Clinical Utility of Virtual Kitchen Errand Task for Children (VKET-C) as a Functional Cognition Evaluation for Children with Developmental Disabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Apparatus and Measurements
2.2.1. Virtual Kitchen Errand Task in Children (VKET-C)
2.2.2. Scoring Performance Errors
2.3. Cambridge Neuropsychological Test Automated Battery (CANTAB)
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Comparison of Performance Errors Between the TD and DD Groups
3.3. Frequency of Performance Errors According to Diagnosis
3.4. Correlation Between Performance Errors and the CANTAB Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bailey, B.; Bryant, L.; Hemsley, B. Virtual reality and augmented reality for children, adolescents, and adults with communication disability and neurodevelopmental disorders: A systematic review. Rev. J. Autism Dev. Disord. 2022, 9, 160–183. [Google Scholar] [CrossRef]
- Bryant, L.; Brunner, M.; Hemsley, B. A review of virtual reality technologies in the field of communication disability: Implications for practice and research. Disabil. Rehabil. Assist. 2019, 15, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Chaytor, N.; Schmitter-Edgecombe, M. The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychol. Rev. 2003, 13, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Schultheis, M.T.; Himelstein, J.; Rizzo, A.A. Virtual reality and neuropsychology: Upgrading the current tools. J. Head. Trauma. Rehabil. 2002, 17, 378–394. [Google Scholar] [CrossRef]
- Allain, P.; Foloppe, D.A.; Besnard, J.; Yamaguchi, T.; Etcharry-Bouyx, F.; Le Gall, D.; Nolin, P.; Richard, P. Detecting everyday action deficits in Alzheimer’s disease using a nonimmersive virtual reality kitchen. J. Int. Neuropsychol. Soc. 2014, 20, 468–477. [Google Scholar] [CrossRef]
- Ijaz, K.; Ahmadpour, N.; Naismith, S.L.; Calvo, R.A. An immersive virtual reality platform for assessing spatial navigation memory in predementia screening: Feasibility and usability study. JMIR Ment. Health 2019, 6, e13887. [Google Scholar] [CrossRef]
- Lloréns, R.; Noé, E.; Colomer, C.; Alcañiz, M. Effectiveness, Usability, and Cost-Benefit of a Virtual Reality-Based Telerehabilitation Program for Balance Recovery after Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2015, 96, 418–425. [Google Scholar] [CrossRef]
- Araiza-Alba, P.; Keane, T.L.; Beaudry, J.; Kaufman, J. Immersive Virtual Reality Implementations in Developmental Psychology. Int. J. Virtual Real. 2020, 20, 1–35. [Google Scholar] [CrossRef]
- Checa, D.; Bustillo, A. A review of immersive virtual reality serious games to enhance learning and training. Multimed. Tools Appl. 2020, 79, 5501–5527. [Google Scholar] [CrossRef]
- Stoev, S.; Rasheva-Yordanova, K.; Bankovska, M.; Getova, I. Analysis of the Applicability of VR in the Education of Children with Disabilities. In Proceedings of the 2024 47th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 20–24 May 2024; pp. 364–368. [Google Scholar] [CrossRef]
- Wong, C.; Odom, S.L.; Hume, K.A.; Cox, A.W.; Fettig, A.; Kucharczyk, S.; Brock, M.E.; Plavnick, J.B.; Fleury, V.P.; Schultz, T.R. Evidence-based practices for children, youth, and young adults with autism spectrum disorder: A comprehensive review. J. Autism Dev. Disord. 2015, 45, 1951–1966. [Google Scholar] [CrossRef]
