Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes
Abstract
1. Introduction
2. Methods
2.1. Participants
2.2. Vision Screening Procedures
2.3. Data Analysis
3. Results
3.1. Demographic Overview
3.2. Cross-Sectional Data
3.2.1. Refractive Errors and Axial Length Overview
3.2.2. Astigmatism Component Interaction
3.2.3. Astigmatic Subtype Comparison
3.2.4. Characteristics of Astigmatism across Three Age Groups
3.2.5. Near-Work and Outdoor Time
3.3. Longitudinal Data
3.3.1. Refractive Errors and Axial Length
3.3.2. Near-Work and Outdoor Time
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wong, C.W.; Tsai, A.; Jonas, J.B.; Ohno-Matsui, K.; Chen, J.; Ang, M.; Ting, D.S.W. Digital screen time during the COVID-19 pandemic: Risk for a further myopia boom? Am. J. Ophthalmol. 2021, 223, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheung, S.S.; Chan, H.-N.; Zhang, Y.; Wang, Y.M.; Yip, B.H.; Kam, K.W.; Yu, M.; Cheng, C.-Y.; Young, A.L. Myopia incidence and lifestyle changes among school children during the COVID-19 pandemic: A population-based prospective study. Br. J. Ophthalmol. 2021, 106, 1772–1778. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Wei, S.; Li, S.-M.; Yang, X.; Cao, K.; Hu, J.; Peng, X.; Yan, R.; Fu, J.; Grzybowski, A. The impact of study-at-home during the COVID-19 pandemic on myopia progression in Chinese children. Front. Public Health 2021, 9, 720514. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ma, Y.; Yuan, J.; Zhang, Y.; Wang, H.; Zhang, G.; Tu, C.; Lu, X.; Li, J.; Xiong, Y. COVID-19 quarantine reveals that behavioral changes have an effect on myopia progression. Ophthalmology 2021, 128, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Mirhajianmoghadam, H.; Piña, A.; Ostrin, L.A. Objective and subjective behavioral measures in myopic and non-myopic children during the COVID-19 pandemic. Transl. Vis. Sci. Technol. 2021, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, L.; Zheng, S.; Ji, Y.; Xiang, Y.; Lv, B.; Xiong, L.; Li, Z.; Yi, S.; Huang, H. Survey on the progression of myopia in children and adolescents in Chongqing during COVID-19 pandemic. Front. Public Health 2021, 9, 646770. [Google Scholar] [CrossRef]
- Kneepkens, S.C.; de Vlieger, J.; Tideman, J.W.L.; Enthoven, C.A.; Polling, J.R.; Klaver, C.C. Myopia risk behaviour related to the COVID-19 lockdown in Europe: The generation R study. Ophthalmic Physiol. Opt. 2023, 43, 402–409. [Google Scholar] [CrossRef]
- Hashemi, H.; Fotouhi, A.; Yekta, A.; Pakzad, R.; Ostadimoghaddam, H.; Khabazkhoob, M. Global and regional estimates of prevalence of refractive errors: Systematic review and meta-analysis. J. Curr. Ophthalmol. 2018, 30, 3–22. [Google Scholar] [CrossRef]
- Fan, D.; Rao, S.; Cheung, E.; Islam, M.; Chew, S.; Lam, D. Astigmatism in Chinese preschool children: Prevalence, change, and effect on refractive development. Br. J. Ophthalmol. 2004, 88, 938. [Google Scholar] [CrossRef]
