Proteomic Signatures of Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Definition and Clinical Presentation of MIS-C
4. Brief Overview of Relevant Proteomic Methods
4.1. Mass Spectrometry (MS)
4.2. Affinity-Based Proteomics
4.3. Biospecimens in MIS-C Proteomic Research
5. MIS-C vs. Acute SARS-CoV-2 Infection
6. Association of Proteomic Signatures in MIS-C with Clinical Parameters
7. MIS-C vs. Kawasaki Disease (KD)
8. MIS-C vs. Secondary Hemophagocytic Lymphohistiocytosis (sHLH)/Macrophage Activation Syndrome (MAS)
9. MIS-C vs. Pediatric Infection
9.1. MIS-C vs. Bacterial and Viral Infection
9.2. MIS-C vs. Pediatric Sepsis
10. MIS-C vs. Cardiac Adverse Events Following COVID-19 Immunization
11. Limitations and Challenges in Proteomic Research for MIS-C Biomarkers
12. Future Directions
13. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernández-García, M.; Roldan-Berengue, E.; Guitart, C.; Girona-Alarcón, M.; Argüello, G.; Pino, R.; De Sevilla, M.F.; García-García, J.J.; Jordan, I. Multisystem inflammatory syndrome in children (MIS-C) and sepsis differentiation by a clinical and analytical score: MISSEP score. Eur. J. Pediatr. 2023, 182, 5109–5118. [Google Scholar] [CrossRef] [PubMed]
- Day-Lewis, M.; Berbert, L.; Baker, A.; Dionne, A.; Newburger, J.W.; Son, M.B.F. Updated Case Definition of MIS-C and Implications for Clinical Care. Pediatrics 2024, 153, e2023063259. [Google Scholar] [CrossRef] [PubMed]
- Waseem, M.; Shariff, M.A.; Tay, E.T.; Mortel, D.; Savadkar, S.; Lee, H.; Kondamudi, N.; Liang, T. Multisystem Inflammatory Syndrome in Children. J. Emerg. Med. 2022, 62, 28–37. [Google Scholar] [CrossRef]
- Giacalone, M.; Scheier, E.; Shavit, I. Multisystem inflammatory syndrome in children (MIS-C): A mini-review. Int. J. Emerg. Med. 2021, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Reiter, A.; Verweyen, E.L.; Queste, E.; Fuehner, S.; Jakob, A.; Masjosthusmann, K.; Hinze, C.; Wittkowski, H.; Foell, D.; Meinzer, U.; et al. Proteomic mapping identifies serum marker signatures associated with MIS-C specific hyperinflammation and cardiovascular manifestation. Clin. Immunol. 2024, 264, 110237. [Google Scholar] [CrossRef]
- Hoste, L.; Van Paemel, R.; Haerynck, F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review. Eur. J. Pediatr. 2021, 180, 2019–2034. [Google Scholar] [CrossRef]
- Yeoh, S.; Estrada-Rivadeneyra, D.; Jackson, H.; Keren, I.; Galassini, R.; Cooray, S.; Shah, P.; Agyeman, P.; Basmaci, R.; Carrol, E.; et al. Plasma Protein Biomarkers Distinguish Multisystem Inflammatory Syndrome in Children From Other Pediatric Infectious and Inflammatory Diseases. Pediatr. Infect. Dis. J. 2024, 43, 444–453. [Google Scholar] [CrossRef]
- Patel, J.M. Multisystem Inflammatory Syndrome in Children (MIS-C). Curr. Allergy Asthma Rep. 2022, 22, 53–60. [Google Scholar] [CrossRef]
- McCafferty, C.; Cai, T.; Borgel, D.; Lasne, D.; Renolleau, S.; Vedrenne-Cloquet, M.; Bonnet, D.; Wu, J.; Zaw, T.; Bhatnagar, A.; et al. Pathophysiological pathway differences in children who present with COVID-19 ARDS compared to COVID-19 induced MIS-C. Nat. Commun. 2022, 13, 2391. [Google Scholar] [CrossRef]
- Patel, M.A.; Fraser, D.D.; Daley, M.; Cepinskas, G.; Veraldi, N.; Grazioli, S. The plasma proteome differentiates the multisystem inflammatory syndrome in children (MIS-C) from children with SARS-CoV-2 negative sepsis. Mol. Med. 2024, 30, 51. [Google Scholar] [CrossRef]
- Nygaard, U.; Nielsen, A.B.; Dungu, K.H.S.; Drici, L.; Holm, M.; Ottenheijm, M.E.; Nielsen, A.B.; Glenthøj, J.P.; Schmidt, L.S.; Cortes, D.; et al. Proteomic profiling reveals diagnostic signatures and pathogenic insights in multisystem inflammatory syndrome in children. Commun. Biol. 2024, 7, 688. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Cheng, C.; Zhang, L. High-throughput proteomics: A methodological mini-review. Lab. Investig. 2022, 102, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Rex, D.A.B.; Schuster, D.; Neely, B.A.; Rosano, G.L.; Volkmar, N.; Momenzadeh, A.; Peters-Clarke, T.M.; Egbert, S.B.; Kreimer, S.; et al. Comprehensive Overview of Bottom-Up Proteomics using Mass Spectrometry. arXiv 2023, arXiv:2311.07791v1. [Google Scholar] [PubMed]
