The Role of Endoscopic Assistance in Surgery for Pediatric Cholesteatoma in Reducing Residual and Recurrent Disease
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fontes Lima, A.; Carvalho Moreira, F.; Sousa Menezes, A.; Esteves Costa, I.; Azevedo, C.; Sá Breda, M.; Dias, L. Is pediatric cholesteatoma more aggressive in children than in adults? A comparative study using the EAONO/JOS classification. Int. J. Pediatr. Otorhinolaryngol. 2020, 138, 110170. [Google Scholar] [CrossRef] [PubMed]
- Kalia, M.; Dass, A.; Singhal, S.K.; Gupta, N. Comparative study of cholesteatoma in paediatric and adult patients. J. Laryngol. Otol. 2022, 136, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Piras, G.; Sykopetrites, V.; Taibah, A.; Russo, A.; Caruso, A.; Grinblat, G.; Sanna, M. Long term outcomes of canal wall up and canal wall down tympanomastoidectomies in pediatric cholesteatoma. Int. J. Pediatr. Otorhinolaryngol. 2021, 150, 110887. [Google Scholar] [CrossRef] [PubMed]
- Bujía, J.; Holly, A.; Antolí-Candela, F.; Tapia, M.G.; Kastenbauer, E. Immunobiological peculiarities of cholesteatoma in children: Quantification of epithelial proliferation by MIB1. Laryngoscope 1996, 106, 865–868. [Google Scholar] [CrossRef] [PubMed]
- Dodson, E.E.; Hashisaki, G.T.; Hobgood, T.C.; Lambert, P.R. Intact canal wall mastoidectomy with tympanoplasty for cholesteatoma in children. Laryngoscope 1998, 108, 977–983. [Google Scholar] [CrossRef]
- Solis-Pazmino, P.; Siepmann, T.; Scheffler, P.; Ali, N.E.; Lincango-Naranjo, E.; Valdez, T.A.; Prokop, L.J.; Min-Woo Illigens, B.; Ponce, O.J.; Ahmad, I.N. Canal wall up versus canal wall down mastoidectomy techniques in the pediatric population with cholesteatoma: A systematic review and meta-analysis of comparative studies. Int. J. Pediatr. Otorhinolaryngol. 2023, 173, 111658. [Google Scholar] [CrossRef] [PubMed]
- Redaelli de Zinis, L.O.; Tonni, D.; Barezzani, M.G. Single-stage canal wall-down tympanoplasty: Long-term results and prognostic factors. Ann. Otol. Rhinol. Laryngol. 2010, 119, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Kroon, V.J.; Mes, S.W.; Borggreven, P.A.; van de Langenberg, R.; Colnot, D.R.; Quak, J.J. Cholesteatoma surgery in the pediatric population: Remaining challenges in the era of mastoid obliteration. Eur. Arch. Otorhinolaryngol. 2023, 280, 1713–1722. [Google Scholar] [CrossRef]
- Han, S.Y.; Lee, D.Y.; Chung, J.; Kim, Y.H. Comparison of endoscopic and microscopic ear surgery in pediatric patients: A meta-analysis. Laryngoscope 2019, 129, 1444–1452. [Google Scholar] [CrossRef]
- Basonbul, R.A.; Ronner, E.A.; Kozin, E.D.; Lee, D.J.; Cohen, M.S. Systematic review of endoscopic ear surgery outcomes for pediatric cholesteatoma. Otol. Neurotol. 2021, 42, 108–115. [Google Scholar] [CrossRef]
- Amoodi, H.; Mofti, A.; Fatani, N.H.; Alhatem, H.; Zabidi, A.; Ibrahim, M. Non-echo planar diffusion-weighted imaging in the detection of recurrent or residual cholesteatoma: A systematic review and meta-analysis of diagnostic studies. Cureus 2022, 14, e32127. [Google Scholar] [CrossRef] [PubMed]