- Bellani, M.; Fornasari, L.; Chittaro, L.; Brambilla, P. Virtual reality in autism: State of the art. Epidemiol. Psychiatr. Sci. 2011, 20, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Standen, P.J.; Brown, D.J. Virtual reality in the rehabilitation of people with intellectual disabilities. Cyberpsychol. Behav. 2005, 8, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Dumas, C.M.; Grajo, L. Functional cognition in critically ill children: Asserting the role of occupational therapy. Open J. Occup. Ther. 2021, 9, 1–9. [Google Scholar] [CrossRef]
- Giles, G.M.; Edwards, D.F.; Baum, C.; Furniss, J.; Skidmore, E.; Wolf, T.; Leland, N.E. Making functional cognition a professional priority. Am. J. Occup. Ther. 2020, 74, 7401090010p1–7401090010p6. [Google Scholar] [CrossRef]
- Berg, C.; Edwards, D.F.; King, A. Executive function performance on the children’s kitchen task assessment with children with sickle cell disease and matched controls. Child. Neuropsychol. 2012, 18, 432–448. [Google Scholar] [CrossRef]
- Sydney, C.Y.; Daang, E.M.; Deer, L.K.; Hostinar, C.E. A pilot study examining financial stress during COVID-19 and executive function in mental health in parents and children. Psychoneuroendocrinology 2023, 153, 106250. [Google Scholar] [CrossRef]
- Anderson, P. Assessment and development of executive function (EF) during childhood. Child. Neuropsychol. 2002, 8, 71–82. [Google Scholar] [CrossRef]
- Walsh, K. Neuropsychology: A Clinical Approach; Churchill Livingston: New York, NY, USA, 1978. [Google Scholar]
- Gomez, I.N.B.; Palomo, S.A.M.; Vicuña, A.M.U.; Bustamante, J.A.D.; Eborde, J.M.E.; Regala, K.A.; Ruiz, G.M.M.; Sanchez, A.L.G. Performance-based executive function instruments used by occupational therapists for children: A systematic review of measurement properties. Occup. Ther. Int. 2021, 2021, 1–13. [Google Scholar] [CrossRef]
- Wallisch, A.; Little, L.M.; Dean, E.; Dunn, W. Executive function measures for children: A scoping review of ecological validity. Occup. Ther. J. Res. 2018, 38, 6–14. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D.B.; Loring, D.W.; Fischer, J.S. The practice of neuropsychological assessment. In Neuropsychological Assessment; Misbkin, M., Ed.; Oxford University Press: New York, NY, USA, 2004; pp. 3–12. [Google Scholar]
- Kang, S.R.; Ryu, J.K.; Ju, Y.M. A Study on Correlation of Types of Performance Error and Working Memory and Execution Function in the Virtual Reality Based Kitchen Task in the Elderly. Korean J. Occup. Ther. 2023, 31, 1–15. [Google Scholar] [CrossRef]
- Giovannetti, T.; Yamaguchi, T.; Roll, E.; Harada, T.; Rycroft, S.S.; Divers, R.; Hulswit, J.; Tan, C.C.; Matchanova, A.; Ham, L.; et al. The virtual kitchen challenge: Preliminary data from a novel virtual reality test of mild difficulties in everyday functioning. Aging Neuropsychol. Cogn. 2019, 26, 823–841. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, T.; Libon, D.J.; Buxbaum, L.J.; Schwartz, M.F. Naturalistic action impairments in dementia. Neuropsychologia 2002, 40, 1220–1232. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, T.; Bettcher, B.M.; Brennan, L.; Libron, D.J.; Kessler, R.K.; Duey, K. Coffee with jelly or unbuttered toast: Commissions and omissions are dissociable aspects of everyday action impairment in Alzheimer’s disease. Neuropsychology 2008, 22, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Besnard, J.; Richard, P.; Banville, F.; Nolin, P.; Aubin, G.; Le Gall, D.; Allain, P. Virtual Reality and Neuropsychological Assessment: The Reliability of a Virtual Kitchen to Assess Daily-Life Activities in Victims of Traumatic Brain Injury. Appl. Neuropsychol. Adult 2016, 23, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Chaytor, N.; Schmitter-Edgecombe, M.; Burr, R. Improving the ecological validity of executive functioning assessment. Arch. Clin. Neuropsychol. 2006, 21, 217–227. [Google Scholar] [CrossRef]
