Correlation of Speckle-Tracking Echocardiography with Traditional Biomarkers in Predicting Cardiotoxicity among Pediatric Hemato-Oncology Patients: A Comprehensive Evaluation of Anthracycline Dosages and Treatment Protocols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Ethics
2.2. Inclusion and Exclusion Criteria
2.3. Materials Used and Definitions
2.4. Statistical Analysis
3. Results
3.1. Background Data of Patients
3.2. Oncological Data
3.3. Cancer Function Assessment
3.4. Correlation Analysis and Predictive Factors
3.5. Regression Analysis
4. Discussion
4.1. Literature Findings
4.2. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Leary, M.; Krailo, M.; Anderson, J.R.; Reaman, G.H.; Children’s Oncology Group. Progress in childhood cancer: 50 years of research collaboration, a report from the Children’s Oncology Group. Semin. Oncol. 2008, 35, 484–493. [Google Scholar] [CrossRef]
- Avila, M.S.; Siqueira, S.R.R.; Ferreira, S.M.A.; Bocchi, E.A. Prevention and Treatment of Chemotherapy-Induced Cardiotoxicity. Methodist Debakey Cardiovasc. J. 2019, 15, 267–273. [Google Scholar] [CrossRef]
- Mudd, T.W., Jr.; Khalid, M.; Guddati, A.K. Cardiotoxicity of chemotherapy and targeted agents. Am. J. Cancer Res. 2021, 11, 1132–1147. [Google Scholar]
- Tripaydonis, A.; Conyers, R.; Elliott, D.A. Pediatric Anthracycline-Induced Cardiotoxicity: Mechanisms, Pharmacogenomics, and Pluripotent Stem-Cell Modeling. Clin. Pharmacol. Ther. 2019, 105, 614–624. [Google Scholar] [CrossRef]
- Kibudde, S.; Mondo, C.K.; Kibirige, D.; Walusansa, V.; Orem, J. Anthracycline induced cardiotoxicity in adult cancer patients: A prospective cohort study from a specialized oncology treatment centre in Uganda. Afr. Health Sci. 2019, 19, 1647–1656. [Google Scholar] [CrossRef]
- Jong, J.; Pinney, J.R.; Packard, R.R.S. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front. Cardiovasc. Med. 2022, 9, 919719. [Google Scholar] [CrossRef]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef]
- Sitia, S.; Tomasoni, L.; Turiel, M. Speckle tracking echocardiography: A new approach to myocardial function. World J. Cardiol. 2010, 2, 1–5. [Google Scholar] [CrossRef]
- Gripp, E.A.; Oliveira, G.E.; Feijó, L.A.; Garcia, M.I.; Xavier, S.S.; Sousa, A.S. Global Longitudinal Strain Accuracy for Cardiotoxicity Prediction in a Cohort of Breast Cancer Patients During Anthracycline and/or Trastuzumab Treatment. Arq. Bras. Cardiol. 2018, 110, 140–150. [Google Scholar] [CrossRef]
- Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S.; Noonan, D.M. Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst. 2010, 102, 14–25. [Google Scholar] [CrossRef]
- Stachowiak, P.; Kornacewicz-Jach, Z.; Safranow, K. Prognostic role of troponin and natriuretic peptides as biomarkers for deterioration of left ventricular ejection fraction after chemotherapy. Arch. Med. Sci. 2014, 10, 1007–1018. [Google Scholar] [CrossRef]
- Jiji, R.S.; Kramer, C.M.; Salerno, M. Non-invasive imaging and monitoring cardiotoxicity of cancer therapeutic drugs. J. Nucl. Cardiol. 2012, 19, 377–388. [Google Scholar] [CrossRef]
