Coregulation: A Multilevel Approach via Biology and Behavior
Abstract
:1. Defining Coregulation
2. Hormonal and Sympathetic Nervous System Coregulation
3. Autonomic Nervous System Coregulation
4. Central Nervous System Coregulation
5. Neural Coregulation
6. Behavioral Coregulation
7. Conclusions
8. Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butler, E.A.; Randall, A.K. Emotional Coregulation in Close Relationships. Emot. Rev. 2013, 5, 202–210. [Google Scholar] [CrossRef]
- Brazelton, T.B. Four early stages in the development of mother–infant interaction. In The Growing Child in Family and Society: An Interdisciplinary Study in Parent–Infant Bonding; Kobayashi, N., Brazelton, T.B., Eds.; University of Tokyo Press: Tokyo, Japan, 1984; pp. 19–34. [Google Scholar]
- Emde, R.N. The affective self: Continuities and transformations from infancy. In Frontiers of Infant Psychiatry; Call, J.D., Galenson, E., Tyson, R.L., Eds.; Basic Books: New York, NY, USA, 1984; Volume 2, pp. 38–54. [Google Scholar]
- Papoušek, H.; Papoušek, M. Intuitive parenting. In Handbook of Parenting Vol. 2 Biology and Ecology of Parenting, 2nd ed.; Erlbaum: Mahwah, NJ, USA, 2002; pp. 183–203. [Google Scholar]
- Stern, D.N. The Interpersonal World of the Infant; Basic Books: New York, NY, USA, 1985. [Google Scholar]
- Bornstein, M.H.; Arterberry, M.E.; Mash, C. Long term memory for an emotional interpersonal interaction occurring at 5 months of age. Infancy 2004, 6, 407–416. [Google Scholar] [CrossRef]
- Tronick, E.Z.; Adamson, L.B.; Als, H.; Brazelton, T.B. Infant emotions in normal and pertubated interactions. In Proceedings of the Biennial Meeting of the Society for Research in Child Development, Denver, CO, USA, 10–13 April 1975. [Google Scholar]
- Ham, J.; Tronick, E. Relational psychophysiology: Lessons from mother–infant physiology research on dyadically expanded states of consciousness. Psychother. Res. 2009, 19, 619–632. [Google Scholar] [CrossRef]
- Lee, T.H.; Qu, Y.; Telzer, E.H. Dyadic neural similarity during stress in mother–child dyads. J. Res. Adolesc. 2018, 28, 121–133. [Google Scholar] [CrossRef]
- Peterson, C.; Roberts, C. Like mother, like daughter: Similarities in narrative style. Dev. Psychol. 2003, 39, 551. [Google Scholar] [CrossRef]
- Beebe, B.; Jaffe, J.; Markese, S.; Buck, K.; Chen, H.; Cohen, P.; Bahrick, L.; Andrews, H.; Feldstein, S. The origins of 12-month attachment: A microanalysis of 4-month mother-infant interaction. Attach. Hum. Dev. 2010, 12, 3–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofer, M.A. Psychobiological roots of early attachment. Curr. Dir. Psychol. Sci. 2006, 15, 84–88. [Google Scholar] [CrossRef]
- Neave, N. Hormones and Behaviour: A Psychological Approach; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Yang, H.P.; Wang, L.; Han, L.; Wang, S.C. Nonsocial functions of hypothalamic oxytocin. ISRN Neurosci. 2013, 2013, 179272. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R. Mother–infant synchrony and the development of moral orientation in childhood and adolescence: Direct and indirect mechanisms of developmental continuity. Am. J. Orthopsychiatry 2007, 77, 582–597. [Google Scholar] [CrossRef]
- Feldman, R. Parent–infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. J. Child Psychol. Psychiatry 2007, 48, 329–354. [Google Scholar] [CrossRef]