- Epstein, J.N.; Erkanli, A.; Conners, C.K.; Klaric, J.; Costello, J.E.; Angold, A. Relations between continuous performance test performance measures and ADHD behaviors. J. Abnorm. Child. Psychol. 2003, 31, 543–554. [Google Scholar] [CrossRef]
- Hall, C.L.; Valentine, A.Z.; Groom, M.J.; Walker, G.M.; Sayal, K.; Daley, D.; Hollis, C. The clinical utility of the continuous performance test and objective measures of activity for diagnosing and monitoring ADHD in children: A systematic review. Eur. Child. Adolesc. Psychiatry 2016, 25, 677–699. [Google Scholar] [CrossRef]
- Inoue, K.; Nadaoka, T.; Oiji, A.; Morioka, Y.; Totsuka, S.; Kanbayashi, Y.; Hukui, T. Clinical evaluation of attention-deficit hyperactivity disorder by objective quantitative measures. Child. Psychiatry Hum. Dev. 1998, 28, 179–188. [Google Scholar] [CrossRef]
- Schwartz, M.F.; Segal, M.; Veramonti, T.; Ferraro, M.; Buxbaum, L.J. The Naturalistic Action Test: A standardised assessment for everyday action impairment. Neuropsychol. Rehabil. 2002, 12, 311–339. [Google Scholar] [CrossRef]
- Fray, P.J.; Robbins, T.W.; Sahakian, B.J. Neuorpsychiatyric applications of CANTAB. Int. J. Geriatr. Psychiatry 1996, 11, 329–336. [Google Scholar] [CrossRef]
- Karch, J.D. Psychologists should use Brunner-Munzel’s instead of Mann-Whitney’s U test as the default nonparametric procedure. Adv. Methods Pract. Psychol. Sci. 2021, 4, 2515245921999602. [Google Scholar] [CrossRef]
- Climent-Martínez, G.; Luna-Lario, P.; Bombín-González, I.; Cifuentes-Rodriguez, A.; Tirapu-Ustarroz, J.; Diaz-Orueta, U. Neuropsychological evaluation of the executive functions by means of virtual reality. Rev. Neurol. 2014, 58, 465–475. [Google Scholar] [PubMed]
- Atkins, A.S.; Stroescu, I.; Spagnola, N.B.; Davis, V.G.; Patterson, T.D.; Narasimhan, M.; Harvey, P.D.; Keefe, R.S.E. Assessment of age-related differences in functional capacity using the Virtual Reality Functional Capacity Assessment Tool (VRFCAT). J. Prev. Alzheimers Dis. 2015, 2, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Ruse, S.A.; Davis, V.G.; Atkins, A.S.; Krishnan, K.R.R.; Fox, K.H.; Harvey, P.D.; Keefe, R.S. Development of a virtual reality assessment of everyday living skills. J. Vis. Exp. 2014, 86, e51405. [Google Scholar] [CrossRef]
- Zhang, L.; Abreu, B.C.; Masel, B.; Scheibel, R.S.; Christiansen, C.H.; Huddleston, N.; Ottenbacher, K.J. Virtual reality in the assessment of selected cognitive function after brain injury. Am. J. Phys. Med. Rehabil. 2001, 80, 597–604. [Google Scholar] [CrossRef]
- Fang, Y.; Han, D.; Luo, H.A. Virtual reality application for assessment for attention deficit hyperactivity disorder in school-aged children. Neuropsychiatr. Dis. Treat. 2019, ume 15, 1517–1523. [Google Scholar] [CrossRef]
- Phelan, I.; Furness, P.J.; Dunn, H.D.; Carrion-Plaza, A.; Matsangidou, M.; Dimitri, P.; Lindley, S. Immersive virtual reality in children with upper limb injuries: Findings from a feasibility study. J. Pediatr. Rehabil. Med. 2021, 14, 401–414. [Google Scholar] [CrossRef]