- Merkus, P.; Ten Tije, F.A.; Stam, M.; Tan, F.M.L.; Pauw, R.J. Implementation of the “EAONO/JOS definitions and classification of middle ear cholesteatoma”–From STAM to STAMCO. J. Int. Adv. Otol. 2017, 13, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Linder, T.E.; Shah, S.; Martha, A.S.; Röösli, C.; Emmett, S.D. Introducing the “ChOLE” classification and its comparison to the EAONO/JOS consensus classification for cholesteatoma staging. Otol. Neurotol. 2019, 40, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Møller, P.R.; Pedersen, C.N.; Grosfjeld, L.R.; Faber, C.E.; Djurhuus, B.D. Recurrence of cholesteatoma—A retrospective study including 1.;006 patients for more than 33 years. Int. Arch. Otorhinolaryngol. 2020, 24, e18–e23. [Google Scholar] [PubMed]
- Stangerup, S.E.; Drozdziewicz, D.; Tos, M. Cholesteatoma in children.; predictors and calculation of recurrence rates. Int. J. Pediatr. Otorhinolaryngol. 1999, 49 (Suppl. S1), S69–S73. [Google Scholar] [CrossRef] [PubMed]
- James, A.L.; Cushing, S.; Papsin, B.C. Residual cholesteatoma after endoscope- guided surgery in children. Otol. Neurotol. 2016, 37, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhou, L.; Wang, M.; Wang, Y.; Zou, J. Endoscopic versus microscopic surgery for treatment of middle ear cholesteatoma: A systematic review and meta-analysis. Am. J. Otolaryngol. 2021, 42, 102451. [Google Scholar] [CrossRef]
- Moneir, W.; Hemdan, A.; El-Kholy, N.A.; El-Kotb, M.; El-Okda, M. Endoscopic transcanal attico-antrostomy versus endoscopic-assisted canal wall up mastoidectomy in management of localized cholesteatoma: A randomized clinical trial. Eur. Arch. Otorhinolaryngol. 2022, 279, 4371–4378. [Google Scholar] [CrossRef]
- Iannella, G.; Pace, A.; Greco, A.; Polimeni, A.; Maniaci, A.; Mucchino, A.; Lechien, J.R.; Saibene, A.M.; Mat, Q.; Gargula, S.; et al. Endaural microscopic approach versus endoscopic transcanal approach in treatment of attic cholesteatomas. Am. J. Otolaryngol. 2023, 44, 103860. [Google Scholar] [CrossRef]
- Salem, J.; Bakundukize, J.; Milinis, K.; Sharma, S.D. Mastoid obliteration versus canal wall down or canal wall up mastoidectomy for cholesteatoma: Systematic review and meta-analysis. Am. J. Otolaryngol. 2023, 44, 103751. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Liu, W.; Chen, M.; Shao, J.; Zhang, X.; Ma, N.; Li, Y.; Peng, Y.; Zhang, J. Comparison of the EAONO/JOS.; STAMCO and ChOLE cholesteatoma staging systems in the prognostic evaluation of acquired middle ear cholesteatoma in children. Eur. Arch. Otorhinolaryngol. 2022, 279, 5583–5590. [Google Scholar] [CrossRef] [PubMed]