- Feldman, R.; Weller, A.; Zagoory-Sharon, O.; Levine, A. Evidence for a neuroendocrinological foundation of human affiliation: Plasma oxytocin levels across pregnancy and the postpartum period predict mother–infant bonding. Psychol. Sci. 2007, 18, 965–970. [Google Scholar] [CrossRef]
- Feldman, R.; Eidelman, A.I. Direct and indirect effects of breast milk on the neurobehavioral and cognitive development of premature infants. Dev. Psychobiol. 2003, 43, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R.; Eidelman, A.I.; Rotenberg, N. Parenting stress, infant emotion regulation, maternal sensitivity, and the cognitive development of triplets: A model for parent and child influences in a unique ecology. Child Dev. 2004, 75, 1774–1791. [Google Scholar] [CrossRef] [PubMed]
- Feldman, R. Infant-mother and infant-father synchrony: The coregulation of positive arousal. Infant Ment. Health J. 2003, 24, 1–23. [Google Scholar] [CrossRef]
- Parke, R.D. Fathers and families. In Handbook of Parenting Vol. 3: Status and Social Conditions of Parenting, 2nd ed.; Erlbaum: Mahwah, NJ, USA, 2002; pp. 27–73. [Google Scholar]
- Cataldo, I.; Neoh, M.; Chew, W.; Foo, J.; Lepri, B.; Esposito, G. Oxytocin receptor gene and parental bonding modulate prefrontal responses to cries: A NIRS Study. Sci. Rep. 2020, 10, 8588. [Google Scholar] [CrossRef]
- Parker, G.; Tupling, H.; Brown, L.B. A parental bonding instrument. Br. J. Med. Psychol. 1979, 52, 1–10. [Google Scholar] [CrossRef]
- Feldman, R.; Gordon, I.; Zagoory-Sharon, O. The cross-generation transmission of oxytocin in humans. Horm. Behav. 2010, 58, 669–676. [Google Scholar] [CrossRef]
- Hoehn, K.; Marieb, E.N. Human Anatomy & Physiology; Benjamin Cummings: San Francisco, CA, USA, 2010. [Google Scholar]
- Kirschbaum, C.; Hellhammer, D.H. Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychneuroendocrinology 1994, 19, 313–333. [Google Scholar] [CrossRef] [PubMed]
- Corter, C.; Fleming, A.S. Maternal responsiveness in humans: Emotional, cognitive and biological factors. Adv. Study Behav. 1990, 19, 83–136. [Google Scholar]
- Fleming, A.S.; Steiner, M.; Anderson, V. Hormonal and attitudinal correlates of maternal behavior during the early postparpregnancy. J. Reprod. Infant Psychol. 1987, 5, 193–205. [Google Scholar] [CrossRef]
- Glover, V.; Teixeira, J.; Gitau, R.; Fisk, N.M. Mechanisms by which maternal mood in pregnancy may affect the fetus. Contemp. Rev. Obstet. Gynecol. 1999, 11, 155–160. [Google Scholar]
- Gitau, R.; Cameron, A.; Fisk, N.M.; Glover, V. Fetal exposure to maternal cortisol. Lancet 1998, 352, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Spangler, G. The emergence of adrenocortical circadian function in newborns and infants and its relationship to sleep, feeding, and maternal adrenocortical activity. Early Hum. Dev. 1991, 25, 197–208. [Google Scholar] [CrossRef]
- Sethre-Hofstad, L.; Stansbury, K.; Rice, M.A. Attunement of maternal and child adrenocortical response to child challenge. Psychoneuroendocrinology 2002, 27, 731–747. [Google Scholar] [CrossRef] [PubMed]
- Stenius, F.; Theorell, T.; Lilja, G.; Scheynius, A.; Alm, J.; Lindblad, F. Comparisons between salivary cortisol levels in six-months-olds and their parents. Psychoneuroendocrinology 2008, 33, 352–359. [Google Scholar] [CrossRef]
- Thompson, L.A.; Trevathan, W.R. Cortisol reactivity, maternal sensitivity, and learning in 3-month-old infants. Infant Behav. Dev. 2008, 31, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Kivlighan, K.T.; Granger, D.A.; Booth, A. Gender differences in testosterone and cortisol response to competition. Psychoneuroendocrinology 2005, 30, 58–71. [Google Scholar] [CrossRef]