- Rezaeeyan, H.; Arabfard, M.; Rasouli, H.R.; Shahriary, A.; Gh, B.F.N.M. Evaluation of common protein biomarkers involved in the pathogenesis of respiratory diseases with proteomic methods: A systematic review. Immun. Inflamm. Dis. 2023, 11, e1090. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.C.; Overgaard, M.; Melholt Rasmussen, L. Plasma proteomics to identify biomarkers—Application to cardiovascular diseases. Transl. Proteom. 2015, 7, 40–48. [Google Scholar] [CrossRef]
- Fu, L.; Guldiken, N.; Remih, K.; Karl, A.S.; Preisinger, C.; Strnad, P. Serum/Plasma Proteome in Non-Malignant Liver Disease. Int. J. Mol. Sci. 2024, 25, 2008. [Google Scholar] [CrossRef]
- Birhanu, A.G. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin. Proteom. 2023, 20, 32. [Google Scholar] [CrossRef]
- Godfred-Cato, S.; Bryant, B.; Leung, J.; Oster, M.E.; Conklin, L.; Abrams, J.; Roguski, K.; Wallace, B.; Prezzato, E.; Koumans, E.H.; et al. COVID-19–Associated Multisystem Inflammatory Syndrome in Children—United States, March–July 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 1074–1080. [Google Scholar] [CrossRef]
- Son, M.B.F.; Burns, J.C.; Newburger, J.W. A New Definition for Multisystem Inflammatory Syndrome in Children. Pediatrics 2023, 151, e2022060302. [Google Scholar] [CrossRef]
- Ahmed, M.; Advani, S.; Moreira, A.; Zoretic, S.; Martinez, J.; Chorath, K.; Acosta, S.; Naqvi, R.; Burmeister-Morton, F.; Burmeister, F.; et al. Multisystem inflammatory syndrome in children: A systematic review. EClinicalMedicine 2020, 26, 100527. [Google Scholar] [CrossRef]
- Wu, E.Y.; Campbell, M.J. Cardiac Manifestations of Multisystem Inflammatory Syndrome in Children (MIS-C) Following COVID-19. Curr. Cardiol. Rep. 2021, 23, 168. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Smith, J.J.; Verweyen, E.L.; Clay, G.M.; Esteban, Y.M.; de Loizaga, S.R.; Baker, E.J.; Do, T.; Dhakal, S.; Lang, S.M.; Grom, A.A.; et al. Inflammatory biomarkers in COVID-19-associated multisystem inflammatory syndrome in children, Kawasaki disease, and macrophage activation syndrome: A cohort study. Lancet Rheumatol. 2021, 3, e574–e584. [Google Scholar] [CrossRef]
- CDC. Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with SARS-CoV-2 Infection 2023 Case Definition. Available online: https://ndc.services.cdc.gov/case-definitions/multisystem-inflammatory-syndrome-in-children-mis-c-2023/ (accessed on 5 August 2024).
- Sen, E.S.; Clarke, S.L.; Ramanan, A.V. Macrophage Activation Syndrome. Indian. J. Pediatr. 2016, 83, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, Q.; Zou, L.; Wu, J.; Guo, L.; Teng, L.; Zheng, R.; Jung, L.K.L.; Lu, M. Kawasaki disease shock syndrome: Clinical characteristics and possible use of IL-6, IL-10 and IFN-γ as biomarkers for early recognition. Pediatr. Rheumatol. Online J. 2019, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Bae, K.S.; Rhim, J.W.; Lee, S.Y.; Jeong, D.C.; Kang, J.H. Macrophage Activation Syndrome in Children: Update on Diagnosis and Treatment. Children 2024, 11, 755. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.; Minoia, F.; Davì, S.; Horne, A.; Bovis, F.; Pistorio, A.; Aricò, M.; Avcin, T.; Behrens, E.M.; De Benedetti, F.; et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League Against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Arthritis Rheumatol. 2016, 68, 566–576. [Google Scholar] [CrossRef]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 2017, 135, e927–e999. [Google Scholar] [CrossRef]
- Goldstein, B.; Giroir, B.; Randolph, A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef]
- Miranda, M.; Nadel, S. Pediatric Sepsis: A Summary of Current Definitions and Management Recommendations. Curr. Pediatr. Rep. 2023, 11, 29–39. [Google Scholar] [CrossRef]
- CDC. Toxic Shock Syndrome (Other Than Streptococcal) (TSS). 2011 Case Definition. Available online: https://ndc.services.cdc.gov/case-definitions/toxic-shock-syndrome-2011/ (accessed on 19 September 2024).
- CDC. Streptococcal Toxic Shock Syndrome (STSS) (Streptococcus pyogenes) 2010 Case Definition. Available online: https://ndc.services.cdc.gov/case-definitions/streptococcal-toxic-shock-syndrome-2010/ (accessed on 19 September 2024).