- Garzotto, F.; Gelsomini, M.; Occhiuto, D.; Matarazzo, V.; Messina, N. Wearable immersive virtual reality for children with disability: A case study. In Proceedings of the 2017 Conference on Interaction Design and Children, Stanford, CA, USA, 27–30 June 2017; pp. 478–483. [Google Scholar] [CrossRef]
- Newbutt, N.; Sung, C.; Kuo, H.J.; Leahy, M.J. The potential of virtual reality technologies to support people with an autism condition: A case study of acceptance, presence and negative effects. Ann. Rev. Cyber Ther. Telemed. 2016, 14, 149–154, ISBN: 1554-8716. [Google Scholar]
- Schachar, R.; Mota, V.L.; Logan, G.D.; Tannock, R.; Klim, P. Confirmation of an inhibitory control deficit in attention-deficit/hyperactivity disorder. J. Abnorm. Child. Psychol. 2000, 28, 227–235. [Google Scholar] [CrossRef]
- South, M.; Larson, M.J.; Krauskopf, E.; Clawson, A. Error processing in high-functioning autism spectrum disorders. Biol. Psychol. 2010, 85, 242–251. [Google Scholar] [CrossRef]
- Acosta-Lopez, J.E.; Suarez, I.; Pineda, D.A.; Cervantes-Henriquez, M.L.; Martinez-Banfi, M.L.; Lozano-Gutierrez, S.G.; Ahmad, M.; Pineda-Alhucema, W.; Noguera-Machacon, L.M.; Hoz, M.D.L.; et al. Impulsive and omission errors: Potential temporal processing endophenotypes in ADHD. Brain Sci. 2021, 11, 1218. [Google Scholar] [CrossRef] [PubMed]
- Corbett, B.A.; Constantine, L.J.; Hendren, R.; Rocke, D.; Ozonoff, S. Examining executive functioning in children with autism spectrum disorder, attention deficit hyperactivity disorder and typical development. Psychiatry Res. 2009, 166, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Geurts, H.M.; Verté, S.; Oosterlaan, J.; Roeyers, H.; Sergeant, J.A. How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? J. Child. Psychol. Psychiatry 2004, 45, 836–854. [Google Scholar] [CrossRef] [PubMed]
- Beaver, J.; Wilson, K.B.; Schmitter-Edgecombe, M. Characterising omission errors in everyday task completion and cognitive correlates in individuals with mild cognitive impairment and dementia. Neuropsychol. Rehabil. 2019, 29, 804–820. [Google Scholar] [CrossRef]
- Gardiner, E.; Hutchison, S.M.; Müller, U.; Kerns, K.A.; Iarocci, G. Assessment of executive function in young children with and without ASD using parent ratings and computerized tasks of executive function. Clin. Neuropsychol. 2017, 31, 1283–1305. [Google Scholar] [CrossRef]
- Cook, L.G.; Chapman, S.B.; Levin, H.S. Self-regulation abilities in children with severe traumatic brain injury: A preliminary investigation of naturalistic action. Neuro Rehabil. 2008, 23, 467–475. [Google Scholar] [CrossRef]
- Losier, B.J.; McGrath, P.J.; Klein, R.M. Error patterns on the continuous performance test in non-medicated and medicated samples of children with and without ADHD: A meta-analytic review. J. Child. Psychol. Psychiatry 1996, 37, 971–987. [Google Scholar] [CrossRef]
- Perri, R.L.; Spinelli, D.; Di Russo, F. Missing the target: The neural processing underlying the omission error. Brain Topogr. 2017, 30, 352–363. [Google Scholar] [CrossRef]
- Craig, F.; Margari, F.; Legrottaglie, A.R.; Palumbi, R.; De Giambattista, C.; Margari, L. A Review of Executive Function Deficits in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. Neuropsychiatr. Dis. Treat. 2016, 12, 1191–1202. [Google Scholar] [CrossRef]