- van Bakel, H.J.; Riksen-Walraven, J.M. Adrenocortical and behavioral attunement in parents with 1-year-old infants. Dev. Psychobiol. 2008, 50, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Brandtstädter, J.; Baltes-Götz, B.; Kirschbaum, C.; Hellhammer, D. Developmental and personality correlates of adrenocortical activity as indexed by salivary cortisol: Observations in the age range of 35 to 65 years. J. Psychosom. Res. 1991, 35, 173–185. [Google Scholar] [CrossRef]
- Powers, S.I.; Pietromonaco, P.R.; Gunlicks, M.; Sayer, A. Dating couples’ attachment styles and patterns of cortisol reactivity and recovery in response to a relationship conflict. J. Personal. Soc. Psychol. 2006, 90, 613–628. [Google Scholar] [CrossRef] [Green Version]
- Bos, P.; Hechler, C.; Beijers, R.; Shinohara, K.; Esposito, G.; de Weerth, C. Prenatal and postnatal cortisol and testosterone are related to parental caregiving quality in fathers, but not in mothers. Psychoneuroendocrinology 2018, 97, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.P.; Granger, D.A. Developmental differences in infant salivary alpha-amylase and cortisol responses to stress. Psychoneuroendocrinology 2009, 34, 795–804. [Google Scholar] [CrossRef] [Green Version]
- Ditto, B.; France, C.; Miller, S. Spouse and parent-offspring similarities in cardiovascular response to mental arithmetic and isometric hand-grip. Health Psychol. 1989, 8, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. Cardiac vagal tone: A physiological index of stress. Neurosci. Behav. Rev. 1995, 19, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Porges, S.W. The Polyvagal Theory: Neurophysiological Foundations of Emotions, Attachment, Communication, and Self-Regulation; W. W. Norton: New York, NY, USA, 2011. [Google Scholar]
- Bornstein, M.H.; Seuss, P.E. Child and mother cardiac vagal tone: Continuity, stability, and concordance across the first 5 years. Dev. Psychol. 2000, 36, 54–65. [Google Scholar] [CrossRef]
- Jones, N.A.; Field, T.; Fox, N.A.; Lundy, B.; Hart, S. Newborns of mothers with depressive symptoms are physiologically less developed. Infant Behav. Dev. 1998, 21, 537–541. [Google Scholar] [CrossRef]
- Esposito, G.; Yoshida, S.; Ohnishi, R.; Tsuneoka, Y.; Rostagno, M.d.C.; Yokota, S.; Okabe, S.; Kamiya, K.; Hoshino, M.; Shimizu, M.; et al. Infant calming responses during maternal carrying in humans and mice. Curr. Biol. 2013, 23, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Ohmura, N.; Okuma, L.; Truzzi, A.; Shinozuka, K.; Saito, A.; Yokota, S.; Bizzego, A.; Miyazawa, E.; Shimizu, M.; Esposito, G.; et al. A method to soothe and promote sleep in crying infants utilizing the transport response. Curr. Biol. 2022, 32, 4521–4529.e4. [Google Scholar] [CrossRef]
- Ohmura, N.; Okuma, L.; Truzzi, A.; Esposito, G.; Kuroda, K. Maternal physiological calming responses to infant suckling at the breast. J. Physiol. Sci. 2023, 73, 3. [Google Scholar] [CrossRef]
- Doi, H.; Sulpizio, S.; Esposito, G.; Katou, M.; Nishina, E.; Iriguchi, M.; Honda, M.; Oohashi, T.; Bornstein, M.H.; Shinohara, K. Inaudible components of the human infant cry influence haemodynamic responses in the breast region of mothers. J. Physiol. Sci. 2019, 69, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Gallese, V.; Rochat, M. The evolution of motor cognition: Its role in the development of social cognition and implications for the Autistic Spectrum Disorder. In The Developing Infant Mind: Integrating Biology and Experience; Legerstee, M., Haley, D., Bornstein, M.H., Eds.; Guilford: New York, NY, USA, 2012; pp. 19–47. [Google Scholar]