- Tebani, A.; Afonso, C.; Marret, S.; Bekri, S. Omics-Based Strategies in Precision Medicine: Toward a Paradigm Shift in Inborn Errors of Metabolism Investigations. Int. J. Mol. Sci. 2016, 17, 1555. [Google Scholar] [CrossRef]
- Gurke, R.; Bendes, A.; Bowes, J.; Koehm, M.; Twyman, R.M.; Barton, A.; Elewaut, D.; Goodyear, C.; Hahnefeld, L.; Hillenbrand, R.; et al. Omics and Multi-Omics Analysis for the Early Identification and Improved Outcome of Patients with Psoriatic Arthritis. Biomedicines 2022, 10, 2387. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G.P. Applications of multi-omics analysis in human diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef] [PubMed]
- Al-Amrani, S.; Al-Jabri, Z.; Al-Zaabi, A.; Alshekaili, J.; Al-Khabori, M. Proteomics: Concepts and applications in human medicine. World J. Biol. Chem. 2021, 12, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Consiglio, C.R.; Cotugno, N.; Sardh, F.; Pou, C.; Amodio, D.; Rodriguez, L.; Tan, Z.; Zicari, S.; Ruggiero, A.; Pascucci, G.R.; et al. The Immunology of Multisystem Inflammatory Syndrome in Children with COVID-19. Cell 2020, 183, 968–981.e7. [Google Scholar] [CrossRef]
- Diorio, C.; Shraim, R.; Vella, L.A.; Giles, J.R.; Baxter, A.E.; Oldridge, D.A.; Canna, S.W.; Henrickson, S.E.; McNerney, K.O.; Balamuth, F.; et al. Proteomic profiling of MIS-C patients indicates heterogeneity relating to interferon gamma dysregulation and vascular endothelial dysfunction. Nat. Commun. 2021, 12, 7222. [Google Scholar] [CrossRef]
- Porritt, R.A.; Binek, A.; Paschold, L.; Rivas, M.N.; McArdle, A.; Yonker, L.M.; Alter, G.; Chandnani, H.K.; Lopez, M.; Fasano, A.; et al. The autoimmune signature of hyperinflammatory multisystem inflammatory syndrome in children. J. Clin. Investig. 2021, 131, e151520. [Google Scholar] [CrossRef]
- Ramaswamy, A.; Brodsky, N.N.; Sumida, T.S.; Comi, M.; Asashima, H.; Hoehn, K.B.; Li, N.; Liu, Y.; Shah, A.; Ravindra, N.G.; et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity 2021, 54, 1083–1095.e7. [Google Scholar] [CrossRef]
- Sacco, K.; Castagnoli, R.; Vakkilainen, S.; Liu, C.; Delmonte, O.M.; Oguz, C.; Kaplan, I.M.; Alehashemi, S.; Burbelo, P.D.; Bhuyan, F.; et al. Immunopathological signatures in multisystem inflammatory syndrome in children and pediatric COVID-19. Nat. Med. 2022, 28, 1050–1062. [Google Scholar] [CrossRef]
- Druzak, S.; Iffrig, E.; Roberts, B.R.; Zhang, T.; Fibben, K.S.; Sakurai, Y.; Verkerke, H.P.; Rostad, C.A.; Chahroudi, A.; Schneider, F.; et al. Multiplatform analyses reveal distinct drivers of systemic pathogenesis in adult versus pediatric severe acute COVID-19. Nat. Commun. 2023, 14, 1638. [Google Scholar] [CrossRef]
- Gruber, C.N.; Patel, R.S.; Trachtman, R.; Lepow, L.; Amanat, F.; Krammer, F.; Wilson, K.M.; Onel, K.; Geanon, D.; Tuballes, K.; et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell 2020, 183, 982–995.e14. [Google Scholar] [CrossRef]
- Yonker, L.M.; Gilboa, T.; Ogata, A.F.; Senussi, Y.; Lazarovits, R.; Boribong, B.P.; Bartsch, Y.C.; Loiselle, M.; Rivas, M.N.; Porritt, R.A.; et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J. Clin. Investig. 2021, 131, e149633. [Google Scholar] [CrossRef] [PubMed]
- Amodio, D.; Pascucci, G.R.; Cotugno, N.; Rossetti, C.; Manno, E.C.; Pighi, C.; Morrocchi, E.; D'Alessandro, A.; Perrone, M.A.; Valentini, A.; et al. Similarities and differences between myocarditis following COVID-19 mRNA vaccine and multiple inflammatory syndrome with cardiac involvement in children. Clin. Immunol. 2023, 255, 109751. [Google Scholar] [CrossRef] [PubMed]
- Brodeur, K.E.; Liu, M.; Ibanez, D.; de Groot, M.J.; Chen, L.; Du, Y.; Seyal, E.; Laza-Briviesca, R.; Baker, A.; Chang, J.C.; et al. Elevation of IL-17 cytokines distinguishes Kawasaki disease from other pediatric inflammatory disorders. Arthritis Rheumatol. 2023, 76, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Tulling, A.J.; Holierhoek, M.G.; Jansen-Hoogendijk, A.M.; Hoste, L.; Haerynck, F.; Tavernier, S.J.; Oostenbrink, R.; Buysse, C.M.P.; Bannier, M.; Bekhof, J.; et al. Serum proteomics reveals hemophagocytic lymphohistiocytosis-like phenotype in a subset of patients with multisystem inflammatory syndrome in children. Clin. Immunol. 2024, 264, 110252. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yeon, S.Y.; Qian, C.; You, S.; Yang, W. On the Road to Accurate Protein Biomarkers in Prostate Cancer Diagnosis and Prognosis: Current Status and Future Advances. Int. J. Mol. Sci. 2021, 22, 13537. [Google Scholar] [CrossRef]