- Bohdan, M.; Kowalczys, A.; Mickiewicz, A.; Gruchała, M.; Lewicka, E. Cancer Therapy-Related Cardiovascular Complications in Clinical Practice: Current Perspectives. J. Clin. Med. 2021, 10, 1647. [Google Scholar] [CrossRef]
- Tuzovic, M.; Wu, P.T.; Kianmahd, S.; Nguyen, K.L. Natural history of myocardial deformation in children, adolescents, and young adults exposed to anthracyclines: Systematic review and meta-analysis. Echocardiography 2018, 35, 922–934. [Google Scholar] [CrossRef]
- Sławiński, G.; Hawryszko, M.; Liżewska-Springer, A.; Nabiałek-Trojanowska, I.; Lewicka, E. Global Longitudinal Strain in Cardio-Oncology: A Review. Cancers 2023, 15, 986. [Google Scholar] [CrossRef]
- van der Linde, D.; van Hagen, I.; Veen, K.; Zuetenhorst, H.; van Dalen, B. Global longitudinal strain: An early marker for cardiotoxicity in patients treated for breast cancer. Neth. Heart J. 2023, 31, 103–108. [Google Scholar] [CrossRef]
- Wess, G.; Mäurer, J.; Simak, J.; Hartmann, K. Use of Simpson’s method of disc to detect early echocardiographic changes in Doberman Pinschers with dilated cardiomyopathy. J. Vet. Intern. Med. 2010, 24, 1069–1076. [Google Scholar] [CrossRef]
- Askin, L.; Yuce, E.İ.; Tanriverdi, O. Myocardial performance index and cardiovascular diseases. Echocardiography, 2023; ahead of print. [Google Scholar] [CrossRef]
- Radwan, H.; Hussein, E. Value of global longitudinal strain by two dimensional speckle tracking echocardiography in predicting coronary artery disease severity. Egypt. Heart J. 2017, 69, 95–101. [Google Scholar] [CrossRef]
- Ehrhardt, M.J.; Leerink, J.M.; Mulder, R.L.; Mavinkurve-Groothuis, A.; Kok, W.; Nohria, A.; Nathan, P.C.; Merkx, R.; de Baat, E.; Asogwa, O.A.; et al. Systematic review and updated recommendations for cardiomyopathy surveillance for survivors of childhood, adolescent, and young adult cancer from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2023, 24, e108–e120. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Scully, R.E.; Lipsitz, S.R.; Sallan, S.E.; Silverman, L.B.; Miller, T.L.; Barry, E.V.; Asselin, B.L.; Athale, U.; Clavell, L.A.; et al. Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: Long-term follow-up of a prospective, randomised, multicentre trial. Lancet Oncol. 2010, 11, 950–961. [Google Scholar] [CrossRef]
- Horacek, J.M.; Vasatova, M.; Pudil, R.; Tichy, M.; Zak, P.; Jakl, M.; Jebavy, L.; Maly, J. Biomarkers for the early detection of anthracycline-induced cardiotoxicity: Current status. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2014, 158, 511–517. [Google Scholar] [CrossRef]
- Armenian, S.H.; Hudson, M.M.; Mulder, R.L.; Chen, M.H.; Constine, L.S.; Dwyer, M.; Nathan, P.C.; Tissing, W.J.; Shankar, S.; Sieswerda, E.; et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015, 16, e123–e136. [Google Scholar] [CrossRef]