- Killner, J.K.; Neal, A.; Weiskopf, N.; Friston, K.J.; Frith, C.D. Evidence of mirror neurons in human inferior frontal gyrus. J. Neurosci. 2009, 12, 10153–10159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukamel, R.; Ekstrom, A.D.; Kaplan, J.; Iacoboni, M.; Fried, I. Single-neuron responses in humans during execution and observation of action. Curr. Biol. 2010, 20, 750–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzolatti, G.; Sinigaglia, C. The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nat. Rev. Neurosci. 2010, 11, 264–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulte-Rüther, M.; Markowitsch, H.J.; Fink, G.R.; Piefke, M. Mirror neuron and theory of mind mechanisms involved in face-to-face interactions: A functional magnetic resonance imaging approach to empathy. J. Cogn. Neurosci. 2007, 19, 1354–1372. [Google Scholar] [CrossRef]
- Rigo, P.; Kim, P.; Esposito, G.; Putnick, D.L.; Venuti, P.; Bornstein, M.H. Specific maternal brain responses to their own child’s face: An fMRI meta-analysis. Dev. Rev. 2019, 51, 58–69. [Google Scholar] [CrossRef]
- Strathearn, L.; Li, J.; Fonagy, P.; Montague, P.R. What’s in a smile? Maternal brain responses to infant facial cues. Pediatrics 2008, 122, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Nitschke, J.; Nelson, E.; Rusch, B.; Fox, A.S.; Oakes, T.; Davidson, R. Orbifrontal cortex tracks positive mood in mothers viewing pictures of their newborn infants. NeuroImage 2004, 21, 583–592. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Arterberry, M.E.; Mash, C. Differentiated brain activity in response to faces of “own” versus “unfamiliar” babies in primipara mothers: An electrophysiological study. Dev. Neuropsychol. 2013, 38, 365–385. [Google Scholar] [CrossRef]
- Esposito, G.; Valenzi, S.; Islam, T.; Mash, C.; Bornstein, M.H. Immediate and selective maternal brain responses to own infant faces. Behav. Brain Res. 2015, 278, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Mash, C.; Bornstein, M.H.; Arterberry, M.E. Brain dynamics in young infants’ recognition of faces: EEG oscillatory activity in response to mother and stranger. NeuroReport 2013, 24, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Alario, F.X.; Chainay, H.; Lehericy, S.; Cohen, L. The role of the supplementary motor area (SMA) in word production. Brain Res. 2006, 1076, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Brendel, B.; Hertrich, I.; Erb, M.; Lindner, A.; Riecker, A.; Grodd, W.; Ackermann, H. The contribution of mesiofrontal cortex (SMA) to the preparation and execution of repetitive syllable productions: An fMRI study. NeuroImage 2010, 50, 1219–1230. [Google Scholar] [CrossRef] [PubMed]
- Riecker, A.; Mathiak, K.; Wildgruber, D.; Erb, M.; Hertrich, I.; Grodd, W.; Ackermann, H. fMRI reveals two distinct cerebral networks subserving speech motor control. Neurology 2005, 64, 700–706. [Google Scholar] [CrossRef]
- Deecke, L.; Kornhuber, H.H. An electrical sign of participation of the mesial “supplementary” motor cortex in human voluntary finger movement. Brain Res. 1978, 159, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, G. Supplementary motor area structure and function—Review and hypotheses. Behav. Brain Sci. 1985, 8, 567–588. [Google Scholar] [CrossRef] [Green Version]