- Gobena, S.; Admassu, B.; Kinde, M.Z.; Gessese, A.T. Proteomics and Its Current Application in Biomedical Area: Concise Review. Sci. World J. 2024, 2024, 4454744. [Google Scholar] [CrossRef]
- Zhang, Y.; Fonslow, B.R.; Shan, B.; Baek, M.C.; Yates, J.R., 3rd. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 2013, 113, 2343–2394. [Google Scholar] [CrossRef]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- McArdle, A.J.; Menikou, S. What is proteomics? Arch. Dis. Child. Educ. Pr. Ed. 2021, 106, 178–181. [Google Scholar] [CrossRef]
- Karpievitch, Y.V.; Polpitiya, A.D.; Anderson, G.A.; Smith, R.D.; Dabney, A.R. Liquid Chromatography Mass Spectrometry-Based Proteomics: Biological and Technological Aspects. Ann. Appl. Stat. 2010, 4, 1797–1823. [Google Scholar] [CrossRef]
- Baldan-Martin, M.; Chaparro, M.; Gisbert, J.P. Systematic Review: Urine Biomarker Discovery for Inflammatory Bowel Disease Diagnosis. Int. J. Mol. Sci. 2023, 24, 10159. [Google Scholar] [CrossRef] [PubMed]
- Wenk, D.; Zuo, C.; Kislinger, T.; Sepiashvili, L. Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers. Clin. Proteom. 2024, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Kuku, K.O.; Oyetoro, R.; Hashemian, M.; Livinski, A.A.; Shearer, J.J.; Joo, J.; Psaty, B.M.; Levy, D.; Ganz, P.; Roger, V.L. Proteomics for heart failure risk stratification: A systematic review. BMC Med. 2024, 22, 34. [Google Scholar] [CrossRef] [PubMed]
- Stoevesandt, O.; Taussig, M.J. Affinity proteomics: The role of specific binding reagents in human proteome analysis. Expert. Rev. Proteom. 2012, 9, 401–414. [Google Scholar] [CrossRef]
- Aguilar-Mahecha, A.; Kuzyk, M.A.; Domanski, D.; Borchers, C.H.; Basik, M. The effect of pre-analytical variability on the measurement of MRM-MS-based mid- to high-abundance plasma protein biomarkers and a panel of cytokines. PLoS ONE 2012, 7, e38290. [Google Scholar] [CrossRef]
- Nakayasu, E.S.; Gritsenko, M.; Piehowski, P.D.; Gao, Y.; Orton, D.J.; Schepmoes, A.A.; Fillmore, T.L.; Frohnert, B.I.; Rewers, M.; Krischer, J.P.; et al. Tutorial: Best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat. Protoc. 2021, 16, 3737–3760. [Google Scholar] [CrossRef]
- Gerszten, R.E.; Accurso, F.; Bernard, G.R.; Caprioli, R.M.; Klee, E.W.; Klee, G.G.; Kullo, I.; Laguna, T.A.; Roth, F.P.; Sabatine, M.; et al. Challenges in translating plasma proteomics from bench to bedside: Update from the NHLBI Clinical Proteomics Programs. Am. J. Physiol. Lung Cell Mol. Physiol. 2008, 295, L16–L22. [Google Scholar] [CrossRef]
- Gupta, S.L.; Tyagi, R.; Dhar, A.; Oswal, N.; Khandelwal, A.; Jaiswal, R.K. Children’s SARS-CoV-2 Infection and Their Vaccination. Vaccines 2023, 11, 418. [Google Scholar] [CrossRef]
- Arnold, D.M.; Patriquin, C.J.; Nazy, I. Thrombotic microangiopathies: A general approach to diagnosis and management. CMAJ 2017, 189, E153–E159. [Google Scholar] [CrossRef]
- Nalçacıoğlu, H.; Önal, H.G.; Bozkaya Yücel, B.; Tekcan Karali, D.; Erdeniz, E.; Öz Tuncer, G.; Aydoğ, Ö. Case report: Thrombotic microangiopathy in pediatric multisystem inflammatory syndrome associated with COVID-19: A case series. Front. Pediatr. 2023, 11, 1254308. [Google Scholar] [CrossRef]
- Mahmoud, S.; El-Kalliny, M.; Kotby, A.; El-Ganzoury, M.; Fouda, E.; Ibrahim, H. Treatment of MIS-C in Children and Adolescents. Curr. Pediatr. Rep. 2022, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- CDC. Clinical Treatment of Multisystem Inflammatory Syndrome in Children. Available online: https://www.cdc.gov/mis/hcp/clinical-care-treatment/index.html (accessed on 12 August 2024).