- Marchioni, D.; Soloperto, D.; Rubini, A.; Villari, D.; Genovese, E.; Artioli, F.; Presutti, L. Endoscopic exclusive transcanal approach to the tympanic cavity cholesteatoma in pediatric patients: Our experience. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.B.; Zuniga, M.G.; Sweeney, A.D.; Bertrand, N.M.; Wanna, G.B.; Haynes, D.S.; Wootten, C.T.; Rivas, A. Pediatric endoscopic cholesteatoma surgery. Otolaryngol. Head Neck Surg. 2016, 154, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Sarcu, D.; Isaacson, G. Long-term results of endoscopically assisted pediatric cholesteatoma surgery. Otolaryngol. Head Neck Surg. 2016, 154, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.S.; Basonbul, R.A.; Kozin, E.D.; Lee, D.J. Residual cholesteatoma during second-look procedures following primary pediatric endoscopic ear surgery. Otolaryngol. Head Neck Surg. 2017, 157, 1034–1040. [Google Scholar] [CrossRef] [PubMed]
- Ghadersohi, S.; Carter, J.M.; Hoff, S.R. Endoscopic transcanal approach to the middle ear for management of pediatric cholesteatoma. Laryngoscope 2017, 127, 2653–2658. [Google Scholar] [CrossRef] [PubMed]
- Le Nobel, G.J.; Cushing, S.L.; Papsin, B.C.; James, A.L. Intraoperative bleeding and the risk of residual cholesteatoma: A multivariate analysis. Otol. Neurotol. 2017, 38, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Glikson, E.; Feinmesser, G.; Sagiv, D.; Wolf, M.; Migirov, L.; Shapira, Y. Trans-canal endoscopic ear surgery and canal wall-up tympano-mastoidectomy for pediatric middle ear cholesteatoma. Eur. Arch. Otorhinolaryngol. 2019, 276, 3021–3026. [Google Scholar] [CrossRef]
- Yaniv, D.; Tzelnick, S.; Ulanovski, D.; Hilly, O.; Raveh, E. Effect of endoscope assistance in tympanomastoidectomy for lowering the rate of residual cholesteatoma: Results from 91 paediatric patients. Clin. Otolaryngol. 2019, 44, 1105–1108. [Google Scholar] [CrossRef]
- Dixon, P.R.; James, A.L. Evaluation of residual disease following transcanal totally endoscopic vs postauricular surgery among children with middle ear and attic cholesteatoma. JAMA Otolaryngol. Head Neck Surg. 2020, 146, 408–413. [Google Scholar] [CrossRef]
- Curran, J.F.; Coleman, H.; Tikka, T.; Iyer, A. Comparison of outcomes of endoscopic ear surgery with microsurgery for cholesteatoma: A prospective study of 91 cases with three-year follow-up. Clin. Otolaryngol. 2022, 47, 197–202. [Google Scholar] [CrossRef]
- Manzoor, N.F.; Totten, D.J.; McLeod, M.E.; Sherry, A.D.; Perkins, E.L.; Haynes, D.S.; Rivas, A. Comparative analysis of recidivism after endoscopic and microscopic-based cholesteatoma resection. Otol. Neurotol. 2022, 43, 466–471. [Google Scholar] [CrossRef]
- Hu, X.; Chen, M.; Dai, W.; Zhang, C.; Li, S. Efficiency of intraoperative endoscopic inspection in reducing residuals in canal-wall-up surgery for pediatric cholesteatoma involving the mastoid. Eur. Arch. Otorhinolaryngol. 2023, 280, 3593–3600. [Google Scholar] [CrossRef]
Variable | (No of Patients) | Overall Relapse Estimate (%) | Time (Years) | p Value | Residual Disease Estimate (%) | Time (Years) | p Value | Recurrent Disease Estimate (%) | Time (Years) | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Site of origin | pars flaccida (32) | 51 ± 10 | 10 | 0.8 | 28 ± 9 | 12 | 0.9 | 30 ± 9 | 12 | 0.7 |
pars tensa/sinus (39) | 44 ± 8 | 12 | 26 ± 10 | 12 | 27 ± 7 | 12 | ||||
Sex | female (21) | 49 ± 11 | 10 | 0.9 | 24 ± 9 | 11 | 0.8 | 31 ± 11 | 12 | 0.9 |