- Haggard, P.; Eimer, M. On the relation between brain potentials and the awareness of voluntary movements. Exp. Brain Res. 1999, 126, 128–133. [Google Scholar] [CrossRef]
- Jahanshahi, M.; Jenkins, I.H.; Brown, R.G.; Marsden, C.D.; Passingham, R.E.; Brooks, D.J. Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain 1995, 118, 913–933. [Google Scholar] [CrossRef]
- Ackermann, H.; Ziegler, W. Brain mechanisms underlying speech motor control. In The Handbook of Phonetic Sciences, 2nd ed.; Hardcastle, W.J., Laver, J., Gibbon, F., Eds.; Blackwell: Malden, MA, USA, 2010. [Google Scholar]
- Botez, M.I.; Barbeau, A. Role of subcortical structures and particularly of the thalamus, in the mechanisms of speech and language. Int. J. Neurol. 1971, 8, 300–320. [Google Scholar]
- Caria, A.; de Falco, S.; Venuti, P.; Lee, S.; Esposito, G.; Rigo, P.; Bornstein, M.H. Species-specific response to human infant faces in the premotor cortex. NeuroImage 2012, 60, 884–893. [Google Scholar] [CrossRef] [Green Version]
- Carr, L.; Iacoboni, M.; Dubeau, M.C.; Mazziotta, J.C.; Lenzi, G.L. Neural mechanism of empathy in humans: A relay from neural system for imitation to limbic areas. Proc. Natl. Acad. Sci. USA 2003, 100, 5497–5502. [Google Scholar] [CrossRef]
- Seitz, R.J.; Schafer, R.; Scherfeld, D.; Friederichs, S.; Popp, K.; Wittsack, H.J.; Franz, M. Valuating other people’s emotional face expression: A combined functional magnetic resonance imaging and electroencephalography study. Neuroscience 2008, 152, 713–722. [Google Scholar] [CrossRef]
- Singer, T.; Seymour, B.; O’Doherty, J.; Kaube, H.; Dolan, R.J.; Frith, C.D. Empathy for pain involves the affective but not sensory components of pain. Science 2004, 303, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
- Wicker, B.; Keysers, C.; Plailly, J.; Royet, J.P.; Gallese, V.; Rizzolatti, G. Both of us disgusted in my insula: The common neural basis of seeing and feeling disgust. Neuron 2003, 40, 655–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamay-Tsoory, S.G.; Aharon-Peretz, J.; Perry, D. Two systems for empathy: A double dissociation between emotional and cognitive empathy in inferior frontal gyrus versus ventromedial prefrontal lesions. Brain 2009, 132, 617–627. [Google Scholar] [CrossRef] [Green Version]
- Schilbach, L.; Timmermans, B.; Reddy, V.; Costall, A.; Bente, G.; Schlicht, T.; Vogeley, K. Toward a second-person neuroscience. Behav. Brain Sci. 2013, 36, 393–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolis, D.; Schilbach, L. Observing and participating in social interactions: Action perception and action control across the autistic spectrum. Dev. Cogn. Neurosci. 2018, 29, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Hoehl, S.; Markova, G. Moving developmental social neuroscience toward a second-person approach. PLoS Biol. 2018, 16, e3000055. [Google Scholar] [CrossRef] [PubMed]
- Redcay, E.; Schilbach, L. Using second-person neuroscience to elucidate the mechanisms of social interaction. Nat. Rev. Neurosci. 2019, 20, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Carollo, A.; Lim, M.; Aryadoust, V.; Esposito, G. Interpersonal Synchrony in the Context of Caregiver-Child Interactions: A Document Co-citation Analysis. Front. Psychol. 2021, 12, 701824. [Google Scholar] [CrossRef]