- Nadig, P.L.; Joshi, V.; Pilania, R.K.; Kumrah, R.; Kabeerdoss, J.; Sharma, S.; Suri, D.; Rawat, A.; Singh, S. Intravenous Immunoglobulin in Kawasaki Disease-Evolution and Pathogenic Mechanisms. Diagnostics 2023, 13, 2338. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.H.; Tang, M.; Zhang, H.X.; Dan Luo, E.; Zhang, R.; Shuai, S.P.; Liang, H.; Tao, W.J.; Wu, M.J.; Wen, Y.; et al. Therapeutic Window of Intravenous Immunoglobulin (IVIG) and its correlation with IVIG-resistant in Kawasaki Disease: A retrospective study. J. Pediatr. 2023, 99, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Dusser, P.; Belot, A.; Bajolle, F.; Kevorkian-Verguet, C.; Meinzer, U.; Huet, F.; Tiriau, S.; Kone-Paut, I. Subcutaneous anakinra in the management of refractory MIS-C in France. Front. Pediatr. 2024, 12, 1270878. [Google Scholar] [CrossRef]
- Tsai, C.-M.; Lin, C.-H.R.; Kuo, H.-C.; Cheng, F.-J.; Yu, H.-R.; Hung, T.-C.; Hung, C.-S.; Huang, C.-M.; Chu, Y.-C.; Huang, Y.-H. Use of Machine Learning to Differentiate Children with Kawasaki Disease from Other Febrile Children in a Pediatric Emergency Department. JAMA Netw. Open 2023, 6, e237489. [Google Scholar] [CrossRef]
- Chaudhary, H.; Nameirakpam, J.; Kumrah, R.; Pandiarajan, V.; Suri, D.; Rawat, A.; Singh, S. Biomarkers for Kawasaki Disease: Clinical Utility and the Challenges Ahead. Front. Pediatr. 2019, 7, 242. [Google Scholar] [CrossRef]
- Noval Rivas, M.; Arditi, M. Kawasaki Disease and Multisystem Inflammatory Syndrome in Children. Rheum. Dis. Clin. North. Am. 2023, 49, 647–659. [Google Scholar] [CrossRef]
- Lin, I.C.; Suen, J.L.; Huang, S.K.; Chou, M.H.; Kuo, H.C.; Lo, M.H.; Kuo, K.C.; Wang, L. Involvement of IL-17 A/IL-17 Receptor A with Neutrophil Recruitment and the Severity of Coronary Arteritis in Kawasaki Disease. J. Clin. Immunol. 2024, 44, 77. [Google Scholar] [CrossRef]
- Nie, L.; Guo, X.; Esmailzadeh, L.; Zhang, J.; Asadi, A.; Collinge, M.; Li, X.; Kim, J.D.; Woolls, M.; Jin, S.W.; et al. Transmembrane protein ESDN promotes endothelial VEGF signaling and regulates angiogenesis. J. Clin. Investig. 2013, 123, 5082–5097. [Google Scholar] [CrossRef]
- Poniecka, A.; Smolewska, E. A fine line between macrophage activation syndrome and multisystem inflammatory syndrome in children—Literature review based on two case reports. Reumatologia 2021, 59, 47–57. [Google Scholar] [CrossRef]
- Buda, P.; Strauss, E.; Januszkiewicz-Lewandowska, D.; Czerwinska, E.; Ludwikowska, K.; Szenborn, L.; Gowin, E.; Okarska-Napierała, M.; Kuchar, E.; Ksia̧Zyk, J. Clinical characteristics of children with MIS-C fulfilling classification criteria for macrophage activation syndrome. Front. Pediatr. 2022, 10, 981711. [Google Scholar] [CrossRef] [PubMed]
- Schulert, G.S.; Grom, A.A. Macrophage activation syndrome and cytokine-directed therapies. Best. Pr. Res. Clin. Rheumatol. 2014, 28, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Bojan, A.; Parvu, A.; Zsoldos, I.A.; Torok, T.; Farcas, A.D. Macrophage activation syndrome: A diagnostic challenge (Review). Exp. Ther. Med. 2021, 22, 904. [Google Scholar] [CrossRef] [PubMed]
- Ailioaie, L.M.; Ailioaie, C.; Litscher, G. Biomarkers in Systemic Juvenile Idiopathic Arthritis, Macrophage Activation Syndrome and Their Importance in COVID Era. Int. J. Mol. Sci. 2022, 23, 12757. [Google Scholar] [CrossRef]
- Trapani, S.; Rubino, C.; Lasagni, D.; Pegoraro, F.; Resti, M.; Simonini, G.; Indolfi, G. Thromboembolic complications in children with COVID-19 and MIS-C: A narrative review. Front. Pediatr. 2022, 10, 944743. [Google Scholar] [CrossRef]
- Lanziotti, V.S.; Póvoa, P.; Soares, M.; Silva, J.R.; Barbosa, A.P.; Salluh, J.I. Use of biomarkers in pediatric sepsis: Literature review. Rev. Bras. Ter. Intensiv. 2016, 28, 472–482. [Google Scholar] [CrossRef]
- Fazlollahi, A.; Zahmatyar, M.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Shekarriz-Foumani, R.; Kolahi, A.A.; Singh, K.; Safiri, S. Cardiac complications following mRNA COVID-19 vaccines: A systematic review of case reports and case series. Rev. Med. Virol. 2022, 32, e2318. [Google Scholar] [CrossRef]
- Buoninfante, A.; Andeweg, A.; Genov, G.; Cavaleri, M. Myocarditis associated with COVID-19 vaccination. NPJ Vaccines 2024, 9, 122. [Google Scholar] [CrossRef]