- Thavendiranathan, P.; Poulin, F.; Lim, K.D.; Plana, J.C.; Woo, A.; Marwick, T.H. Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy: A systematic review. J. Am. Coll. Cardiol. 2014, 63 Pt A, 2751–2768. [Google Scholar] [CrossRef]
- Eidem, B.W.; Sapp, B.G.; Suarez, C.R.; Cetta, F. Usefulness of the myocardial performance index for early detection of anthracycline-induced cardiotoxicity in children. Am. J. Cardiol. 2001, 87, 1120–1122. [Google Scholar] [CrossRef]
Variables | Doxorubicin (n = 82) | Epirubicin (n = 17) | p-Value |
---|---|---|---|
Age (mean ± SD) | 10.7 ± 4.4 | 10.2 ± 3.6 | 0.471 |
Age range | 1–18 | 1–17 | – |
BMI, kg/m2 (mean ± SD) | 20.5 ± 4.6 | 21.3 ± 5.8 | 0.308 |
BMI percentile categories | 0.748 | ||
>85% | 3 (3.7%) | 1 (5.9%) | |
50–85% | 12 (14.6%) | 4 (23.5%) | |
15–50% | 31 (37.8%) | 6 (35.3%) | |
5–15% | 30 (36.6%) | 4 (23.5%) | |
<5% | 6 (7.3%) | 2 (11.8%) | |
Gender (n,%) | 0.354 | ||
Male | 48 (58.5%) | 12 (70.6%) | |
Female | 34 (41.5%) | 5 (29.4%) | |
Dosage (mean ± SD) | 323.6 ± 75.7 | 355.9 ± 92.0 | 0.126 |
Cancer Histology | n (%) | Treatment Scheme | Cardiac Toxicity * (n,%) |
---|---|---|---|
Hodgkin lymphoma | 12 (12.1%) | ABVD | 4 (33.3%) |
Non-Hodgkin lymphoma | 7 (7.1%) | RCHOP | 2 (28.5%) |
Nephroblastoma | 12 (12.1%) | ISPO | 4 (33.3%) |
Osteosarcoma | 6 (6.1%) | EURAMOS | 3 (50.0%) |
Rhabdomyosarcoma | 5 (5.1%) | CWS | 3 (60.0%) |
Medulloblastoma | 2 (2.0%) | MET-HIT2000 | 0 (0.0%) |
T-ALL | 14 (14.1%) | ALL BFM 2014 | 5 (35.7%) |
B-ALL | 29 (29.3%) | ALL BFM 2014 | 7 (24.2%) |
AML | 12 (12.1%) | AML BFM 2014 | 2 (16.7%) |
Variables (Mean ± SD) | Normal Range * | Doxorubicin (n = 82) | Epirubicin (n = 17) | p-Value |
---|---|---|---|---|
cTnI | <2.0 ng/mL | 3.2 ± 0.5 | 2.7 ± 0.9 | 0.002 |
cTnT | <1.4 ng/mL | 1.5 ± 0.6 | 0.8 ± 0.5 | <0.001 |
BNP | <200 pg/mL | 260 ± 94 | 220 ± 61 | 0.096 |
NT-proBNP | <242 pg/mL | 282 ± 77 | 255 ± 53 | 0.172 |
CK-MB | <25 U/L | 33 ± 10 | 29 ± 8 | 0.129 |
CK | <200 U/L | 270 ± 91 | 204 ± 68 | 0.006 |
Variables (Mean ± SD) | Doxorubicin (n = 82) | Epirubicin (n = 17) | p-Value |
---|---|---|---|
Initial EF (mean ± SD) | 62.1 ± 5.5 | 64.7 ± 5.9 | 0.087 |
EF categories (initial) | 0.031 | ||
50–60% | 14 (17.1%) | 2 (11.8%) | |
60–70% | 62 (75.6%) | 10 (58.8%) | |
>70% | 6 (7.3%) | 5 (29.4%) | |
GLS (mean ± SD) | −15.5 ± 4.6 | −18.3 ± 5.8 | 0.034 |
SMOD (mean ± SD) | 54.4 ± 5.8 | 59.2 ± 6.6 | 0.003 |
MPI (mean ± SD) | 0.36 ± 0.05 | 0.41 ± 0.07 | 0.001 |
ECG | |||
Normal findings | 53 (64.6%) | 13 (76.5%) | 0.346 |
Abnormal | 29 (35.4%) | 4 (23.5%) | |
Cardiac ultrasound | 0.117 | ||
Normal findings | 36 (43.9%) | 11 (64.7%) | |
Abnormal | 46 (56.1%) | 6 (35.3%) | |
Cardiotoxicity (n,%) | 27 (32.9%) | 3 (17.6%) | 0.212 |
cTnI | cTnT | BNP | NT-proBNP | CK-MB | CK-MM | GLS | SMOD | MPI | ||
---|---|---|---|---|---|---|---|---|---|---|
cTnI | Rho | 1 | ||||||||
p-value | - | |||||||||
cTnT | Rho | 0.559 ** | 1 | |||||||
p-value | 0.001 | - | ||||||||
BNP | Rho | 0.406 ** | 0.331 | 1 | ||||||
p-value | 0.003 | 0.078 | - | |||||||
NT-proBNP | Rho | 0.351 | 0.306 | 0.390 ** | 1 | |||||