- Towse, J.; Hitch, G.; Hutton, U.A. Reevaluation of Working Memory Capacity in Children. J. Mem. Lang. 1998, 39, 195–217. [Google Scholar] [CrossRef]
- Breitling-Ziegler, C.; Tegelbeckers, J.; Flechtner, H.H.; Krauel, K. Economical assessment of working memory and response inhibition in ADHD using a combined n-back/nogo paradigm: An ERP study. Front. Hum. Neurosci. 2020, 14, 322. [Google Scholar] [CrossRef] [PubMed]
- Matos, R.; Santos, F.H.; Albuquerque, P.B. When we must forget: The effect of cognitive load on prospective memory commission errors. Memory 2020, 28, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Tatzgern, M.; Birgmann, C. Exploring input approximations for control panels in virtual reality. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisbon, Portugal, 27 March–1 April 2021; pp. 1–9. [Google Scholar]
- Ozonoff, S.; Young, G.S.; Goldring, S.; Greiss-Hess, L.; Herrera, A.M.; Steele, J.; Macari, S.; Hepburn, S.; Rogers, S.J. Gross motor development, movement abnormalities, and early identification of autism. J. Autism Dev. Disord. 2008, 38, 644–656. [Google Scholar] [CrossRef] [PubMed]
- Provost, B.; Lopez, B.R.; Heimerl, S. A comparison of motor delays in young children: Autism spectrum disorder, developmental delay, and developmental concerns. J. Autism Dev. Disord. 2007, 37, 321–328. [Google Scholar] [CrossRef]
- Tragantzopoulou, P.; Giannouli, V. Spatial Orientation Assessment in the Elderly: A Comprehensive Review of Current Tests. Brain Sci. 2024, 14, 898. [Google Scholar] [CrossRef]
Error Type | Description | Example |
---|---|---|
Omission | Missing step | Bring only one piece of bread |
Do not put bread on the plate | ||
Not closing the lid/door | ||
Missing one of target items (coffee, banana, bread) | ||
Substitution | Different tools were used | Pour the coffee in other objects |
Put the bread in other objects | ||
Perseveration | Repeating steps without reason | Bringing more than the specified quantity |
Moving spot to spot without a purpose | ||
Sequence Error | Changing the order of steps in an inefficient way | Take out bread first without a plate |
Do not bring a mug and grab a coffee pot | ||
Take out a plate/cup/bread and do not close the door right away, and close it later after going somewhere else | ||
Addition | Adding unnecessary steps | Put a banana on a plate |
Bring unnecessary things | ||
Micro-Error | Touching objects without purpose | Touch objects for no reason |
Motor Error | Lack of manual dexterity | Repeat an action (more than three times) due to difficulties in grasping or closing a door |
Dropping an object |
Test | Sub-Item Title | Description | Level |
---|---|---|---|
SOC (Stockings of Cambridge) | ITMN (Initial Thinking Time Mean) | Initial thinking time is the difference in the time taken to select the first ball for the same problem in the solve compared to follow conditions. | 2, 3, 4, 5 |
PSMM (Problems Solved in Minimum Moves) | The number of assessed problems that the subject successfully completed in the minimum possible number of moves. Calculated over all assessed trials | Total | |
SWM (Spatial Working Memory) | BE (Between Errors) | The number of times the subject incorrectly revisits a box in which a token has previously been found. | Total |
Categorization | TD (n = 23) | DD (n = 15) | p | |
---|---|---|---|---|
Age (Mean (SD)) | 8.91 (1.44) | 9.80 (1.93) | 0.114 | |
Gender (n (%)) | Boys | 11 (47.83) | 5 (33.33) | 0.402 (TD)/0.378 (DD) |