- La Torre, F.; Taddio, A.; Conti, C.; Cattalini, M. Multi-Inflammatory Syndrome in Children (MIS-C) in 2023: Is It Time to Forget about It? Children 2023, 10, 980. [Google Scholar] [CrossRef]
- Hamad Saied, M.; van der Griend, L.; van Straalen, J.W.; Wulffraat, N.M.; Vastert, S.; Jansen, M.H.A. The protective effect of COVID-19 vaccines on developing multisystem inflammatory syndrome in children (MIS-C): A systematic literature review and meta-analysis. Pediatr. Rheumatol. Online J. 2023, 21, 80. [Google Scholar] [CrossRef]
- Wang, J.; Xue, M.; Hu, Y.; Li, J.; Li, Z.; Wang, Y. Proteomic Insights into Osteoporosis: Unraveling Diagnostic Markers of and Therapeutic Targets for the Metabolic Bone Disease. Biomolecules 2024, 14, 554. [Google Scholar] [CrossRef] [PubMed]
MIS-C 2023 CDC Case Definition a | Classic Kawasaki Disease 2017 AHA Criteria b | MAS Characteristic Clinical Features c | Pediatric SIRS, Sepsis, Septic Shock d | CDC Definitions of Staphylococcal or Streptococcal TSS e | |
---|---|---|---|---|---|
Fever | Yes (≥38.0 °C) | Yes (for at least 5 days) | Yes (high fever, non-remitting) | Hyperpyrexia (>38.5 °C) Or hypothermia (<36 °C) | Yes (Staph. TSS: ≥38.9 °C) |
Main Organ/System Involved * | Cardiac, Gastrointestinal, Hematologic, Mucocutaneous | Lymph nodes, Mucocutaneous (Cardiac involvement is not included in the criteria of classic KD, however coronary artery aneurysms are reported in approximately 25% of untreated cases) | CNS, Hematological, Hepatic, Mucocutaneous, Spleen | Cardiovascular, CNS, Hematologic, Hepatic, Kidney, Respiratory | CNS (Staph. TSS), Hepatic, Hematologic, Gastrointestinal (Staph. TSS), Kidney, Muscular (Staph. TSS), Mucocutaneous, Respiratory (Strep. TSS) |
Gastrointestinal Symptoms | Yes (abdominal pain or vomiting or diarrhea) | - | - | - | Yes (Staph. TSS: Vomiting, diarrhea) |
Cardiac involvement | Yes (LVEF < 55% or CAA or Elevated Troponin) | - (Cardiac involvement is not included in the criteria of classic KD, however coronary artery aneurysms are reported in approximately 25% of untreated cases) | - | Yes (SIRS: Age-dependent tachycardia or bradycardia; Severe sepsis: cardiovascular dysfunction defined as hypotension, receipt of vasoactive medication or impaired perfusion despite fluid resuscitation) | - |
Respiratory Involvement | - | - | - | Yes (tachypnea or need for mechanical ventilation or respiratory dysfunction) | Yes (Strep.TSS: ARDS) |
Lymphadenopathy | - | Yes (cervical) | Yes (generalized) | - | - |
Mucocutaneous involvement | Yes (rash or Inflammation of the oral mucosa or conjunctivitis or conjunctival injection or extremity findings) | Yes (rash or bilateral conjunctival injection or oral mucosal changes or extremity findings) | Yes (rash, mucosal bleeding) | - | Yes (Staph: rash, vaginal, oropharyngeal, or conjunctival hyperemia; Strep TSS: rash,soft-tissue necrosis) |
Rash Characteristics | Any type of rash | Polymorphous rash (maculopapular, diffuse erythroderma, or erythema multiforme-like) | Petechiae, Purpuric [24] | - | Staph. TSS: diffuse macular erythroderma Strep. TSS: generalized erythematous macular rash, soft-tissue necrosis |
Hematologic Involvement | Yes (platelet count < 150,000 cells/µL or absolute lymphocyte count < 1000 cells/µL) | - | - | Yes (SIRS: leukocyte count elevated or depressed for age or >10% immature neutrophils, hematologic dysfunction) | Yes (Staph. TSS: platelet Count < 150,000 cells/µL Strep. TSS: coagulopathy) |
CNS Involvement | - | - | Yes | Yes (neurological dysfunction: altered mental status or Glasgow Coma Scale ≤ 11) | Yes (Staph. TSS: disorientation or alterations in consciousness without focal neurologic signs) |
Hepatic Involvement | - | - | Yes (hepatomegalia) | Yes (hepatic dysfunction) | Yes (liver abnormalities) |
Kidney Involvement | - | - | - | Yes (oligouria or renal dysfunction) | Yes (renal abnormalities) |
Shock | Yes (presence of shock is included in the clinical criteria for MIS-C) | Uncommon [incidence rate of Kawasaki Disease Shock Syndrome: 2.60–6.95% [25]; Shock is not in the diagnostic criteria for classic Kawasaki Disease] | Yes [many patients present with shock and require ICU admission [26]] | Yes (pediatric septic shock) | Yes (hypotension/shock) |