male (50) | 47 ± 7 | 12 | 27 ± 7 | 12 | 27 ± 7 | 12 | ||||
Side | right (31) | 41 ± 9 | 12 | 0.4 | 23 ± 8 | 12 | 0.7 | 27 ± 8 | 12 | 0.9 |
left (40) | 52 ± 8 | 12 | 29 ± 7 | 12 | 29 ± 8 | 12 | ||||
Surgical approach | CWD (18) | 33 ± 11 | 12 | 0.04 | 33 ± 11 | 12 | 0.1 | 0 | 12 | 0.006 |
CWU (31) | 60 ± 9 | 12 | 34 ± 9 | 12 | 43 ± 9 | 12 | ||||
endoscopic (22) | 40 ± 11 | 12 | 9 ± 6 | 12 | 32 ± 11 | 12 | ||||
Endoscopic assistance | no (36) | 50 ± 8 | 12 | 0.6 | 42 ± 8 | 12 | 0.003 | 19 ± 7 | 12 | 0.1 |
yes (35) | 46 ± 10 | 12 | 9 ± 5 | 12 | 40 ± 10 | 12 | ||||
Difficult sites (STAMCO) | no (26) | 51 ± 11 | 12 | 0.6 | 30 ± 10 | 12 | 0.9 | 29 ± 9 | 12 | 0.7 |
supratubal recess (12) | 43 ± 15 | 11 | 21 ± 13 | 11 | 17 ± 11 | 11 | ||||
sinus tympani (24) | 38 ± 10 | 12 | 21 ± 8 | 12 | 26 ± 9 | 12 | ||||
both sites (9) | 67 ± 16 | 12 | 33 ± 16 | 12 | 44 ± 17 | 12 | ||||
Tympanic involvement (STAMCO) | no (7) | 33 ± 19 | 9 | 0.3 | 17 ± 15 | 9 | 0.4 | 17 ± 15 | 9 | 0.4 |
yes (64) | 49 ± 7 | 12 | 27 ± 6 | 12 | 30 ± 6 | 12 | ||||
Attic involvement (STAMCO) | no (9) | 48 ± 18 | 11 | 0.7 | 22 ± 14 | 11 | 0.8 | 39 ± 18 | 11 | 0.7 |
yes (62) | 47 ± 7 | 12 | 27 ± 6 | 12 | 27 ± 6 | 12 | ||||
Supratubal recess involvement | no (50) | 45 ± 7 | 12 | 0.5 | 25 ± 6 | 12 | 0.8 | 28 ± 7 | 12 | 0.8 |
yes (21) | 53 ± 11 | 12 | 29 ± 10 | 12 | 29 ± 10 | 12 | ||||
Sinus tympani involvement | no (38) | 49 ± 9 | 12 | 0.9 | 29 ± 8 | 12 | 0.9 | 25 ± 7 | 12 | 0.7 |
yes (33) | 46 ± 9 | 12 | 24 ± 8 | 12 | 31 ± 8 | 12 | ||||
Mastoid involvement (STAMCO) | no (33) | 35 ± 9 | 12 | 0.1 | 18 ± 7 | 12 | 0.2 | 23 ± 8 | 12 | 0.4 |
yes (38) | 57 ± 8 | 12 | 33 ± 8 | 12 | 32 ± 8 | 12 | ||||
Ossicular condition (STAMCO) | intact (9) | 11 ± 11 | 9 | 0.03 | 11 ± 11 | 9 | 0.6 | 0 | 9 | 0.2 |
M + S+ (37) | 43 ± 9 | 12 | 25 ± 7 | 12 | 29 ± 8 | 12 | ||||
M + S− (18) | 66 ± 12 | 12 | 32 ± 12 | 12 | 40 ± 12 | 12 | ||||
M− (7) | 71 ± 17 | 12 | 43 ± 19 | 12 | 31 ± 19 | 12 | ||||
Ch (Chole classification) | 1a (3) | 33 ± 8 | 7 | 0.9 | 33 ± 27 | 7 | 0.7 | 33 ± 8 | 7 | 0.8 |
1b (3) | 100 | 5 | 0 | 6 | 0 | 5 | ||||
2a (5) | 61 ± 10 | 3 | 40 ± 8 | 3 | 40 ± 22 | 7 | ||||
2b (25) | 47 ± 13 | 12 | 20 ± 8 | 12 | 20 ± 8 | 12 | ||||
3 (35) | 40 ± 22 | 12 | 30 ± 8 | 12 | 30 ± 8 | 12 | ||||
Mastoid status | well pneumatized (27) | 51 ± 10 | 12 | 0.4 | 19 ± 8 | 12 | 0.5 | 36 ± 10 | 12 | 0.3 |
partially pneumatized (22) | 50 ± 11 | 12 | 32 ± 10 | 12 | 32 ± 10 | 12 | ||||
sclerotic (22) | 38 ± 11 | 12 | 28 ± 10 | 12 | 14 ± 7 | 12 |
Author | Cholesteatoma Type | Surgical Approach (No of Ears) | Residual Cholesteatoma Rate | Recurrent Cholesteatoma Rate | Mean Follow-Up Months (Range) | Notes |
---|---|---|---|---|---|---|
Marchioni et al. [21] | Including congenital | MA CWUT (28) | 17% | 34% | 36 (8–88) | Second look in selected cases |
TEEA (31) | 13% | 19% | ||||
Hunter et al. [22] | MA CWUT (47) | 9% | 9% | 18.8 (7–48) | Second look in selected cases | |
MA + EA (21) TEEA (8) | 10% | 10% | ||||
James et al. [15] | Including congenital, ear canal, and implantation | MA CWUT (108) | 24% | Not analyzed | Median length of maximum follow-up 74 months | Second look in selected cases |