p-value | 0.040 | 0.192 | 0.001 | - | ||||||
CK-MB | Rho | 0.220 | 0.194 | 0.263 | 0.179 | 1 | ||||
p-value | 0.389 | 0.450 | 0.105 | 0.306 | - | |||||
CK-MM | Rho | 0.417 * | 0.630 ** | 0.208 | 0.322 | 0.264 | 1 | |||
p-value | 0.014 | 0.001 | 0.250 | 0.146 | 0.131 | - | ||||
GLS | Rho | 0.209 | 0.388 ** | 0.336 | 0.261 | 0.235 | 0.340 | 1 | ||
p-value | 0.087 | 0.001 | 0.078 | 0.204 | 0.319 | 0.401 | - | |||
SMOD | Rho | −0.258 | −0.321 | −0.105 | −0.392 ** | −0.190 | −0.374 * | −0.411 ** | 1 | |
p-value | 0.465 | 0.077 | 0.246 | 0.004 | 0.131 | 0.036 | 0.001 | - | ||
MPI | Rho | −0.160 | −0.369 * | −0.214 | −0.087 | −0.262 | −0.241 | 0.379 * | 0.530 ** | 1 |
p-value | 0.327 | 0.012 | 0.794 | 0.672 | 0.149 | 0.350 | 0.020 | 0.001 | - |
Adjusted Factors * | Odds Ratio | (95% CI) | p-Value |
---|---|---|---|
Age | 0.88 | 0.24–1.39 | 0.168 |
GLS | 1.24 | 0.81–4.03 | 0.221 |
SMOD | 4.05 | 1.33–7.40 | <0.001 |
MPI | 2.49 | 1.08–7.24 | 0.030 |
LVEF | 3.16 | 2.13–9.66 | <0.001 |
cTnI | 1.41 | 1.35–2.70 | 0.042 |
cTnT | 3.91 | 2.00–11.19 | <0.001 |
BNP | 1.22 | 0.94–1.63 | 0.094 |
NT-proBNP | 2.15 | 1.38–6.05 | <0.001 |
CK-MB | 1.31 | 0.89–1.92 | 0.253 |
CK-MM | 2.58 | 1.10–4.37 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardelean, A.M.; Olariu, I.C.; Isac, R.; Jurac, R.; Stolojanu, C.; Murariu, M.; Toma, A.-O.; Braescu, L.; Mavrea, A.; Doros, G. Correlation of Speckle-Tracking Echocardiography with Traditional Biomarkers in Predicting Cardiotoxicity among Pediatric Hemato-Oncology Patients: A Comprehensive Evaluation of Anthracycline Dosages and Treatment Protocols. Children 2023, 10, 1479. https://doi.org/10.3390/children10091479
Ardelean AM, Olariu IC, Isac R, Jurac R, Stolojanu C, Murariu M, Toma A-O, Braescu L, Mavrea A, Doros G. Correlation of Speckle-Tracking Echocardiography with Traditional Biomarkers in Predicting Cardiotoxicity among Pediatric Hemato-Oncology Patients: A Comprehensive Evaluation of Anthracycline Dosages and Treatment Protocols. Children. 2023; 10(9):1479. https://doi.org/10.3390/children10091479
Chicago/Turabian StyleArdelean, Andrada Mara, Ioana Cristina Olariu, Raluca Isac, Ruxandra Jurac, Cristiana Stolojanu, Mircea Murariu, Ana-Olivia Toma, Laurentiu Braescu, Adelina Mavrea, and Gabriela Doros. 2023. "Correlation of Speckle-Tracking Echocardiography with Traditional Biomarkers in Predicting Cardiotoxicity among Pediatric Hemato-Oncology Patients: A Comprehensive Evaluation of Anthracycline Dosages and Treatment Protocols" Children 10, no. 9: 1479. https://doi.org/10.3390/children10091479
APA StyleArdelean, A. M., Olariu, I. C., Isac, R., Jurac, R., Stolojanu, C., Murariu, M., Toma, A.-O., Braescu, L., Mavrea, A., & Doros, G. (2023). Correlation of Speckle-Tracking Echocardiography with Traditional Biomarkers in Predicting Cardiotoxicity among Pediatric Hemato-Oncology Patients: A Comprehensive Evaluation of Anthracycline Dosages and Treatment Protocols. Children, 10(9), 1479. https://doi.org/10.3390/children10091479