- Hasson, U.; Ghazanfar, A.A.; Galantucci, B.; Garrod, S.; Keysers, C. Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends Cogn. Sci. 2012, 16, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Dai, B.; Peng, D.; Zhu, C.; Liu, L.; Lu, C. Neural synchronization during face-to-face communication. J. Neurosci. 2012, 32, 16064–16069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, N.; Mok, C.; Witt, E.E.; Pradhan, A.H.; Chen, J.E.; Reiss, A.L. NIRS-based hyperscanning reveals inter-brain neural synchronization during cooperative Jenga game with face-to-face communication. Front. Hum. Neurosci. 2016, 10, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoehl, S.; Fairhurst, M.; Schirmer, A. Interactional synchrony: Signals, mechanisms and benefits. Soc. Cogn. Affect. Neurosci. 2021, 16, 5–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, T.; Schleihauf, H.; Kungl, M.; Kayhan, E.; Hoehl, S.; Vrtička, P. Interpersonal Neural Synchrony During Father–Child Problem Solving: An fNIRS Hyperscanning Study. Child Dev. 2020, 92, e565–e580. [Google Scholar] [CrossRef]
- Nguyen, T.; Bánki, A.; Markova, G.; Hoehl, S. Studying parent–child interaction with hyperscanning. Prog. Brain Res. 2020, 254, 1–24. [Google Scholar]
- Babiloni, F.; Astolfi, L. Social neuroscience and hyperscanning techniques: Past, present and future. Neurosci. Biobehav. Rev. 2014, 44, 76–93. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, T.; Sasaki, Y.; Sakaki, K.; Yokoyama, R.; Kawashima, R. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. Neuroimage 2016, 133, 484–497. [Google Scholar] [CrossRef] [Green Version]
- Balconi, M.; Vanutelli, M.E. Functional EEG connectivity during competition. BMC Neurosci. 2018, 19, 63. [Google Scholar] [CrossRef]
- Bevilacqua, D.; Davidesco, I.; Wan, L.; Chaloner, K.; Rowland, J.; Ding, M.; Poeppel, D.; Dikker, S. Brain-to-brain synchrony and learning outcomes vary by student–teacher dynamics: Evidence from a real-world classroom electroencephalography study. J. Cogn. Neurosci. 2019, 31, 401–411. [Google Scholar] [CrossRef]
- Cui, X.; Bryant, D.M.; Reiss, A.L. NIRS-based hyperscanning reveals increased interpersonal coherence in superior frontal cortex during cooperation. Neuroimage 2012, 59, 2430–2437. [Google Scholar] [CrossRef] [Green Version]
- Fishburn, F.A.; Murty, V.P.; Hlutkowsky, C.O.; MacGillivray, C.E.; Bemis, L.M.; Murphy, M.E.; Huppert, T.J.; Perlman, S.B. Putting our heads together: Interpersonal neural synchronization as a biological mechanism for shared intentionality. Soc. Cogn. Affect. Neurosci. 2018, 13, 841–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wass, S.V.; Noreika, V.; Georgieva, S.; Clackson, K.; Brightman, L.; Nutbrown, R.; Covarrubias, L.S.; Leong, V. Parental neural responsivity to infants’ visual attention: How mature brains influence immature brains during social interaction. PLoS Biol. 2018, 16, e2006328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Li, X.; Hu, Y. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Hum. Brain Mapp. 2015, 36, 2039–2048. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Liu, N.; Cui, X.; Vrticka, P.; Saggar, M.; Hosseini, S.H.; Reiss, A.L. Sex differences in neural and behavioral signatures of cooperation revealed by fNIRS hyperscanning. Sci. Rep. 2016, 6, 26492. [Google Scholar] [CrossRef]