- Pan, C.-W.; Zheng, Y.-F.; Anuar, A.R.; Chew, M.; Gazzard, G.; Aung, T.; Cheng, C.-Y.; Wong, T.Y.; Saw, S.-M. Prevalence of refractive errors in a multiethnic Asian population: The Singapore epidemiology of eye disease study. Invest. Ophthalmol. Vis. Sci. 2013, 54, 2590–2598. [Google Scholar] [CrossRef]
- Liang, Y.; Leung, T.-W.; Lian, J.T.; Kee, C.-S. Significant increase in astigmatism in children after study at home during the COVID-19 lockdown. Clin. Exp. Optom. 2023, 106, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Tian, Z.; Xiao, T.; Cao, Z.; Xing, X.; Jin, J. Cohort study on the change trend of astigmatism among preschool children in Baiyun district, Guangzhou from 2018 to 2021. Int. Eye Sci. 2023, 873–877. [Google Scholar]
- Wong, S.-C.; Kee, C.-S.; Leung, T.-W. High prevalence of astigmatism in children after school suspension during the COVID-19 pandemic is associated with axial elongation. Children 2022, 9, 919. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Vincent, S.J.; Collins, M.J. The visual and functional impacts of astigmatism and its clinical management. Ophthalmic Physiol. Opt. 2014, 34, 267–294. [Google Scholar] [CrossRef] [PubMed]
- Read, S.A.; Collins, M.J.; Carney, L.G. A review of astigmatism and its possible genesis. Clin. Exp. Optom. 2007, 90, 5–19. [Google Scholar] [CrossRef]
- Harvey, E.M.; Dobson, V.; Miller, J.M. Prevalence of high astigmatism, eyeglass wear, and poor visual acuity among Native American grade school children. Optom. Vis. Sci. 2006, 83, 206–212. [Google Scholar] [CrossRef]
- Gwiazda, J.; Grice, K.; Held, R.; McLellan, J.; Thorn, F. Astigmatism and the development of myopia in children. Vis. Res. 2000, 40, 1019–1026. [Google Scholar] [CrossRef]
- Alvarez-Peregrina, C.; Ruiz-Pomeda, A.; Martinez-Perez, C.; Prieto-Garrido, F.L.; Villa-Collar, C.; Gonzalez-Perez, M.; Gonzalez-Abad, A.; Sanchez-Tena, M.A. Subjective behavioral measures in myopic and pre-myopic children before and after the COVID lockdown. Front. Med. 2023, 10, 1308423. [Google Scholar] [CrossRef]
- Madigan, S.; Eirich, R.; Pador, P.; McArthur, B.A.; Neville, R.D. Assessment of Changes in Child and Adolescent Screen Time During the COVID-19 Pandemic: A Systematic Review and Meta-analysis. JAMA Pediatr. 2022, 176, 1188–1198. [Google Scholar] [CrossRef]
- Pan, W.; Lin, J.; Zheng, L.; Lan, W.; Ying, G.; Yang, Z.; Li, X. Myopia and axial length in school-aged children before, during, and after the COVID-19 lockdown—A population-based study. Front. Public Health 2022, 10, 992784. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, Y.; Kam, K.W.; Tang, F.; Li, Y.; Ng, M.P.; Young, A.L.; Ip, P.; Tham, C.C.; Chen, L.J. Prevalence of Myopia in Children Before, During, and After COVID-19 Restrictions in Hong Kong. JAMA Netw. Open 2023, 6, e234080. [Google Scholar] [CrossRef]
- Nagra, M.; Dashrathi, R.; Senthan, E.; Jahan, T.; Campbell, P. Characterisation of internal, refractive, and corneal astigmatism in a UK university student population. Cont. Lens Anterior Eye 2020, 43, 333–337. [Google Scholar] [CrossRef]