First Author (Year) | Study Population | Sample Size | Enrollment Period of MIS-C Patients (Month/Year) | Specimen Type | Proteomic Method | No of MIS-C Patients c | Timing of MIS-C Specimen Acquisition: (Before or After MIS-C Treatment) |
---|---|---|---|---|---|---|---|
Consiglio (2020) [37] | MIS-C, HC a, KD acute SARS-CoV-2 infection a | 101 | March–May/2020 | Plasma | Olink Immune Response and Inflammation Panels | 11 | Before Or After d |
Gruber (2020) [43] | MIS-C, HC a acute and convalescent SARS-CoV-2 infection (children and adults) | 24 b | April–June/2020 | Plasma | Olink Inflammation panel | 9 | Before Or After d |
Diorio (2021) [38] | MIS-C, acute SARS-CoV-2 infection a, HC a | 88 | April–October/2020 | Plasma | Olink Explore 1536/384 panel | 22 | Before Or After d |
Porritt (2021) [39] | MIS-C, KD, HC, Febrile controls a | 96 | NA | Plasma or Serum | LC-MS/MS | 25 | Before Or After |
Ramaswamy (2021) [40] | MIS-C, HC a, HC (adults), acute SARS-CoV-2 infection (adults) | 7 b | NA | Serum | SomaScan platform (v4) | 3 | After |
Yonker (2021) [44] | MIS-C, HC a, acute SARS-CoV-2 a | 100 | NA | Plasma | Multiplexed Quantitative LC-MS Proteomics | 13 | Before |
McCafferty (2022) [9] | MIS-C, HC a, COVID-19- ARDs a, | 54 | 2020 | Plasma | RP-HPLC-MS | 29 | Before Or After (in most patients) |
Amodio (2023) [45] | MIS-C, c-AEFI, HC (age-matched) acute SARS-CoV-2 infection (age-matched) | 81 | NA | Plasma | Olink Inflammation panel | 14 | Before |
Sacco (2022) [41] | MIS-C, acute SARS-CoV-2 infection a, HC a | 262 | 03/2020–02/2021 | Plasma | SomaScan platform | 19 | Before Or After (in most patients) |
Brodeur (2023) [46] | MIS-C, KD, nsJIA, sJIA, JDM, MAS, HC a, Febrile controls a | 215 | 01/2020–12/2022 | Plasma or Serum | Olink Target 48 Cytokine Panel | 25 | Before |
Druzak (2023) [42] | MIS-C, HC a, HC (adults), Critically-ill adults without SARS-CoV-2 infection, acute SARS-CoV-2 infection (children and adults) | 19 b (children) | NA | Plasma | LC-MS/MS | 5 | Before Or After |
Nygaard (2024) [11] | MIS-C, KD, viral or bacterial infection, sepsis | 94 | 04/2020–03/2022 | Plasma | LC-MS/MS | 27 | Before (in most patients) Or After d |
Patel (2024] [10] | MIS-C, HC a, SARS-CoV-2 negative sepsis | 36 | NA | Plasma | Olink Explore 3072 library | 12 | NA |
Reiter (2024) [5] | MIS-C, KD, HC a, pediatric hyperinflammation (sJIA-assosiated MAS, secondary HLH) | 65 | NA | Serum | Olink Target 96 Inflammation and Target 96 Cardiovascular III panel | 31 | Before d |
Tulling (2024) [47] | MIS-C, HCa (age-matched) | 248 | 03/2020–04/2023 | Serum | Custom 60-plex Luminex panel Olink Explore 3072 panel | 60 e | Before Or After |
MIS-C vs. Control Group | Reference | Proteomic Method | Proteins Increased (↑) in MIS-C Compared to Control Group | Proteins Decreased (↓) in MIS-C Compared to Control Group | Biological Pathways |
---|---|---|---|---|---|
1.MIS-C vs. Acute SARS-CoV-2 infection | Gruber et al. [43] | Affinity-based | ↑ CXCL5, CXCL11, CXCL1, CXCL6, IL-17A, CD40, IL-6 * | NA | NA |
Diorio et al. [38] | Affinity-based | ↑ NT-PROBNP, PLA2GA, CALCA, CXCL10, CXCL9, CCL7, IL1RL1, NPPB, REG3A, TNFRSF6B, VSIG4, IL2RA, IL5RA, PLAT, REG1B, SDC1, SIGLEC10 (CG: mild SARS-CoV-2 infection) ↑ CXCL9, MMP8, OSM, RNASE3, AZU1, CALCA, CXCL10, IL10, MMP9, NTproBNP (CG: severe SARS-CoV-2 infection) | ↓ SFRP1, FGF21, PSPN, PBLD, GSTA1, FABP1, DDX58, AGR2, BPIFB1, GAL, TRIM21 (CG: severe SARS-CoV-2 infection) | NA | |
Yonker et al. [44] | MS | ↑ zonulin, LBP | NA | NA | |
Sacco et al. [41] | Affinity-based | ↑ NPPB.1, PLA2G2A, H2AFZ, HIST3H2A, IGFBP2, IL22, FERRITIN, CD177, PRTN3, APOE HGE, HIST2H2BE, MRC1, IL1R2, PLAT, RETN, MMP9, FCGR3B, CCL23, TNFRSF1B, SELE, FSTL3, CD163, MMP17, TNFRSF1A (Top 25 upregulated) | ↓ CA6, APOM, PGAM1, MMP12, IL22RA2, SLITRK5, IGFBP1, IGFBP3, CADM1, CD36, IL1R1, CTSV, WIF1, SPINT1, MRC2, ADAMTS13, FAP, ACAN, EPHA5, AHSG, FETUB, GDF2, CNTFR, RET, HPX (Top 25 downregulated) | Hyperactivation of matrisome-associated response, cell activation, signaling receptor binding, defense response, collagen-containing extracellular matrix, locomotion, external encapsulating structure, positive regulation of signaling, cell migration, biological adhesion, locomotion, cell surface, signaling receptor binding neurogenesis, peptidyl tyrosine modification neuron development, cell part morphogenesis, neuron differentiation | |