- Pan, Y.; Cheng, X.; Zhang, Z.; Li, X.; Hu, Y. Cooperation in lovers: An f NIRS-based hyperscanning study. Hum. Brain Mapp. 2017, 38, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Schleihauf, H.; Kayhan, E.; Matthes, D.; Vrtička, P.; Hoehl, S. The effects of interaction quality on neural synchrony during mother-child problem solving. Cortex 2020, 124, 235–249. [Google Scholar] [CrossRef]
- Miller, J.G.; Vrtička, P.; Cui, X.; Shrestha, S.; Hosseini, S.H.; Baker, J.M.; Reiss, A.L. Inter-brain synchrony in mother-child dyads during cooperation: An fNIRS hyperscanning study. Neuropsychologia 2019, 124, 117–124. [Google Scholar] [CrossRef]
- Barker, B.; Iles, J.E.; Ramchandani, P.G. Fathers, fathering and child psychopathology. Curr. Opin. Psychol. 2017, 15, 87–92. [Google Scholar] [CrossRef]
- Azhari, A.; Leck, W.; Gabrieli, G.; Bizzego, A.; Rigo, P.; Setoh, P.; Bornstein, M.; Esposito, G. Parenting stress undermines mother-child brain-to-brain synchrony: A hyperscanning study. Sci. Rep. 2019, 9, 11407. [Google Scholar] [CrossRef] [Green Version]
- Azhari, A.; Gabrieli, G.; Bizzego, A.; Bornstein, M.H.; Esposito, G. Probing the association between maternal anxious attachment style and mother-child brain-to-brain coupling during passive co-viewing of visual stimuli. Attach. Hum. Dev. 2023, 25, 19–34. [Google Scholar] [CrossRef]
- Azhari, A.; Lim, M.; Bizzego, A.; Gabrieli, G.; Bornstein, M.H.; Esposito, G. Physical presence of spouse enhances brain-to-brain synchrony in co-parenting couples. Sci. Rep. 2020, 10, 7569. [Google Scholar] [CrossRef]
- Santamaria, L.; Noreika, V.; Georgieva, S.; Clackson, K.; Wass, S.; Leong, V. Emotional valence modulates the topology of the parent-infant inter-brain network. NeuroImage 2020, 207, 116341. [Google Scholar] [CrossRef]
- Reindl, V.; Gerloff, C.; Scharke, W.; Konrad, K. Brain-to-brain synchrony in parent–child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage 2018, 178, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Quiñones-Camacho, L.E.; Fishburn, F.A.; Camacho, M.C.; Hlutkowsky, C.O.; Huppert, T.J.; Wakschlag, L.S.; Perlman, S.B. Parent–child neural synchrony: A novel approach to elucidating dyadic correlates of preschool irritability. J. Child Psychol. Psychiatry 2020, 61, 1213–1223. [Google Scholar] [CrossRef] [PubMed]
- Fuemmeler, B.F.; Anderson, C.B.; Mâsse, L.C. Parent-child relationship of directly measured physical activity. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Carter, H.D. Family resemblances in verbal and numerical abilities. Genet. Psychololgy Monogr. 1932, 12, 3–10. [Google Scholar]
- DeFries, J.C.; Johnson, R.C.; Kuse, A.R.; McClearn, G.E.; Polovina, J.; Vandenberg, S.G.; Wilson, J.R. Familial resemblance for specific cognitive abilities. Behav. Genet. 1979, 9, 23–43. [Google Scholar] [CrossRef] [PubMed]
- Williams, T. Family resemblance in abilities: The Wechsler scales. Behav. Genet. 1975, 5, 405–409. [Google Scholar] [CrossRef]
- Willoughby, R.R. Family similarities in mental-test abilities. Genet. Psychol. Monogr. 1927, 2, 239–277. [Google Scholar]
- Birch, L.L. The relationship between children’s food preferences and those of their parents. J. Nutr. Educ. 1980, 12, 14–18. [Google Scholar] [CrossRef]
- Rozin, P.; Fallon, A.; Mandell, R. Family resemblance in attitudes to foods. Dev. Psychol. 1984, 20, 309–314. [Google Scholar] [CrossRef]
- Field, T. Attachment as psychobiological attunement: Being on the same wavelength. In The Psychobiology of Attachment and Separation; Academic Press: Cambridge, MA, USA, 1985; pp. 415–454. [Google Scholar]
