
No | 1335 | 3.1 (2.3–4.2) | |
Yes | 108 | 13.0 (7.3–20.8) ‡ | |
Urinary catheter | <0.001 * | ||
No | 1344 | 3.4 (2.5–4.5) | |
Yes | 99 | 11.1 (5.7–19.0) | |
Tracheostomy | 0.007 * | ||
No | 1424 | 3.7 (2.8–4.8) | |
Yes | 19 | 15.8 (3.4–39.6) ‡ | |
Endotracheal tube | <0.001 * | ||
No | 1351 | 3.3 (2.4–4.4) | |
Yes | 92 | 13.0 (6.9–21.7) ‡ | |
Number of devices | <0.001 * | ||
0 | 1210 | 2.3 (1.5–3.3) | |
1 | 167 | 10.2 (6.0–15.8) | |
2 or more | 66 | 16.7 (8.6–27.9) ‡ | |
Length of hospital stay | <0.001 * | ||
<4 | 825 | 1.2 (0.6–2.2) | |
4 to 7 | 263 | 3.8 (1.8–6.9) | |
8 to 14 | 128 | 8.6 (4.4–14.9) | |
>14 | 208 | 12.0 (7.9–17.2) ‡ | |
Missing | 19 | 0 | |
PICU/NICU vs. non-PICU/NICU | <0.001 * | ||
No | 1172 | 2.6 (1.7–3.6) | |
Yes | 271 | 9.6 (6.4–13.7) |
Characteristic | cOR (95% CI) | p-Value | aOR (95% CI) | p-Value |
---|---|---|---|---|
Admission during the previous 90 days | 0.55 (0.25, 1.22) | 0.14 | ||
Transferred from another hospital | 2.32 (1.22–4.42) | 0.01 * | 1.80 (0.88, 3.69) | 0.11 |
Ward/unit type | ||||
Pediatric ward | Ref. | Ref. | ||
Surgery | 1.03 (0.35–3.04) | 0.96 | 0.99 (0.30, 3.31) | 0.99 |
PICU or NICU | 3.89 (2.16–6.99) | <0.001 * | 1.41 (0.65, 3.08) | 0.37 |
Surgery during admission | 0.66 (0.23–1.88) | 0.43 | ||
Length of hospital stay | ||||
<4 days | Ref. | Ref. | ||
4–7 days | 3.22 (1.31–7.92) | 0.01 * | 2.65 (1.05, 6.68) | 0.04 * |
8–14 days | 7.97 (3.23–19.7) | <0.001 * | 5.19 (2.00, 13.4) | <0.001 * |
>14 days | 11.5 (5.29–25.0) | <0.001 * | 9.03 (3.97, 20.5) | <0.001 * |
Central vascular catheter | 4.84 (2.44–9.58) | <0.001 * | 2.45 (1.06, 5.66) | 0.04 * |
Urinary catheter | 4.20 (1.88–9.39) | <0.001 * | 2.56 (1.00, 6.59) | 0.051 |
Tracheostomy | 4.63 (1.23–17.5) | 0.02 * | 1.40 (0.31, 6.31) | 0.66 |
Endotracheal tube | 4.68 (2.29–9.57) | <0.001 * | 1.48 (0.59, 3.73) | 0.40 |
Infection Type | Age Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
<1 Month (n = 738) | 1 Month to <2 Years (n = 214) | 2 Years to <12 Years (n = 293) | ≥12 Years (n = 198) | All Age Groups (N = 1443) | ||||||
n (%) | HAI Prev. | n | HAI Prev. | n (%) | HAI Prev. | n (%) | HAI Prev. | N (%) | HAI Prev. | |
LRTI | 17 (65.4) | 2.3 | 3 (11.5) | 1.4 | 4 (15.4) | 1.4 | 2 (7.7) | 1.0 | 26 (100) | 1.8 |
BSI | 5 (55.6) | 0.7 | 1 (11.1) | 0.5 | 3 (33.3) | 1.0 | 0 (0.0) | 0 | 9 (100) | 0.6 |
Sepsis | 6 (75.0) | 0.8 | 1 (12.5) | 0.5 | 0 (0.0) | 0 | 1 (12.5) | 0.5 | 8 (100) | 0.6 |
UTI | 0 (0.0) | 0 | 1 (33.3) | 0.5 | 1 (33.3) | 0.3 | 1 (33.3) | 0.5 | 3 (100) | 0.2 |
GI | 3 (75.0) | 0.4 | 1 (25.0) | 0.5 | 0 (0.0) | 0 | 0 (0.0) | 0 | 4 (100) | 0.3 |
SST | 0 (0.0) | 0 | 0 (0.0) | 0 | 1 (100.0) | 0.3 | 0 (0.0) | 0 | 1 (100) | 0.07 |
SSI a | 0 (0.0) | 0 | 0 (0.0) | 0 | 3 (60.0) | 1.0 | 2 (40.0) | 1.0 | 5 (100) | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moolasart, V.; Srijareonvijit, C.; Charoenpong, L.; Kongdejsakda, W.; Anugulruengkitt, S.; Kulthanmanusorn, A.; Thienthong, V.; Usayaporn, S.; Kaewkhankhaeng, W.; Rueangna, O.; et al. Prevalence and Risk Factors of Healthcare-Associated Infections among Hospitalized Pediatric Patients: Point Prevalence Survey in Thailand 2021. Children 2024, 11, 738. https://doi.org/10.3390/children11060738
Moolasart V, Srijareonvijit C, Charoenpong L, Kongdejsakda W, Anugulruengkitt S, Kulthanmanusorn A, Thienthong V, Usayaporn S, Kaewkhankhaeng W, Rueangna O, et al. Prevalence and Risk Factors of Healthcare-Associated Infections among Hospitalized Pediatric Patients: Point Prevalence Survey in Thailand 2021. Children. 2024; 11(6):738. https://doi.org/10.3390/children11060738
Chicago/Turabian StyleMoolasart, Visal, Chaisiri Srijareonvijit, Lantharita Charoenpong, Winnada Kongdejsakda, Suvaporn Anugulruengkitt, Anond Kulthanmanusorn, Varaporn Thienthong, Sang Usayaporn, Wanwisa Kaewkhankhaeng, Oranat Rueangna, and et al. 2024. "Prevalence and Risk Factors of Healthcare-Associated Infections among Hospitalized Pediatric Patients: Point Prevalence Survey in Thailand 2021" Children 11, no. 6: 738. https://doi.org/10.3390/children11060738