MA CWUT + EA or TEEA (127) | 15% | Median length of maximum follow-up 38 months | ||||
Sarcu et al. [23] | Including congenital | MA CWUT + EA (42) | 14% | Not analyzed | 60.2 (12–188) | In 17% of ears, residuals were not detected with microscope but were detected with endoscope during initial surgery; second look in selected cases |
Cohen et al. [24] | Including congenital | MA CWUT (24) | 25% | Not analyzed | Not reported | Second look in all cases |
MA CWUT + EA or TEEA (32) | 28% | |||||
Ghadersohi et al. [25] | Including congenital | MA + EI (7) | 29% | 14% | 31 (9–55) | Second look in selected cases MRI in all cases |
EA (middle ear) + MA (mastoid) (9) | 7% | 13% | ||||
TEEA (22) | 0 | 5% | ||||
Le Nobel 2017 et al. [26] | Exclusive middle ear/attic including congenital | MA atticotomy + EA (79) | 9% | Not analyzed | 52 (12–126) | Second look or MRI in selected cases; residual correlated with intraoperative bleeding |
TEEA (33) | 12% | |||||
Glikson et al. [27] | Exclusive middle ear/attic | MA CWUT (19) | 16% | 37% | 37.2 | Clinical and MRI follow-up |
TEEA (30) | 10% | 7% | 32.6 | |||
Yaniv et al. [28] | MA CWUT (42) | 38% | 14% | 51 | Clinical and MRI follow-up | |
MA CWUT + EA (49) | 18% | 33% | 64 | |||
Dixon et al. [29] | Exclusive middle ear/attic | MA (112) | 11% | Not analyzed | Not reported | Two years’ second look or MRI in selected cases |
TEEA (65) | 6% | |||||
Curran et al. [30] | MA (30) or MA + EA (35) | 5% | 2% | (24–60) | Including adults; 18 months’ second look or MRI in all cases | |
TEEA (26) | 4% | 4% | ||||
Manzoor et al. [31] | Including congenital | MA (253) | 6% | 4% | Not reported | Including adults; second look in 28% of cases |
MA + EA (79) or TEEA (43) | 13% | 7% | ||||
Hu et al. [32] | Extended to the mastoid, including congenital | MA CWUT + EI (32) | 6% | 9% | 24 all patients | In 1 ear, residuals were not detected with microscope but were detected with endoscope during initial surgery; CT +/− MRI to detect residual disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nassif, N.; Redaelli de Zinis, L.O. The Role of Endoscopic Assistance in Surgery for Pediatric Cholesteatoma in Reducing Residual and Recurrent Disease. Children 2024, 11, 369. https://doi.org/10.3390/children11030369
Nassif N, Redaelli de Zinis LO. The Role of Endoscopic Assistance in Surgery for Pediatric Cholesteatoma in Reducing Residual and Recurrent Disease. Children. 2024; 11(3):369. https://doi.org/10.3390/children11030369
Chicago/Turabian StyleNassif, Nader, and Luca Oscar Redaelli de Zinis. 2024. "The Role of Endoscopic Assistance in Surgery for Pediatric Cholesteatoma in Reducing Residual and Recurrent Disease" Children 11, no. 3: 369. https://doi.org/10.3390/children11030369
APA StyleNassif, N., & Redaelli de Zinis, L. O. (2024). The Role of Endoscopic Assistance in Surgery for Pediatric Cholesteatoma in Reducing Residual and Recurrent Disease. Children, 11(3), 369. https://doi.org/10.3390/children11030369