- Park, C.Y.; Oh, J.-H.; Chuck, R.S. Predicting ocular residual astigmatism using corneal and refractive parameters: A myopic eye study. Curr. Eye Res. 2013, 38, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Manny, R.E.; Deng, L.; Gwiazda, J.; Hyman, L.; Weissberg, E.; Scheiman, M.; Fern, K.D. Internal astigmatism in myopes and non-myopes: Compensation or constant? Optom. Vis. Sci. 2016, 93, 1079. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, Y.; Zhang, Y.; Zhang, L.; Zhao, M.; Wang, K. Evaluating internal and ocular residual astigmatism in Chinese myopic children. Jpn. J. Ophthalmol. 2017, 61, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Kam, K.W.; Chee, A.S.H.; Tang, R.C.Y.; Zhang, Y.; Zhang, X.J.; Wang, Y.M.; Li, S.L.; Chen, L.J.; Young, A.L.; Tham, C.C. Differential compensatory role of internal astigmatism in school children and adults: The Hong Kong Children Eye Study. Eye 2023, 37, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Thibos, L.N.; Wheeler, W.; Horner, D. Power vectors: An application of Fourier analysis to the description and statistical analysis of refractive error. Optom. Vis. Sci. 1997, 74, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Shankar, S.; Bobier, W.R. Corneal and lenticular components of total astigmatism in a preschool sample. Optom. Vis. Sci. 2004, 81, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xu, L.; Tan, C.-S.; Lanca, C.; Foo, L.-L.; Sabanayagam, C.; Saw, S.-M. Systematic Review and Meta-Analysis on the Impact of COVID-19 Pandemic–Related Lifestyle on Myopia. Asia-Pac. J. Ophthalmol. 2022, 11, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Albornoz, M.C.; Ramírez-Guerrero, S.; Rojas-Carabali, W.; de-la-Torre, A.; Talero-Gutiérrez, C. Effects of remote learning during the COVID-19 lockdown on children’s visual health: A systematic review. BMJ Open 2022, 12, e062388. [Google Scholar] [CrossRef]
- Chan, K.-H.; Shik, H.-T.; Kwok, K.W.; Kee, C.-S.; Leung, T.-W. Bi-directional Refractive Compensation for With-the-Rule and Against-the-Rule Astigmatism in Young Adults. Invest. Ophthalmol. Vis. Sci. 2022, 63, 15. [Google Scholar] [CrossRef]
- Chu, C.H.G.; Kee, C.S. Effects of optically imposed astigmatism on early eye growth in chicks. PLoS ONE 2015, 10, e0117729. [Google Scholar] [CrossRef]
- Hoseini-Yazdi, H.; Vincent, S.J.; Read, S.A.; Collins, M.J. Astigmatic defocus leads to short-term changes in human choroidal thickness. Invest. Ophth. Vis. Sci. 2020, 61, 48. [Google Scholar] [CrossRef]
- Schmid, K.L.; Wildsoet, C.F. Natural and imposed astigmatism and their relation to emmetropization in the chick. Exp Eye Res 1997, 64, 837–847. [Google Scholar] [CrossRef]
- Brémond-Gignac, D.; Copin, H.; Lapillonne, A.; Milazzo, S. Visual development in infants: Physiological and pathological mechanisms. Curr. Opin. Ophthalmol. 2011, 22, S1–S8. [Google Scholar] [CrossRef] [PubMed]
- Buehren, T.; Collins, M.J.; Carney, L. Corneal aberrations and reading. Optom. Vis. Sci. 2003, 80, 159–166. [Google Scholar] [CrossRef]