- Bornstein, M.H.; Putnick, D.L.; Cote, L.R.; Haynes, O.M.; Suwalsky, J.T.D. Mother-infant contingent vocalizations in 11 countries. Psychol. Sci. 2015, 26, 1272–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornstein, M.H.; Putnick, D.L.; Park, Y.; Suwalsky, J.T.D.; Haynes, O.M. Human infancy and parenting in global perspective: Specificity. Proc. R. Soc. B 2017, 284, 20172168. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, M.H. Parenting, Infancy, Culture: Specificity and Commonality in Argentina, Belgium, Israel, Italy, and the United States; Routledge: London, UK, 2022. [Google Scholar]
- Field, T.; Healy, B.; Goldstein, S.; Guthertz, M. Behavior-state matching and synchrony in mother-infant interactions of nondepressed versus depressed dyads. Dev. Psychol. 1990, 26, 7–14. [Google Scholar] [CrossRef]
- Beeghly, M.; Perry, B.W.; Cicchetti, D. Structural and affective dimensions of play development in young children with Down Syndrome. Int. J. Behav. Dev. 1989, 12, 257–277. [Google Scholar] [CrossRef]
- Bornstein, M.H.; Putnick, D.L.; Suwalsky, J.T.D.; Venuti, P.; de Falco, S.; Zingman de Galperín, C.; Gini, M.; Heslington Tichovolsky, M. Emotional relationships in mothers and infants: Culture-common and community-specific characteristics of dyads from rural and metropolitan settings in Argentina, Italy, and the United States. J. Cross-Cult. Psychol. 2012, 43, 171–198. [Google Scholar] [CrossRef] [Green Version]
- Crawley, S.B.; Spiker, D. Mother-child interactions involving two-year-olds with Down Syndrome: A look at individual differences. Child Dev. 1983, 54, 1312–1323. [Google Scholar] [CrossRef]
- Collins, W.A.; Maccoby, E.E.; Steinberg, L.; Hetherington, E.M.; Bornstein, M.H. Contemporary research on parenting: The case for nature and nurture. Am. Psychol. 2000, 55, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Maccoby, E.E. The role of parents in the socialization of children: An historical overview. Dev. Psychol. 1992, 28, 1006–1017. [Google Scholar] [CrossRef]
- Ainsworth, M.D. Attachments beyond infancy. Am. Psychol. 1989, 44, 709–716. [Google Scholar] [CrossRef]
- Feldman, R.; Eidelman, A.I. Parent–infant synchrony and the social–emotional development of triplets. Dev. Psychol. 2004, 40, 1133–1147. [Google Scholar] [CrossRef] [PubMed]
- Sander, L. Where are we going in the field of infant mental health? Infant Ment. Health J. 2000, 21, 5–20. [Google Scholar] [CrossRef]
- Sroufe, L.A.; Egeland, B.; Carlson, E.A.; Collins, W.A. The Development of the Person: The Minnesota Study of Risk and Adaptation from Birth to Adulthood; Guilford Publications: New York, NY, USA, 2005. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bornstein, M.H.; Esposito, G. Coregulation: A Multilevel Approach via Biology and Behavior. Children 2023, 10, 1323. https://doi.org/10.3390/children10081323
Bornstein MH, Esposito G. Coregulation: A Multilevel Approach via Biology and Behavior. Children. 2023; 10(8):1323. https://doi.org/10.3390/children10081323
Chicago/Turabian StyleBornstein, Marc H., and Gianluca Esposito. 2023. "Coregulation: A Multilevel Approach via Biology and Behavior" Children 10, no. 8: 1323. https://doi.org/10.3390/children10081323
APA StyleBornstein, M. H., & Esposito, G. (2023). Coregulation: A Multilevel Approach via Biology and Behavior. Children, 10(8), 1323. https://doi.org/10.3390/children10081323