Druzak et al. [42] | MS | ↑ CRP, SAA1, DEFA 1: DEFA:1B, THBS1, PPBP, WARS1, GSTO1, LBP, VWF, ELANE | ↓ IGFBP, APOM, AHSG, APOA1, ITIH2, ITIH1, HRG | pCOVID-19; various infectious processes (e.g., coronavirus infection), metabolic processes associated with nucleotides and proteins. MIS-C; African trypanosomiasis, Metabolic processes associated with lipid metabolism | |
Amodio et al. [45] | Affinity-based | ↑ IL-10RB, CXCL9, IL-17A, VEGFA, FGF-23. SLAMF1, CSF-1, GDNF | ↓ LAP TGF-beta-1, SCF | NA | |
2. MIS-C vs. COVID-19 ARDS | McCafferty et al. [9] | MS | Samples of MIS-C and ARDS did not separate distinctly | NA | |
4.MIS-C vs. Kawasaki Disease | Consiglio et al. [37] | Affinity-based | ↑ ADA, SCF, TWEAK (among others) | ↓ IL-6, IL-17A, CXCL10, DCBLD2 (among others) | NA |
Porritt et al. [39] | MS | ↑ FTL, FCGR3A, C1qA, C1qB, C1qC, TNC, QSOX1, GPX3, PRSS3, AZGP1, SERPINB3, RPS11 (in severe MIS-C) | ↓ HRG, SHBG, C7, A2M (in severe MIS-C) | NA | |
Brodeur et al. [46] | Affinity-based | ↑ IL-10, CCL4, CCL8, CXCL9, IFN-γ | ↓ IL-17 cytokine family (IL-17A, IL-17C, and IL-17F), IL-13 | NA | |
Reiter et al. [5] | Affinity-based | ↑4E-BP1, Gal-3, TIMP4, ADA, TR-AP, SIRT-2 (top 6 markers) | NA | NA | |
5.MIS-C vs. HLH/MAS | Brodeur et al. [46] | Affinity-based | ↑ IL-10, CCL4, CCL8 | ↓ IL-33, IL-18 | NA |
Reiter et al. [5] | Affinity-based | 58 protein markers could be identified, the following of which had ↑ levels, among others: IL-17A, MMP-9, HGF, CASP-3 | 58 protein markers could be identified, the following of which had ↓ levels, among others: IL-18, TRANCE | NA | |
6. MIS-C vs. Bacterial or Viral Infection, Sepsis and Kawasaki Disease | Nygaard et al. [11] | MS | Significantly different levels of 105 proteins were identified, the following of which had ↑ levels: LCP1, FCGR3A (CD16a), B2M, FCGBP, SERPINA3, CRP, ORM1/2, SAA1, HP, CD14, C1QB, C1S, C2, C4BPB, C4B, C9, CFI, FCN2, F10, F11, FG, vWF, APOE, APOF (among others) | Significantly different levels of 105 proteins were identified, the following of which had ↓ levels: PGLYRP2, F12, F13A1, F13B, SERPINC1, PROC, SERPIND1, PF4, KLKB1, PLG, THBS1, PPBP, ACTB, ECM1, FN1, CLU, APOA, APOC1, APOC3, APOH, BCHE (among others) | 15 pathways affected in MIS-C compared to controls including pathways of immunological responses, coagulation, cell death and cell growth, platelet activation |
7. MIS-C vs. Bacterial or Viral Infection | Nygaard et al. [11] | MS | ↑ LCP1, CD16a, SERPINA3 (part of a 4-protein diagnostic signature developed with artificial intelligence) | ↓ BCHE (part of a 4-protein diagnostic signature developed with artificial intelligence) | NA |
8. MIS-C vs. Pediatric Sepsis | Patel et al. [10] | Affinity-based | ↑ LTA4H, C3, PDGFA, F10, ANGPT1, PPBP, BDNF, SERPINI1, EGF, LYSMD3 (part of a 15-protein set identified with COMBAT-Seq batch effect adjusted feature selection) | ↓ MRPL58, BTLA, CREBZF, PTN, BMP4 (part of a 15-protein set identified with COMBAT-Seq batch effect adjusted feature selection) | Inflammation, cell growth and survival metabolism, angiogenesis, organ/cell-specific function |
9. MIS-C vs. c-AEFI | Amodio et al. [45] | Affinity-based | ↑ IL-10, CXCL10, CXCL9, CDCP1, IFN-γ, MCP3, TGF-α | ↓ CXCL5, SCF, CD244, IL-20RA, FGF-5 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dourdouna, M.-M.; Tatsi, E.-B.; Syriopoulou, V.; Michos, A. Proteomic Signatures of Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19: A Narrative Review. Children 2024, 11, 1174. https://doi.org/10.3390/children11101174
Dourdouna M-M, Tatsi E-B, Syriopoulou V, Michos A. Proteomic Signatures of Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19: A Narrative Review. Children. 2024; 11(10):1174. https://doi.org/10.3390/children11101174
Chicago/Turabian StyleDourdouna, Maria-Myrto, Elizabeth-Barbara Tatsi, Vasiliki Syriopoulou, and Athanasios Michos. 2024. "Proteomic Signatures of Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with COVID-19: A Narrative Review" Children 11, no. 10: 1174. https://doi.org/10.3390/children11101174