- Shaw, A.J.; Collins, M.J.; Davis, B.A.; Carney, L.G. Corneal refractive changes due to short-term eyelid pressure in downward gaze. J. Cataract Refract. Surg. 2008, 34, 1546–1553. [Google Scholar] [CrossRef] [PubMed]
- Leung, T.W.; Chan, C.-T.; Lam, C.-H.; Tong, Y.-K.; Kee, C.-S. Changes in corneal astigmatism and near heterophoria after smartphone use while walking and sitting. PLoS ONE 2020, 15, e0243072. [Google Scholar] [CrossRef]
- Collins, M.J.; Kloevekorn-Norgall, K.; Buehren, T.; Voetz, S.C.; Lingelbach, B. Regression of lid-induced corneal topography changes after reading. Optom. Vis. Sci. 2005, 82, 843–849. [Google Scholar] [CrossRef]
- Mansour, A.M.; Haddad, R.S. Corneal topography after ocular rubbing. Cornea 2002, 21, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mao, J.; Luo, R.; Li, F.; Pokharel, G.P.; Ellwein, L.B. Accuracy of noncycloplegic autorefraction in school-age children in China. Optom. Vis. Sci. 2004, 81, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Cao, Y.; Cheng, Q.; Li, X.; Pan, L.; Li, L.; Zhu, H.; Lan, W.; Yang, Z. Objectively measured near work, outdoor exposure and myopia in children. Br. J. Ophthalmol. 2020, 104, 1542–1547. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, S.K.; Dhakal, R.; Sanghavi, V.; Verkicharla, P.K. Ambient light level varies with different locations and environmental conditions: Potential to impact myopia. PLoS ONE 2021, 16, e0254027. [Google Scholar] [CrossRef] [PubMed]
Total | 8-Year-Old | 9-Year-Old | 10-Year-Old | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | |
Sample size | 173 | 119 | 43 | 33 | 54 | 30 | 76 | 56 | ||||
Boys (%) | 55.5 (48.0, 63.0) | 52.1 (43.0, 61.2) | 0.57 | 55.8 (40.3, 71.3) | 45.5 (27.5, 63.4) | 0.37 | 51.9 (38.1, 65.6) | 63.3 (45.0, 81.6) | 0.31 | 57.9 (46.5, 69.3) | 50.0 (36.5, 63.5) | 0.37 |
Monthly family income (%) | 0.05 | 0.31 | 0.21 | 0.012 | ||||||||
≤HKD 19,999 | 59.5 (52.2, 66.9) | 47.9 (38.8, 57.0) | 51.2 (35.6, 66.7) | 39.4 (21.8, 57.0) | 70.4 (57.8, 83.0) | 56.7 (37.8, 75.5) | 69.7 (59.2, 80.3) | 48.2 (34.7, 61.7) | ||||
>HKD 19,999 | 40.5 (33.1, 47.8) | 52.1 (43.0, 61.2) | 48.8 (33.3, 64.4) | 60.6 (43.0, 78.2) | 29.6 (17.0, 42.2) | 43.3 (24.5, 62.2) | 30.3 (19.7, 40.8) | 51.8 (38.3, 65.3) | ||||
Parental Myopia (%) # | 57.2 (49.8, 64.7) | 63.9 (55.1, 72.6) | 0.26 | 81.4 (69.3, 93.5) | 69.7 (53.1, 86.2) | 0.23 | 53.7 (40.0, 67.4) | 63.3 (45.0, 81.6) | 0.39 | 46.7 (35.1, 58.2) | 60.7 (47.5, 73.9) | 0.20 |
Total | 8-Year-Old | 9-Year-Old | 10-Year-Old | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | |
Astigmatism proportion (%) | 49.1 (41.6, 56.7) | 55.5 (46.4, 64.5) | 0.29 | 44.2 (28.7, 59.7) | 57.6 (39.8, 75.4) | 0.25 | 42.6 (29.0, 56.2) | 46.7 (27.7, 65.6) | 0.72 | 56.6 (45.2, 68.0) | 58.9 (45.6, 72.2) | 0.79 |
RA (D) * | 0.62 (0.50, 1.00) | 0.75 (0.50, 1.12) | 0.28 | 0.62 (0.37, 0.87) | 0.87 (0.56, 1.06) | 0.10 | 0.62 (0.50, 0.87) | 0.62 (0.50, 1.15) | 0.25 | 0.75 (0.53, 1.09) | 0.75 (0.37, 1.09) | 0.57 |