Girls | 12 (52.17) | 10 (66.67) | ||
Ethnicity (n (%)) | Korean | 23 (100) | 15 (100) | |
Residence (n (%)) | Metropolitan | 20 (89.96) | 15 (100) | |
Rural Area | 3 (13.04) | 0 (0) |
Median | IQR | Statistic | df | p | Effect Size | ||
---|---|---|---|---|---|---|---|
Omission Errors | TD | 0 | 0.00 | −4.37 | 21.6 | <0.001 | 0.19 |
DD | 1 | 2.50 | |||||
Commission Errors | TD | 2 | 3.00 | −5.28 | 33.7 | <0.001 | 0.16 |
DD | 5 | 4.00 | |||||
Motor Errors | TD | 1 | 1.00 | −2.03 | 20.2 | 0.056 | 0.30 |
DD | 2 | 2.00 |
Diagnosis (n = 38) | TD (n = 23) | ADHD (n = 2) | ASD (n = 4) | ID (n = 9) | |
---|---|---|---|---|---|
Omission Errors | Mean (SD) | 0.17 (0.83) | 1.50 (0.70) | 1.50 (2.38) | 1.56 (1.51) |
Commission Errors | Mean (SD) | 2.48 (1.81) | 7.00 (4.24) | 6.25 (3.20) | 5.11 (2.57) |
Motor Errors | Mean (SD) | 1.26 (1.01) | 2.00 (0.00) | 2.50 (2.52) | 2.56 (2.01) |
SOC ITMN2 | Mean (SD) | 1542 (919) | 1823 (619) | 672 (260) | 1163 (1584) |
SOC ITMN3 | Mean (SD) | 3569 (2749) | 7887 (7163) | 1224 (582) | 901 (737) |
SOC ITMN4 | Mean (SD) | 4561 (3052) | 2577 (1866) | 1427 (1140) | 2925 (2673) |
SOC ITMN5 | Mean (SD) | 3235 (2819) | 3513 (1647) | 1079 (1121) | 1425 (1032) |
SOC PSMMT | Mean (SD) | 6.48 (1.38) | 4.50 (2.12) | 4.50 (1.29) | 3.11 (2.67) |
SWM BE | Mean (SD) | 13.70 (8.99) | 27.50 (3.54) | 22.50 (3.00) | 25.20 (5.91) |
Omission Errors | Commission Errors | Motor Errors | ||
---|---|---|---|---|
Omission Errors | Pearson’s r | - | ||
p-value | - | |||
Commission Errors | Pearson’s r | 0.390 * | - | |
p-value | 0.015 | - | ||
Motor Errors | Pearson’s r | 0.651 *** | 0.365 * | - |
p-value | <0.001 | 0.024 | - | |
SOC ITMN2 | Pearson’s r | −0.371 * | −0.111 | −0.058 |
p-value | 0.022 | 0.507 | 0.728 | |
SOC ITMN3 | Pearson’s r | −0.349 * | −0.290 | −0.208 |
p-value | 0.032 | 0.078 | 0.210 | |
SOC ITMN4 | Pearson’s r | −0.569 *** | −0.435 ** | −0.460 ** |
p-value | <0.001 | 0.006 | 0.004 | |
SOC ITMN5 | Pearson’s r | −0.494 ** | −0.402 * | −0.327 * |
p-value | 0.002 | 0.012 | 0.045 | |
SOC PSMMT | Pearson’s r | −0.613 *** | −0.320 | −0.527 *** |
p-value | <0.001 | 0.050 | <0.001 | |
SWM BE | Pearson’s r | 0.399 * | 0.472 ** | 0.327 * |
p-value | 0.013 | 0.003 | 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Y.; Kang, S.; Kim, J.; Ryu, J.-K.; Jeong, E.-H. Clinical Utility of Virtual Kitchen Errand Task for Children (VKET-C) as a Functional Cognition Evaluation for Children with Developmental Disabilities. Children 2024, 11, 1291. https://doi.org/10.3390/children11111291
Ju Y, Kang S, Kim J, Ryu J-K, Jeong E-H. Clinical Utility of Virtual Kitchen Errand Task for Children (VKET-C) as a Functional Cognition Evaluation for Children with Developmental Disabilities. Children. 2024; 11(11):1291. https://doi.org/10.3390/children11111291
Chicago/Turabian StyleJu, Yumi, Sura Kang, Jihye Kim, Jeh-Kwang Ryu, and Eun-Hwa Jeong. 2024. "Clinical Utility of Virtual Kitchen Errand Task for Children (VKET-C) as a Functional Cognition Evaluation for Children with Developmental Disabilities" Children 11, no. 11: 1291. https://doi.org/10.3390/children11111291
APA StyleJu, Y., Kang, S., Kim, J., Ryu, J.-K., & Jeong, E.-H. (2024). Clinical Utility of Virtual Kitchen Errand Task for Children (VKET-C) as a Functional Cognition Evaluation for Children with Developmental Disabilities. Children, 11(11), 1291. https://doi.org/10.3390/children11111291