RAJ0 (D) * | 0.31 (0.18, 0.45) | 0.26 (0.10, 0.49) | 0.29 | 0.25 (0.17, 0.42) | 0.29 (0.14, 0.53) | 0.69 | 0.28 (0.18, 0.40) | 0.25 (0.17, 0.55) | 0.78 | 0.36 (0.17, 0.53) | 0.28 (0.04, 0.48) | 0.036 |
RAJ45 (D) * | 0 (−0.10, 0.09) | −0.12 (−0.25, 0) | <0.001 | 0.03 (−0.04, 0.15) | −0.14 (−0.01, 0.28) | <0.001 | −0.01 (−0.09, 0.09) | −0.12 (−0.20, 0.01) | 0.008 | −0.03 (−0.14, 0.06) | −0.12 (−0.24, 0) | 0.013 |
CA (D) | 1.19 (0.89, 1.58) | 1.47 (0.99, 2.41) | <0.001 | 1.10 (0.84, 1.34) | 1.57 (0.93, 2.42) | 0.009 | 1.13 (0.71, 1.46) | 1.53 (0.98, 2.69) | 0.004 | 1.33 (0.91, 1.82) | 1.43 (1.02, 2.12) | 0.16 |
CAJ0 (D) | 0.57 (0.39, 0.77) | 0.67 (0.43, 1.00) | 0.017 | 0.53 (0.38, 0.65) | 0.69 (0.41, 1.00) | 0.11 | 0.54 (0.34, 0.72) | 0.71 (0.44, 1.22) | 0.011 | 0.65 (0.43, 0.89) | 0.60 (0.43, 0.89) | 0.91 |
CAJ45 (D) | −0.08 (−0.18, 0.04) | −0.19 (−0.34, 0.08) | <0.001 | −0.05 (−0.14, 0.04) | −0.20 (−0.34, −0.08) | <0.001 | −0.08 (−0.16, 0.04) | −0.15 (−0.41, −0.06) | 0.004 | −0.09 (−0.20, 0.05) | −0.20 (−0.33, −0.09) | 0.006 |
IA (D) | 0.69 (0.42, 0.91) | 0.93 (0.66, 1.55) | <0.001 | 0.68 (0.40, 0.88) | 0.94 (0.66, 1.46) | 0.004 | 0.70 (0.40, 0.90) | 0.81 (0.66, 1.84) | 0.012 | 0.75 (0.50, 1.01) | 0.97 (0.67, 1.52) | 0.003 |
IAJ0 (D) | −0.25 (−0.41, −0.13) | −0.35 (−0.61, −0.22) | <0.001 | −0.25 (−0.37, −0.11) | −0.36 (−0.53, −0.22) | 0.047 | −0.26 (−0.39, −0.13) | −0.34 (−0.85, −0.16) | 0.042 | −0.26 (−0.44, −0.14) | −0.34 (−0.62, −0.23) | 0.016 |
IAJ45 (D) | 0.06 (−0.05, 0.20) | 0.08 (−0.06, 0.28) | 0.32 | 0.09 (−0.02, 0.21) | 0.08 (−0.05, 0.34) | 0.75 | 0.03 (−0.09, 0.20) | 0.07 (−0.10, 0.21) | 0.59 | 0.07 (−0.08, 0.18) | 0.09 (−0.10, 0.33) | 0.51 |
SER (D) | −1.38 (−2.22, −1.00) | −1.50 (−2.75, −0.94) | 0.38 | −1.19 (−1.81, −0.93) | −1.50 (−2.85, −0.91) | 0.15 | −1.47 (−2.21, −1.06) | −1.56 (−2.83, −1.09) | 0.61 | −1.53 (−2.53, −1.00) | −1.47 (−2.75, −0.93) | 0.89 |
Axial length (mm) | 23.67 ± 0.95 | 23.77 ± 1.08 | 0.40 | 23.47 ± 0.94 | 23.37 ± 1.12 | 0.66 | 23.62 ± 0.84 | 23.87 ± 1.05 | 0.23 | 23.81 ± 1.02 | 23.95 ± 1.03 | 0.45 |
Total | 8-Year-Old | 9-Year-Old | 10-Year-Old | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | 2020 | 2022 | p-Value | |
Total near-work time (h/day) | ||||||||||||
Weekdays | 3.50 (2.50, 5.00) | 4.50 (2.00, 6.50) | 0.011 | 3.00 (2.00, 5.00) | 5.00 (2.00, 7.50) | 0.058 | 4.00 (3.00, 5.00) | 4.50 (2.88, 7.13) | 0.16 | 3.00 (2.00, 5.00) | 4.00 (1.78, 6.00) | 0.19 |
Weekends | 4.00 (3.00, 5.25) | 5.50 (3.00, 8.00) | <0.001 | 4.00 (3.00, 6.00) | 6.00 (2.25, 9.00) | 0.087 | 4.00 (3.00, 5.50) | 5.50 (3.88, 8.88) | 0.016 | 4.00 (2.13, 5.00) | 5.25 (3.00, 7.75) | 0.012 |
Non-screen time (h/day) | ||||||||||||
Weekdays | 1.00 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.045 | 1.00 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.017 | 1.50 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.35 | 1.00 (0.50, 2.00) | 2.00 (0.50, 3.75) | 0.35 |
Weekends | 1.25 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.066 | 1.00 (1.00, 2.00) | 2.00 (1.00, 4.00) | 0.075 | 1.75 (1.00, 2.00) | 2.00 (0.50, 2.63) | 0.76 | 1.00 (0.50, 2.00) | 2.00 (1.00, 3.00) | 0.12 |
Screen time (h/day) | ||||||||||||
Weekdays | 2.00 (1.00, 3.00) | 2.00 (1.00, 4.00) | 0.93 | 2.00 (1.00, 4.00) | 2.00 (1.00, 5.00) | 0.65 | 2.00 (1.50, 3.00) | 2.00 (1.19, 4.00) | 0.80 | 2.00 (1.00, 3.00) | 2.00 (1.00, 3.75) | 0.58 |
Weekends | 2.50 (2.00, 4.00) | 3.00 (1.50, 6.00) | 0.11 | 3.00 (1.50, 5.00) | 3.00 (1.00, 6.50) | 0.65 | 2.25 (1.88, 4.00) | 3.50 (2.00, 7.25) | 0.10 | 2.25 (1.25, 4.00) | 3.00 (1.50, 5.00) | 0.39 |
Outdoor time (h/day) | ||||||||||||
Weekdays | 1.00 (0, 1.00) | 1.00 (0, 2.00) | 0.077 | 0.50 (0, 1.50) | 1.50 (0.25, 2.00) | 0.011 | 1.00 (0, 1.00) | 0.75 (0, 1.50) | 0.66 | 1.00 (0, 1.00) | 1.00 (0, 1.88) | 0.88 |
Weekends | 1.50 (1.00, 2.00) | 2.00 (1.00, 3.50) | 0.001 | 1.00 (1.00, 2.00) | 2.50 (1.00, 4.25) | 0.001 | 2.00 (1.00, 2.00) | 2.00 (1.00, 3.00) | 0.32 | 2.00 (0.50, 2.00) | 2.00 (0.85, 3.88) | 0.15 |
2020 | 2022 | p-Value | |
---|---|---|---|
RA (D) | 0.62 (0.50, 0.87) | 0.75 (0.40, 1.12) | 0.13 |
RAJ0 (D) | 0.26 (0.15, 0.38) | 0.22 (0.06, 0.50) | 0.74 |
RAJ45 (D) | 0.01 (−0.08, 0.11) | −0.06 (−0.24, 0.02) | <0.001 |
CA (D) | 1.16 (0.84, 1.41) | 1.44 (0.98, 1.94) | <0.001 |
CAJ0 (D) | 0.56 (0.36, 0.69) | 0.62 (0.38, 0.88) | 0.067 |
CAJ45 (D) | −0.05 (−0.14, 0.07) | −0.20 (−0.33, −0.06) | 0.001 |
IA (D) | 0.70 (0.45, 0.90) | 0.95 (0.64, 1.39) | 0.001 |
IAJ0 (D) | −0.27 (−0.40, −0.14) | −0.35 (−0.54, −0.23) | 0.015 |
IAJ45 (D) | 0.03 (−0.08, 0.20) | 0.08 (−0.12, 0.30) | 0.66 |
SER (D) | −1.28 (−1.98, −1.00) | −1.94 (−3.00, −1.05) | <0.001 |
Axial length (mm) | 23.50 ± 0.89 | 24.15 ± 1.01 | <0.001 |
2020 | 2022 | p-Value | |
---|---|---|---|
Total near-work time (h/day) | |||
Weekdays | 3.50 (2.63, 5.00) | 5.00 (2.50, 7.00) | <0.001 |
Weekends | 4.00 (3.00, 5.38) | 6.00 (3.63, 9.00) | <0.001 |
Non-screen time (h/day) | |||
Weekdays | 1.00 (0.50, 2.00) | 2.00 (1.00, 3.00) | <0.001 |
Weekends | 1.00 (0.50, 2.00) | 2.00 (1.00, 3.00) | 0.001 |
Screen time (h/day) | |||
Weekdays | 2.00 (1.00, 3.38) | 2.25 (1.50, 4.00) | 0.053 |
Weekends | 2.75 (2.00, 4.00) | 4.00 (1.63, 6.00) | 0.002 |
Outdoor time (h/day) | |||
Weekdays | 0.5 (0, 1.00) | 1.00 (0, 1.50) | 0.21 |
Weekends | 1.50 (1.00, 2.00) | 2.00 (1.00, 4.00) | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, Y.; Kang, B.-S.; Kee, C.-S.; Leung, T.-W. Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes. Children 2024, 11, 154. https://doi.org/10.3390/children11020154
Liang Y, Kang B-S, Kee C-S, Leung T-W. Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes. Children. 2024; 11(2):154. https://doi.org/10.3390/children11020154
Chicago/Turabian StyleLiang, Yuanyuan, Byung-Soo Kang, Chea-Su Kee, and Tsz-Wing Leung. 2024. "Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes" Children 11, no. 2: 154. https://doi.org/10.3390/children11020154
APA StyleLiang, Y., Kang, B.-S., Kee, C.-S., & Leung, T.-W. (2024). Compensatory Interactions between Corneal and Internal Astigmatism despite Lifestyle Changes. Children, 11(2), 154. https://doi.org/10.3390/children11020154